
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Software Reuse in Information Systems
Development
Marcus A. Rothenberger
University of Wisconsin - Milwaukee, rothenb@uwm.edu

Uday R. Kulkarni
Arizona State University, uday.kulkarni@asu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Rothenberger, Marcus A. and Kulkarni, Uday R., "Software Reuse in Information Systems Development" (2000). AMCIS 2000
Proceedings. 367.
http://aisel.aisnet.org/amcis2000/367

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/367?utm_source=aisel.aisnet.org%2Famcis2000%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


SOFTWARE REUSE IN INFORMATION SYSTEMS DEVELOPMENT

Marcus A. Rothenberger, School of Business Administration; University of Wisconsin-Milwaukee,
rothenb@uwm.edu

Uday R. Kulkarni, School of Accountancy and Information Management; Arizona State University,
uday.kulkarni@asu.edu

Introduction

Software and Management Information Systems
application development have become a key area to the
performance of most firms. The reuse of previously written
code is a way to increase software development productivity
as well as the quality of the software (Basili, et al., 1996;
Gaffney and Durek, 1989). If previously tested components
are reused in a new software project, they are more likely to
be error free than new components. This reduces the overall
failure rate of the software project. Case studies, such as
(Banker and Kauffman, 1991; Poulin, et al., 1993; Apte, et
al., 1990; Lim, 1994; Swanson, et al., 1991) were
instrumental in obtaining such insights. Today, an increasing
number of organizations are adopting the practice of
software reuse (Lim, 1994). A common misconception is
that object-orientation alone will lead to reuse. While it can
help facilitating a reuse approach, research has shown that
object technology does not always lead to reuse (Fichman
and Kemerer, 1997).

Software reuse requires a substantial up-front investment
for the development and maintenance of a software
repository with reusable components (Barnes and Bollinger,
1991). A large part of the set-up cost comes from the fact
that additional effort is needed to make regular components
generic enough for use in future projects (Mili, et al., 1994).
In the long-run, this initial investment can be offset by the
cost savings through reuse. Using a reusable component in
lieu of writing a new component from scratch saves
development cost. However, the component has to be
located and retrieved from the repository. Often,
components cannot be used as is, but also need to be
modified to fit the context of the new project. Reuse can
only be economically viable, if the savings achieved through
reuse will over time offset the start-up cost of implementing
the reuse methodology and populating the software
repository.

While software reuse is not a new research area to
computer science (Krueger, 1992), MIS research has only
recently begun to investigate this important aspect of
software development. This reflects an increased
understanding that too little work has been done on non-
technical issues (Zand and Samadzadeh, 1995).
Organizational and behavioral aspects, legal constraints, and
economic considerations are little explored in the context of

software reuse. IS research can also contribute to storage and
retrieval problem by developing domain specific solutions.
In this overview we summarize the work done in the areas
most important to IS research.

Organizational and Behavioral Issues

Research has investigated organizational and behavioral
factors that can determine the success of a reuse program.
The most frequently addressed issues are summarized
below:

Reuse requires a shift in the software development
paradigm. This affects the entire IT department or
organization and hence cannot be successfully implemented
without the full support of high-level management (Frakes
and Isoda, 1994; Isoda, 1992; Lee and Litecky, 1997). One
specific area where management support is effective is the
recognition that developers need to expand on new skills and
unlearn old habits. Hence, a successful reuse program
requires systematic education for reuse (Frakes and Fox,
1995; Lee and Litecky, 1997).

Reusable software components need to be written in a
more generic fashion in order to be suitable for repeated
reuse. Hence, it is important for the success of reuse that
modules are designed accordingly. (Frakes and Isoda, 1994).

Other issues affecting reuse relate to the commonality of
the domain of the software components and to the
population of the repository. The more focused the domain
is in which reuse is desired, the more is the likelihood of
reuse. A focused domain ensures that components are
needed across multiple projects (Isoda, 1992; Lee and
Litecky, 1997). Furthermore, large-scale reuse is only
feasible if the repository holds a sufficient number of
components. (Frakes and Isoda, 1994; Lee and Litecky,
1997). This requires a substantial up-front development
effort.

An organization wanting to reuse components to which
other entities have proprietary rights will face legal
constraints. It is important that those are considered, so they
don’t inhibit reuse (Frakes and Isoda, 1994).

491



Reuse Measurement

To ensure the financial success of reuse, software
developers need to monitor the success of their reuse
methodology using metrics (Isoda, 1992). The reuse rate is
the most basic reuse measure, however, its assessment is not
trivial (Poulin, 1997). Questions as to what counts as reuse
and to what extent need to be answered. (Banker, et al.,
1994) implemented a set of metrics that assesses the reuse
rate in a repository-based CASE environment.
(Rothenberger and Hershauer, 1999) presented a reuse rate
measure in the context of an enterprise-level data model
based reuse environment.

By measuring the performance of projects in a reuse
environment the organization sends a message to its
employees that reuse is important, and that successful
practices will be noticed and rewarded. (Rothenberger and
Dooley, 1999) have developed a project performance
measure to address this issue.

Another research stream within the reuse measurement
area has looked at how to measure the economic aspect of
reuse. Economic models help organizations to understand
whether investment in reuse pays off. (Gaffney and Durek,
1989) have discussed a return-on-investment model that
addresses the issue of how many times a component has to
be reused to be paid off. The model by (Barnes and
Bollinger, 1991) looks at reuse economics as a cost-benefit
tradeoff. (Pfleeger and Bollinger, 1994) introduce a
technique where estimates are made by comparing a
proposed project with its differences from a baseline project,
thus allowing estimation of the impact of reuse over multiple
projects.

The reuse measurement research has presented a
comprehensive set of metrics that captures the reuse
tradeoffs from various aspects. However, the more complex
the models are the harder they are to implement in an
organizational setting. Many models rely on the availability
of parameters that are very difficult to obtain. For example,
the cost of developing reusable software relative to that
developed without reuse in mind and the additional cost of
developing components generic enough for reuse was
addressed by (Poulin, 1997). Future research needs to focus
on the application of those measures and on developing
techniques that allow estimating the hard-to-obtain
parameters.

Component Retrieval

Efficient storage and retrieval of components is crucial to
the success of software reuse. The complexity of the
information associated with software modules makes it
difficult to efficiently identify the needed component. (Chen
and Lee, 1993) developed a classification scheme for
software components similar to cataloging of Integrated
Circuits. Efficient retrieval is feasible if the right

classification schemes are used. (Latour and Johnson, 1988)
took this approach a step further by developing a graphical
retrieval system for reusable components.

(Prieto-Díaz, 1991) present software classification
principles that employ a classification method similar to that
used in library science. (Rothenberger and Hershauer, 1999)
have described a reuse environment where the reusable
components are mapped to the business process and data
model based on the areas of interaction. This example
demonstrates that component retrieval can work efficiently
within a highly specialized domain.

The approaches discussed in the literature only represent
partial solutions to the retrieval problem. In most cases
where reuse is common, developer's experience with and
knowledge about the repository is crucial.

Conclusion and Future Directions

Organizational factors such as management support,
importance of reuse-related skills training explain only part
of the variation in software reuse rates across organizations.
Future studies may need to look into project-level issues
such as precedence and sequencing, urgency of delivery, etc.
Clients who outsource information systems development
also play a substantial role in determining the extent of reuse
in their projects.

In the measurement arena, we may mention that present
economic models do not consider the benefits of reuse that
go beyond monetary savings. Reuse can create a competitive
advantage through higher quality software and an improved
ability of the organization to respond to change requests.
Quantitative models cannot entirely capture the cost-benefit
tradeoff of software reuse. Capturing such data is crucial to
management of reuse.

The ideal retrieval method would neither require any
prior knowledge of the repository nor any informal
communication among developers to find the components
needed. The approaches discussed in the literature take steps
towards such an ideal retrieval method, but still rely on
informal ways of finding the right component. Future
research must strive towards offering complete solutions to
the storage and retrieval of components.

Many organizations have invested in Enterprise
Resource (ERP) systems for standardizing their traditional
transaction processing needs. ERP systems exhibit a high
degree of reuse capability for such systems. In spite of these
shifts, customized development of specialized components
will constitute the bulk of the systems development efforts
in the near and mid-term future. With the skyrocketing
development costs of information systems and their critical
nature in today's businesses, the reuse issues highlighted
here will continue to be of importance to both the research
and practitioner community.

492



References

Apte, U., Sankar, C.S., Thakur, M. and Turner, J.E.
"Reusability-Based Strategy for Development of
Information Systems: Implementation Experience of a
Bank," MIS Quarterly (14:4), 1990, pp. 420-433.

Banker, R.D. and Kauffman, R.J. "Reuse and Productivity in
Integrated Computer-Aided Software Engineering: An
Empirical Study," MIS Quarterly (15:3), 1991, pp. 374-401.

Banker, R.D., Kauffman, R.J. and Zweig, D. "Automating
Output Size and Reuse Metrics in a Repository-Based
Computer Aided Software Engineering (CASE)
Environment," IEEE Transactions on Software Engineering
(20:3), 1994, pp. 169-187.

Barnes, B.H. and Bollinger, T.B. "Making Reuse Cost-
Effective," IEEE Software (8:1), 1991, pp. 13-24.

Basili, V.R., Briand, L.C. and Melo, W.L. "How Reuse
Influences Productivity in Object-Oriented Systems,"
Communications of the ACM (39:10), 1996, pp. 104-116.

Chen, D.-J. and Lee, P.J. "On the Study of Software Reuse
Using Reusable C++ Components," Journal of Systems
Software (20), 1993, pp. 19-36.

Fichman, R. and Kemerer, C. "Object Technology and
Reuse: Lessons from Early Adopers," IEEE Computer (30),
October 1997, pp. 47-59.

Frakes, W.B. and Fox, C.J. "Sixteen Questions About
Software Reuse," Communications of the ACM (38:6), 1995,
pp. 75-91.

Frakes, W.B. and Isoda, S. "Success Factors of Systematic
Reuse," IEEE Software (11), September 1994, pp. 15-19.

Gaffney, J.E. and Durek, T.A. "Software reuse - key to
enhanced productivity: some quantitative models,"
Information and Software Technology (31:5), 1989, pp. 258-
267.

Isoda, S. "Experience Report of Software Reuse Projects: Its
Structure, Activities, and Statistical Results," Proceedings of
the Proceedings of the 14th International Conference on
Software Engineering, Melbourne, Australia, 1992, pp. 320-
326.

Krueger, C.W. "Software Reuse," ACM Computing Surveys
(24:2), 1992, pp. 131-183.

Latour, L. and Johnson, E. "Seer: A Graphical Retireval
System for Reusable Ada Software Modules," Proceedings
of the Third International Conference on Ada Applications
and Environment, Piscataway, NJ, 1988, pp. 105-113.

Lee, N.-Y. and Litecky, C.R. "An Empirical Study of
Software Reuse with Special Attention to Ada," IEEE

Transaction on Software Engineering (23:9), 1997, pp. 537-
549.

Lim, W.C. "Effects of Reuse on Quality, Productivity, and
Economics," IEEE Software (11:5), 1994, pp. 23-30.

Mili, H., Witt, J., Radai, R., Wang, W., Strickland, K.,
Boldyreff, C., Heger, J., Scherr, W., Olsen, L. and Elzer, P.
"Practitioner and SoftClass: A Comparative Study of Two
Software Reuse Research Projects," Journal of Systems and
Software (25), 1994, pp. 147-170.

Pfleeger, S.L. and Bollinger, T.B. "The economics of reuse:
new approaches to modeling and assessing cost,"
Information and Software Technology (36:8), 1994, pp. 475-
484.

Poulin, J.S. Measuring Software Reuse: principles,
practices, and economic models, Addison-Wesley, Reading,
MA, 1997.

Poulin, J.S., Caruso, J.M. and Hancock, D.R. "The business
case for software reuse," IBM Systems Journal (32:4), 1993,
pp. 567-594.

Prieto-Díaz, R. "Implementing Faceted Classification for
Software Reuse," Communications of the ACM (34:5), 1991,
pp. 88-97.

Rothenberger, M.A. and Dooley, K.J. "A Performance
Measure for Software Reuse Projects," Decision Sciences
(30:4), 1999,

Rothenberger, M.A. and Hershauer, J.C. "A Software Reuse
Measure: Monitoring an Enterprise-Level Model Driven
Development Process," Information & Management (35:5),
1999, pp. 283-293.

Swanson, K., McComb, D., Smith, J. and McCubbrey, D.
"The Application Software Factory: Applying Total Quality
Techniques to Systems Development," MIS Quarterly
(15:4), 1991, pp. 566-579.

Zand, M. and Samadzadeh, M. "Guest Editors' Corner:
Software Reuse: Current Status and Trends," Journal of
Systems and Software (30), 1995, pp. 167-170.

493


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Software Reuse in Information Systems Development
	Marcus A. Rothenberger
	Uday R. Kulkarni
	Recommended Citation



