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Lower Bounds for the Multiperiod Capacitated Minimal Spanning Tree with Node
Outage Cost Design Problem

Rakesh Kawatra, MH 150, Minnesota State University, Mankato, MN 56002 (507) 389-5341

Abstract

The Multiperiod Capacitated Minimal Spanning Tree
With Node Outage Costs (MCMSTWOC) Design
problem consists of scheduling the installation of links in
a communication network so as to connect a set of
terminal nodes S = [2,3...N] to a central node (node 1)
with minimal present value of costs. The cost of the
network is the sum of link layout cost and node outage
costs. The link capacities limit the number of terminal
nodes sharing a link. Node outage cost associated with
each terminal node is the economic cost incurred by the
network user whenever the terminal node is disabled due
to failure of a link. In the network some of the terminal
nodes are active at the beginning of the planning horizon
while others are activated over time. The problem is
formulated as an integer-programming problem. A
Lagrangian relaxation method is used to find a lower
bound for the optimal objective function value.
Subgradient optimization method is used to find good
lower bounds. This lower bound can be used to estimate
the quality of the solution given by a heuristic.

Introduction

One of the common sub problems in the design of
communication networks is to find a spanning tree to
connect a set of geographically remote terminal sites
(nodes) to a central site, which could be a host computer
or a backbone node. The limited capacity of a link
restricts the number of terminal nodes sharing that link.
This is also known as the capacitated minimal spanning
tree (CMST) problem. Several heuristic methods for
solving different varieties of the CMST problem have
been developed in the past. Some of these heuristics
(Altinkemer and Gavish, 1988; Esau and Williams, 1966;
Frank et al., 1971; Gavish 1983, 1985; Gavish and
Altinkemer, 1990; Gouveia, 1995; Woolston and Albin,
1988) can solve single period CMST problems with equal
importance given to all terminal nodes in a reasonable
length of time. Heuristics have also been developed for
solving the single period CMST problem when each
terminal node in the network is assigned an outage cost
(Dutta and Kawatra, 1994; Kawatra, Dutta, and Bricker,
1999). Outage cost associated with a terminal node is
defined as the economic loss suffered by the user
whenever the terminal node is disabled due to the failure
of a link (Campbell and Pimentel, 1986). Another variant

of the CMST problem is when the terminal nodes are
added to the network over time. This is known as the
multiperiod CMST problem. A heuristic for solving the
multiperiod CMST problem was developed very recently
(Kawatra and Bricker, 2000). However, they assumed that
all terminal nodes are equally important to the user and
did not consider outage costs in their study. (Kawatra,
2000) presented a branch exchange heuristic to solve the
multiperiod CMST problem when terminal nodes have
outage costs associated with them. Their branch exchange
heuristic is a greedy heuristic that is likely to find a local
optimum, which may not be the best possible solution.
Designers using this heuristic would like to have an
estimate of the quality of the solution given by it.

One of the approaches used to find quality of solutions
given by the heuristics is to find a lower bound of the
optimal objective function value. In this paper, we suggest
a Lagrangean relaxation method to find lower bound of
the optimal objective function value of Multiperiod
Capacitated Minimal Spanning Tree with Node Outage
Cost problem. In section 2 we present an
integer-programming formulation of the MCMSTWOC
problem. Section 3 presents a Lagrangian relaxation
method for finding a lower bound of the objective
function value. The lower bound can be used to estimate
the quality of the solution given by the branch exchange
heuristic. Computational results in Section 4 demonstrate
the performance of the Lagrangean relaxation method for
several different network structures. Section 5 concludes
the paper.

Mathematical Model of the Problem

We use the following notation in the model:
S: [2,3,...N] is the set of terminal sites;
Node 1: central site;
λ: annual link failure rate;
dm: the time period at which node m becomes active;
Ot

m: node outage cost associated with terminal node m in
time period t;
P: the set of time periods [1,2…T] in the planning

horizon;
H: a limit on the maximum number of nodes in any

subtree rooted at the central node;
Rj: limit on the maximum number of nodes in any subtree

rooted at node j;
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Cijt: the discounted cost of installing a link(i,j) in period t
and maintaining it during periods t through T.

The following decision variables are defined:
Xijt: a binary variable such that Xijt = 1 indicates that

link(i,j) is installed in time period t; otherwise Xijt =
0;

Yijt: a variable which specifies the traffic flow on the
link(i,j) in time period t. This flow is equal to the number
of paths connecting active terminal nodes in period t to
the central node that include link(i,j);
Lm

ijt: a binary variable such that Lm
ijt = 1 indicates that

link(i,j) is on the path from node m to the central node in
time period t; otherwise Lm

ijt = 0.

The MCMSTWOC problem can be formulated as the
following minimization problem:
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Computation of Lower Bounds

In this study we use a Lagrangian relaxation approach
to generate lower bounds for the MCMSTWOC problem.
Lagrangian relaxation has been used very successfully to
obtain tight lower bounds for a variety of
integer-programming problems (Dutta and Kawatra, 1994;
Kawatra and Bricker, 2000).  For an application-oriented
survey of Lagrangian relaxation, see Fisher, 1981. We add
the following constraints to the integer-programming
model (ZIP) of the MCMSTWOC problem, which was
presented earlier:
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These constraints are redundant in Problem ZIP but
help in getting tighter lower bounds in its Lagrangean
relaxation.

We form a relaxation of the MCMSTWOC problem
by multiplying each constraint (4) by a nonnegative
Lagrange multiplier θijt and adding the product to the
objective function. This results in the following relaxation
of problem ZIP:
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where elements of θ are nonnegative. This can be
separated as the following independent sub problems:
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Procedure for evaluating J(θθθθ)

The function J(θ) is evaluated by solving a spanning
tree problem. For a given vector of Lagrange multipliers θ
this problem can be accomplished very easily using Prim's
algorithm (Prim, 1957).

Procedure for evaluating Qt
m(µµµµ)

For each m and t, evaluation of Qt
m(µ) requires solving

a single commodity flow problem in which one unit of
commodity m is to be shipped from node m to the central
node during period t. Because the links are uncapacitated,
the flow will be along the shortest path from node m to
node 1, which can be found using Dijkstra's algorithm
(Larson and Odoni, 1981) with (λ*Dt

m + θijt) as the cost of
shipping one unit of commodity m from node i to node j.
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We used the subgradient optimization method (Held,
Wolfe, and Crowder, 1974) to compute the optimal
Lagrangian multipliers.

Numerical Results

The effectiveness of the Lagrangean relaxation based
heuristic was investigated by solving a randomly
generated set of test problems with the number of nodes in
the network varying from 20 to 60. The terminal nodes are
uniformly distributed in a rectangle of dimension 500 by
1250 and the central node is either at the center or a
corner of the rectangle. The entries for the node outage
cost matrix were drawn from a uniform distribution over
the interval [1,600]. A 10-year planning horizon was used
in all problems. The fixed cost of installation of link(i,j)
was chosen to be the Euclidean distance between points i
and j. The time period di for activating each terminal node
i was uniformly distributed between 1 and 6. The annual
link failure rate, λ, was varied from 0.02 to 0.06. The link
maintenance cost per period was assumed to be 6% of the
fixed cost of installation. For discounting purposes a 5%
annual interest rate was assumed. The limit on number of
nodes in any subtree, H, was varied from 2 to 6 in
increments of 2 for problems with 20 and 40 nodes in the
network. For problems with 60 nodes in the network we
varied the value of H from 4 to 8 in increments of 2.

For purposes of the subgradient optimization method,
we used the solution value given by the branch exchange
heuristic in [14] as the overestimate of the optimal
objective function value. The Lagrange multipliers were
initially set to 0. The stopping criterion in computation of
the lower bounds was: stop if the total number of
iterations exceeds 900 or if the objective function value
changes by less than 0.8 in 30 successive iterations. The
subgradient optimization method used for computing the
lower bound on the objective function value was coded in
Fortran 77 and run on a Vax−8550 computer.
Computational results of the experiment are presented in
Table 1.

The computational results presented in Table 1 show
that the Lower bounds are within 27 percent of the upper
bound given by the branch exchange heuristic. The table
shows that the gap is smaller for smaller networks. We
also observe that the gap decreases for smaller failure rate.
It is possible that the heuristic solutions for smaller
networks are closer to the optimal solution and the lower
bounds are also tighter for smaller networks. Research is
underway to improve the heuristic solutions as well obtain
tighter lower bounds for networks with larger number of
nodes.

Table 1. Experimental Results

No. of K Failure Lower Heuristic Gap

Nodes rate Bound solution (%)

20 2 0.02 10240 10649 4%

20 4 0.02 8138 8844 8%

20 6 0.02 7640 8251 7%

40 2 0.02 16605 19631 15%

40 4 0.02 12879 15394 16%

40 6 0.02 11739 14485 19%

60 4 0.02 16275 20024 19%

60 6 0.02 13835 17630 22%

60 8 0.02 12856 16758 23%

20 2 0.04 11139 11628 4%

20 4 0.04 8790 10219 14%

20 6 0.04 8282 9653 14%

40 2 0.04 19917 21617 8%

40 4 0.04 14879 17971 17%

40 6 0.04 13486 17517 23%

60 4 0.04 17969 22457 20%

60 6 0.04 15389 20114 23%

60 8 0.04 14542 19619 26%

20 2 0.06 11900 12565 5%

20 4 0.06 9538 11451 17%

20 6 0.06 9012 10897 17%

40 2 0.06 21297 23574 10%

40 4 0.06 16308 20231 19%

40 6 0.06 14927 19955 25%

60 4 0.06 19191 24463 22%

60 6 0.06 17092 22053 22%

60 8 0.06 15989 21952 27%

Conclusions

In this paper we presented a Lagrangean relaxation
method to find lower bound of the optimal objective
function value of the multiperiod  capacitated minimal
spanning tree with node outage cost problem. This lower
bound can be used to estimate the quality of the solution
given a heuristic method. Computational results for a
variety of problems are reported. In our computational
experiment, for all networks with up to 60 nodes, the
lower bounds are within 27 percent of the optimal
objective function value.

538



References

[1] Altinkemer K. and B. Gavish, "Heuristics with
Constant Error Guarantees for The Design of Tree
Networks", Management Science, vol. 34, no. 3, pp.
331-341, 1988.

[2] G.F. Campbell and J. R. Pimentel, "Topological
Aspects of MAP Network Design", Proceedings of the
11th Conference on Local Computer Networks, pp. 34-43,
1986.

[3] A. Dutta and R. Kawatra, "Topological Design of a
Centralized Communication Network with Unreliable
Links and Node Outage Costs", European Journal of
Operational Research, volume 77, number 2, pp. 344-
356, 1994.

[4] L.R. Esau and K.C. Williams, "On Teleprocessing
System Design", IBM Systems Journal, vol. 5, no. 3,
pp. 166-172, 1966.

[5] M.L. Fisher, "The Lagrangian Relaxation Method for
Solving Integer Programming Problems", Management
Science, vol. 27, no. 1, pp. 1-18, 1981.

[6] H. Frank, I. T. Frisch, R. Van Slyke and W. S. Chou,
"Optimal Design of Centralized Computer Networks",
Networks, vol. 1, no. 1, pp. 43-57, 1971.

[7] B. Gavish, "Formulations and Algorithms for the
Capacitated Minimal Directed Tree Problem", Journal of
the ACM, vol. 30, no. 1, pp. 118-132, 1983.

[8] B. Gavish, "Augmented Lagrangian Based Algorithm
for Centralized Network Design", IEEE Transaction on
Communications, vol. 33, no. 12, pp. 1247-1257, 1985.

[9] B. Gavish and A. Altinkemer, "Backbone Network
Design Tools with Economic Tradeoffs", ORSA Journal
on Computing, vol. 2, pp. 236-252, 1990.

[10] L. Gouveia, "A 2n-constraint formulation for the
capacitated minimal spanning tree problem", Operations
Research, vol. 43, pp. 130-141, 1995.

[11] M. Held, P. Wolfe and H.D. Crowder, "Validation of
Subgradient Optimization", Mathematical Programming,
vol. 6, pp. 62-88, 1974.

[12] Kawatra, R., and Bricker, D., "A Multiperiod
Planning Model for the Capacitated Minimal Spanning
Tree Problem", European Journal of Operational
Research, vol. 121, no. 2, 412-419, 1999.

[13] Kawatra, R., Dutta, A., and Bricker, D., "A
Lagrangean based Heuristic for the Design of Multipoint
Linkages in a Communication Network with Unreliable
Links and Node Outage Costs," OPSEARCH, vol. 36, no.
3, pp. 218-230, 1999.

[14] Kawatra, R., “Branch exchange Heuristic for the
Multiperiod Capacitated Minimal Spanning Tree with
Downtime Costs Problem,” Proceedings of the Midwest
DSI, 2000.

[15] R. Larson and A. Odoni, "Urban Operations
Research", Prentice Hall, Englewood Cliffs, N.J., 1981.

[16] R.C. Prim, "Shortest Connection Networks and Some
Generalizations", Bell Systems Technical Journal, vol. 36,
pp. 1389-1401, 1957.

[17] K.A. Woolston and S.A. Albin, "The Design of
Centralized Networks With Reliability and Availability
Constraints", Computers and Operations Research, vol.
15, no. 3, pp. 207-217, 1988.

539


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Lower Bounds for the Multiperiod Capacitated Minimal Spanning Tree with Node Outage Cost Design Problem
	Rakesh Kawatra
	Recommended Citation



