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Integrating Spatial Regression into Decision Support Systems 
 

Vijayan Sugumaran, Lee Rivers Mobley 
School of Business Administration, Oakland University, Rochester, MI, 48309 

{sugumara, mobley}@oakland.edu 
 

 
Abstract 
 
 Spatial Information Management is gaining popularity 
and managers are beginning to appreciate the power and 
application of spatial modeling in decision support.  A 
new breed of DSS called Spatial Decision Support System 
(SDSS) is emerging, which supports spatial data and 
spatial modeling.  This paper highlights the importance of 
spatial modeling with an example, and presents an 
architecture for a SDSS, and discusses it components.  A 
prototype of the environment is under development using 
ArcView, SpaceStat, Jess, and Visual Basic. 

Introduction 

Decision Support Systems (DSS) have been an 
important area of IS research.  There is a vast literature 
examining various aspects of the DSS, such as its nature, 
effectiveness in decision making, framework or 
architecture, group support, etc.  While various DSS have 
been used in managerial decision making, a major 
limitation of these systems is their inability to exploit 
spatial and temporal data.  Because much useful business 
data is spatially referenced, ignoring this additional 
information is shortsighted.  Accordingly, a new breed of 
DSS is emerging, the Spatial Decision Support System 
(SDSS).   

 
The extension of the functional capacity of GIS with 

tools for spatial analysis has been a very productive area 
of research in recent years (Anselin and Bao, 1997).  But 
most of this effort has focused on linkages which are 
useful for the exploration of geo-statistical data, which 
assumes that observed locations are a sample drawn from 
an underlying continuous distribution that can be 
conceptualized as a spatial mat represented by grid data.  
These linkages have been used primarily for univariate 
analysis, rather than multivariate spatial modeling.  More 
recently, Environmental Systems Research Institute 
(ESRI, 2000) has developed a spatial modeling 
component which enables multivariate modeling using 
geo-statistical (grid) data.  These things have enabled the 
development of SDSS which are geared toward the 
analysis of geo-statistical (grid) data.  However, there is 
another sort of spatial data which may be more useful for 
business and economic analysis - lattice data.  Much   less 
progress has been made with linkages geared toward the 
lattice (or neighborhood) view of spatial data, which 
assumes that observed locations are single realizations 

from a spatial stochastic process, similar to the approach 
taken in the analysis of time series data (Anselin and Bao, 
1997).  This lattice approach is much more useful in the 
exploration of economic and business data, where each 
location conceivably interacts with neighbors. Examples 
of lattice-type data are data from the U.S. Census of 
Populations, customer databases, supplier databases, etc..  
In this context, spatial regression models can be 
developed which are useful in understanding spatial 
interaction and in forecasting expected spatial patterns 
from business and economic data.   

 
This research focuses on developing spatial regression 

models within a Spatial Decision Support System (SDSS) 
for managerial decision making.  This linkage has 
considerable value in facilitating the analysis and 
forecasting of spatially-oriented business data.  Similar to 
a DSS, our SDSS consists of the following subsystems: a) 
data management, b) model management, c) knowledge 
management, d) dialog management, and e) display and 
report generators.  Ideally, SDSS have to be flexibly 
integrated systems that could be built on a GIS platform 
to deal with spatial data and manipulations, along with an 
analysis module, which could switch from exploration to 
explanation in an interactive, iterative and participatory 
way.  Just like a DSS, SDSS have to support “what-if” 
analysis and also provide a range of tools to help the user 
in understanding the results, modifying the results, and 
determining the implications of each new iteration 
(Goodchild et al., 1992). 

Spatial Regression and the GIS 

Spatial regression is concerned with the analysis of 
spatially-referenced data.  This differs from classical (a-
spatial) regression in that the observations analyzed are 
not independent.  Observations are correlated with others 
that are spatially proximate.  The usual methods for 
correcting autocorrelation in linear models are not 
sufficient with spatially-referenced data, because the 
autocorrelation is not linear - it is multi-dimensional 
(geographic neighborhood-specific).  If we ignore the 
statistical (spatial) dependence, we are ignoring 
information about potential data complexities.   

 
Sometimes observations are correlated strictly due to 

their locational positions, resulting in spill-over of 
information from location to location.  In cases of positive 
autocorrelation, this spill-over causes redundant 
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information to be present in data values, and the 
redundancy is an increasing function of the degree of 
locational similarity.  This redundancy means that there is 
actually less information present in the sample than would 
be present in a sample of independent observations.  In 
this case, the goodness-of-fit statistic (R squared) is 
overly optimistic - fit is not as good as it appears.  For 
forecasting purposes, this is problematic, because the 
model may not predict as well as it seems to indicate. 

 
There are (at least) two other possible types of 

statistical problems in spatial regression, with even more 
serious consequences.  One type is created by the 
arbitrary way in which boundaries may be designated, 
which defines the unit of aggregation for the data.  This 
problem exists when there is a mismatch between the 
spatial scale of the phenomenon under study and the 
spatial scale at which it is measured.  This mismatch 
causes spatial measurement errors and spatial 
autocorrelation between these errors in adjacent locations 
(Anselin, 1988).  Another type of statistical problem can 
arise from the failure to include (as explanatory variables) 
measures that fully model the spatial environment.  Either 
problem can cause the Ordinary Least Squares (OLS) 
estimators to be biased and inconsistent.  This means that 
the estimated impacts of explanatory variables on the 
dependent variable are not reliable - they may either over 
or understate influence, with direction of bias unknown.  
This is also problematic for managers using spatial 
regression analysis for planning and forecasting, as 
predictions can be misleading in both magnitude and 
direction. 

 
Fortunately, sophisticated spatial regression software 

exists (SpaceStat), which can diagnose these problems.  
How to use these diagnostics is a crucial part of the 
knowledge base, which we build into our SDSS.  Further-
more, a dynamic link between SpaceStat and ArcView 
GIS software allows the user to interact with the GIS as 
part of the diagnostic process.  In what follows, we first 
briefly describe the set of protocols to be built into the 
knowledge base, and how they should be applied.  We 
then provide a detailed example of this process using data 
and an example. In the next section we describe the 
linkage we develop between spatial regression and the 
GIS, and show how this can provide feedback to assist in 
the modeling process. 

Specification Testing: Heteroskedasticity, 
Error and Lag Structures 

The first sign of trouble in a spatial regression model 
is the presence of significant heteroskedasticity in the 
residuals from an ordinary least squares (OLS) regression.  
This signals that spatial heterogeneity exists in the data 
and that it has not been captured (modeled) in the model.  
The spatial heterogeneity may arise due to three 

situations: 1) spatial regimes (regions with significantly 
different spatial patterns in key variables), 2) similarities 
between neighbors due to some local phenomenon (i.e. all 
sick due to a poisoned well), or 3) similarities between 
neighbors due to some spreading phenomenon (i.e. all 
sick due to measles epidemic).  The problem of finding 
the correct model specification - one which yields 'white 
noise' residuals - is complicated by the fact that either 
situation 2) or 3) can create heteroskedasticity as a by-
product, making it difficult to distinguish between these 
three cases.  Fortunately, SpaceStat has built-in 
diagnostics which are robust to these complexities 
(Anselin, 1995; Anselin and Bera, 1998).   

Situation 2) above is considered the least problematic; 
if undiagnosed and left un-corrected, this leads to bias in 
the goodness-of-fit. When there is significant evidence 
from the spatial error test statistic that this sort of spatial 
error process is present in the data, the model should be 
re-estimated using a spatial error model form. Situations 
1) and 3) are more serious - they can lead to biased and 
inconsistent parameter estimates for the impact variables.  
The first sort of situation (1) calls for a spatial regression 
model which treats each region as a separate subset of the 
data, and allows all parameters to vary across regions.  A 
spatial regimes Chow test statistic is the diagnostic which 
enables identification of significantly different regimes.  
Finally, when there is significant evidence from the 
spatial lag test statistic that a spatial lag process is 
present in the data (situation 3), the model should be re-
estimated using a spatial lag model form.  These three 
different spatial models (among others) are available in 
SpaceStat.   

To test for significant lag and error processes, the 
software must compare residuals among neighbors.  Thus 
the modeler must choose a neighborhood set to use in 
constructing a spatial weights matrix.  SpaceStat links 
dynamically with ArcView GIS to facilitate construction 
of these spatial weights, and many variations are possible 
(i.e. include 5 closest neighbors, all within 20 miles, 
everyone with influence diminishing with distance, etc.). 

In summary, the steps for diagnosing spatial problems 
which are built into our knowledge base are illustrated in 
the following list and diagnostic flow chart shown in 
Figure 1: 

• Estimate the model using the Ordinary Least Squares 
(OLS) model in SpaceStat. 

• Examine the diagnostic tests which accompany the 
OLS regression output for the presence of either a 
spatial lag or a spatial error process in the residuals.  A 
low p-value (up to 5%) suggests that a significant 
problem exists.  The test statistic for presence of an 
error process is  RSλ,  and the test statistic for presence  
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Figure 1. Diagnosing a Spatial Process 

 

of a lag process is RSρ.  To diagnose the problem, 
apply the rule: if RSρ  is significant (low  p-value) 
while RSλ is not, then spatial lag  is most likely the 
correct error structure.  Conversely, if RSλ is 
significant while RSρ  is not, then spatial error is most 
likely the correct error structure. 

• If either of these problems exists, re-estimate the 
model using the correct error form, and then check for 
any remaining heteroskedasticity.  If present, see next 
bullets. 

• If neither of these problems exists (spatial error or lag) 
then check for the presence of significant 
heteroskedasticity.  If present, this suggests that spatial 
regimes are present in the data.  Often mapping the 
residuals can aid in the discovery of exactly what these 
regimes might be (i.e. urban-rural, city center-suburbs, 
presence or absence of some other spatial 
phenomenon).   

• If spatial error is present with heteroskedasticity, then 
estimate a spatial error model with regimes.  If spatial 
lag is present with heteroskedasticity, then estimate a 
spatial lag model with regimes.  If neither spatial error 
or spatial lag is present but heteroskedasticity is, then 
estimate a spatial regimes model. 

• When none of these problems are evident in the 
model’s residuals, then no further spatial modeling is 
necessary. 

Importance of Spatial Modeling : Some 
Examples 

In a well-known article, Jaffe (1989) came to the 
dismal conclusion that “there is only weak evidence that 
spillovers are facilitated by geographic coincidence of 
universities and research labs within the state”.  This 
conclusion was decisively refuted by Anselin, Varga, and 
Acs (1997), who used a spatial econometric approach to 
carefully model spatial interaction.  Anselin et. al. find a 
positive and significant relationship between university 
research and innovative activity, both directly, and 
indirectly through spillovers on private sector R&D.  This 
example illustrates the importance of careful spatial 
modeling in drawing correct conclusions and inferences 
from the data.   

 
We illustrate this again using another example, which 

applies the diagnostic methodology from our knowledge 
base outlined above.  First we estimate the determinants 
of crime patterns in the Columbus, Ohio region, using 
neighborhoods as the units of analysis, and an OLS 
model.  The results are presented in Table 1, below.   

Estimate OLS 
Model and 
Examine 
Residuals 

Significant 
Spatial Lag 

Process? 

Re-estimate 
using Spatial 
Lag Model 

Significant 
Heteroskedasticity? 

Significant 
Heteroskedasticity? 

Significant 
Spatial Error 

Process? 

Significant 
Heteroskedasticity? 

Significant 
Heteroskedasticity? 

Re-estimate 
using Spatial 
Error Model 

Yes No 

Yes Yes Yes Yes No No No No 

No Yes 

Spatial Lag 
with Regimes 

Model 

Spatial Lag 
Model 

Spatial Regimes 
Model 

OLS Model Spatial Regimes 
Model 

OLS Model Spatial Error 
Model 

Spatial Error 
with Regimes 

Model 
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Table 1:  Explaining Crime Rates in the Columbus, Ohio Region 

 OLS Model 
Single Regime 

Spatial Lag Model 
With Two Spatial Regimes: 

  Inside City Center Outside Center 
Variable coeff p-val coeff p-val coeff p-val 
INCOME -1.597 0.000 -1.746 0.041 -0.707 0.021 
HOUSEVALUE -0.274 0.011 -0.045 0.808 -0.209 0.024 
 
Diagnostic Test Conclusion           (p-val) Conclusion           (p-val) 
Heterosk. Test         Present                 (0.001) Not present          (0.911) 
RSλ  Error test Not present          (0.147) Not present          (0.612) 

RSρ  Lag test Present                 (0.030) Not present          (0.420) 

Regimes test NA Regimes Present  (0.023) 

Weights matrix 5 nearest neighbors 5 nearest neighbors 

 Rsquared 0.552 0.718 

 
 

Beneath the coefficient estimates are the diagnostic 
tests for heteroskedasticity and spatial error or lag 
processes.  These suggest that heteroskedasticity is 
present, and/or a spatial lag process.  We re-estimated the 
model using the spatial lag specification, and tested again 
for heteroskedasticity, which was still significant (this 
step skipped in Table 1).  This led to our final 
specification, with spatial lag combined with spatial 
regimes (Table 1).  The binary regimes are defined as 
“whether in city center, or not.”  The diagnostics 
presented for this second model show that there is no 
remaining heteroskedasticity, no further lag or error 
structure modeling needed, and that the spatial regimes 
are significantly different. 

 
Upon examination of the goodness-of-fit (R-squared), 

one can see that the model fit has improved dramatically 
with the spatial modeling.  Also, comparison of estimated 
coefficients across the OLS versus spatial model reveals 
the extent of bias imparted by the OLS model. 

 
So far, we have presented a brief overview of spatial 

regression and the typical steps involved in diagnosing 
spatial problems.  Generally, in order to arrive at the 
correct spatial model, substantial a priori knowledge of 
spatial statistics is necessary.  A system that minimizes 
this cognitive load by hiding the complexities and which 
helps the user in developing appropriate models would 
greatly facilitate the use of spatial models in decision 
making.  The following section discusses the architecture 
of such a spatial decision support system. 

Architecture of Our SDSS 

 A unique feature of our SDSS is the inclusion of a 
knowledge base which interacts with both the modeling 
stage and the GIS (Figure 2).  To illustrate this using the 

Columbus crime data example above, our diagnostics told 
us that some sort of spatial regimes were likely present, 
because of the continuing heteroskedasticity even after a 
spatial lag model was specified.  Linkage between the 
spatial econometrics module (the model base) and the GIS 
(core component) is crucial at this point, in order to 
discover the 'offending' pattern of spatial regimes that 
need inclusion in the model.   
 
To facilitate this, we build a dynamic link between 
SpaceStat (model base) and ArcView (GIS core 
component), which is contained within  the 'model base 
interface' in Figure 2.  This link allows the user to capture 
and then dynamically plot the residuals from model 
estimation, and to simultaneously test them for significant 
patterns of spatial association.  The visual display on the 
map can help the analyst discover the pattern in any 
unmodeled (remaining) spatial heterogeneity.  The model 
base interface would then allow the analyst to construct 
new spatial variables for inclusion in the model, based on 
the information displayed on the map about remaining 
spatial heterogeneity.  Selected areas could be used to 
create  spatial regime indicator variables, for example,  
which can be passed back to SpaceStat for inclusion in the 
spatial regression  model.   
 
This visual interaction is crucial in building good models.  
The diagnostics can only tell us that a problem exists; 
without visualization, it is often impossible to determine 
how to correct the problem.  It is at present possible for 
the analyst to interact with SpaceStat as described above, 
albeit in a rather clumsy and unfriendly fashion.  Our 
SDSS will facilitate this sort of user interaction, among 
other things. 
 

A few SDSS have been discussed in the literature 
(Densham, 1991; Moon, 1992; NCGIA, 1992; 
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Figure 2. Architecture of the Spatial Decision Support System 
 
 
Sugumaran, 1998) to solve a variety of problems related 
to natural resource management, urban planning, land use 
planning, environment management, water quality etc.  
However, these systems have a very narrow focus and are 
application domain specific; hence they do not have a 
broad range of application.  Researchers are currently 
focusing on designing distributed, adaptive decision 
support systems (Ferrand, 1996; Chuang et al., 1997), 
which are configurable, based on the problem at hand. 
 

One of the limitations of existing SDSS is the lack of 
adequate support for spatial modeling.  Also, these 
systems do not provide mechanisms for applying different 
spatial models in problem solving and performing 
sensitivity analysis.  This type of “what-if” analysis is 
essential in unstructured problem solving and decision 
making.  In this research, we focus on designing a SDSS 
which not only facilitates specifying appropriate spatial 
models for the problem at hand, but also provides 
knowledge-based support for sensitivity analysis.  We 
extend the models suggested by Murphy (1995), and 
Mennecke (1997) for “GIS as a decision support tool” in 
generating a model for our proposed SDSS environment.  
Conceptually, the proposed SDSS is comprised of the 
following components: a) database, b) model-base, c) 
knowledge-base, d) user interface, and e) core GIS.  The 
architecture of the SDSS is shown in Figure 2, and its 

components are briefly described in the following 
paragraphs. 

 
Database: The database component provides access to 

spatial and non-spatial data stored within the organization.  
It encompasses traditional databases as well as GIS 
databases that contain spatial and temporal data.  
Managerial decision making requires easy access to large 
volumes of internal and external data, as well as data of 
different types (quantitative, qualitative, spatial, temporal 
etc.). The database interface component facilitates 
accessing different types of data both internal and external 
to the organization. 

 
Model-base: The model-base component provides 

access to a large number of models necessary for 
analyzing and solving unstructured problems.  The model 
base supports both aspatial and spatial models.  It also 
facilitates development and testing of new models.  There 
are two broad categories of models supported by the 
model-base, namely, univariate models, and multivariate 
models.  The model base interface component facilitates 
the model management activity, through interaction with 
the knowledge base. 
 
 Knowledge-base: The knowledge base consists of a 
number of rules that help in model selection and 
execution.  It enables the user to select a particular type of 

Aspatial 
Models 

Spatial 
Models 

(Geostatistical) 

Univariate Models 

Core GIS Component 

Database 
Interface  Model Base 

Interface  Model Base 
Interface  

Spatial Data 
(Geostatistical 
and Lattice) 

 Database  

Aspatial 
Data 

Knowledge Base 
User 

Interface  

Aspatial 
Models Spatial 

Models 
(Lattice) 

Multivariate Models 

••••  Spatial Distribution 

••••  Global Spatial Association 

••••  Local Spatial Association 

••••  Model Specification 
••••  Estimation 
••••  Diagnostics 
••••  Spatial Prediction 

••••  Data Acquisition/Update 
••••  Data Retrieval 
••••  Data Aggregation 

••••  Model Specification Rules 

••••  Diagnostic Rules 

••••  Spatial Prediction Rules 

••••  Zooming/Browsing 
••••  Views 
••••  Spatial Queries 
••••  Buffers 
••••  Spatial Sampling 

Selection  

••••  Aggregation/Dissolution 
••••  Map Abstraction 
••••  Construction of Centroids 
••••  Topology, Spatial Weights 
••••  Overlay, Interpolation 

Manipulation 
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model to use in problem solving and also perform 
sensitivity analysis.  It interacts with both the model base 
and the core GIS via the model base interface. The 
knowledge base may also contain organizational policies, 
procedures, business rules and constraints that would 
influence the types of models to be used in problem 
solving.  Prior results of unstructured problem solving are 
also stored here. 
 

Core GIS Component: The core GIS component is 
capable of assembling, storing, manipulating, and 
displaying geographically referenced information, i.e., 
data identified according to their locations.  Geographical 
information consists of both textual data (“attribute” or 
“aspatial” data) as well as spatial data (data which 
includes cartographic coordinates).  Thus, the core GIS 
not only provides users with tools for managing and 
linking attribute and spatial data, but also advanced 
modeling functions, designing and planning, and imaging 
capabilities. 
 
 User Interface: The interface component provides the 
user interface for the SDSS.  It provides a graphical 
interface for the user to interact with the system during a 
decision support session.  The interface can be 
customized according to the tastes and preferences of 
individual users.  The dialog component also provides 
different presentation modes as well as different reporting 
capabilities. 

Implementation of SDSS 

 We are in the process of implementing an SDSS 
environment and demonstrating its usefulness by applying 
it to various domains.  The components of the SDSS are 
implemented using available commercial products to the 
extent possible.  Existing GIS and spatial modeling and 
analysis tools have various limitations, and more 
importantly, do not interface well.  Hence, a major 
emphasis of this project is to develop an SDSS 
environment that integrates some of the well known GIS 
and analysis tools in order to harness the power of each of 
these products.  In the proposed SDSS environment, the 
core GIS component will be the ArcView GIS product.  
The model-base is created using the SpaceStat software 
(Anselin, 1995).  As mentioned earlier, the model-base 
may contain univariate models and multivariate models.  
In this implementation, we primarily focus on the 
multivariate models.  While a rudimentary interface exists 
between ArcView GIS and SpaceStat, we intend to 
develop a full-blown interface between these two 
products that would greatly improve interoperability. 
 

We also intend to develop a comprehensive database 
interface module that would enable the user to access data 
from both internal and external data sources and retrieve 
the necessary data for problem solving.  The knowledge-
base is implemented using an expert system shell called 

Jess (Java Expert System Shell), from Sandia National 
Laboratories (Friedman-Hill, 1999).  Model selection 
rules and sensitivity analysis rules can be easily 
implemented in Jess.  The user interface is being 
implemented in Visual Basic.  This GUI would enable the 
user to interact with the system and develop various 
spatial models and apply them to the problem that is 
currently being solved, and visually examine the results.  
This also helps the user in performing sensitivity analysis.  
The next two paragraphs provide some basic information 
on the functionalities of ArcView and SpaceStat products. 
 

ArcView:  ArcView software is the GIS component in 
our system.  ArcView is used to map geo-referenced data 
and to analyze spatial relationships among data points 
using SQL (structured query language).  Many data 
formats are readily imported into ArcView, and we 
facilitate this within our system.  The geo-referenced data 
may be recorded at different spatial levels - i.e. points 
(cities, street addresses, zip code centroids), lines (roads, 
rivers, railroads) or polygons (zip code boundaries, census 
tracts, county boundaries).  These can be simultaneously 
layered for complex multi-layered queries.  Queries are 
useful for defining subsets of the data, creating 
categorical variables, etc. for subsequent multivariate 
analysis.  Also imbedded in ArcView as an add-on is a 
multivariate spatial modeling component, which is useful 
in the analysis of geo-statistical (grid) data.  
 
 SpaceStat:  SpaceStat software is the multivariate 
spatial modeling component in our system, which is 
useful in the analysis of lattice data (Anselin, 1995).  It 
links dynamically to ArcView, and can export data from 
layers, with latitude and longitude coordinates, for 
subsequent analysis in SpaceStat.  SpaceStat can create a 
full distance matrix between all pairs of observations in 
the dataset, which is the basis for a variety of possible 
spatial weights.  SpaceStat contains advanced spatial 
econometrics with extensive specification tests built in to 
assist researchers in spatial modeling.  Models that can be 
estimated include linear regression, 2SLS, spatial error, 
spatial lag, and spatial regimes models, among others - 
using either Maximum Likelihood or Method of Moments 
estimators.  A full range of sample statistics and data 
manipulation tools are also included.  Individual variables 
from a SpaceStat dataset can be dynamically explored in 
ArcView in a variety of ways. 

Summary 

 Traditional DSSs are limited in supporting spatial 
data/models and researchers are investigating ways to 
incorporate GIS components into DSS.  Spatial Decision 
Support Systems are increasingly being applied to real 
world problem solving and decision making, but most are 
limited to the analysis and modeling of geo-statistical 
(grid) data.  Lattice data are more commonly encountered 
in business applications, and we focus on developing 
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SDSS for this type of spatial modeling.  In this paper, we 
have highlighted the importance of spatial modeling 
which can be applied to lattice-type data, and provided a 
quick overview of the topic.  We have also presented an 
architecture for a Spatial Decision Support System, that 
facilitates interactive spatial modeling, problem solving, 
and decision making in the lattice-data context.  A 
prototype of the environment is being developed using 
ArcView, SpaceStat and Jess.  The interface modules are 
being implemented in Visual Basic. 
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