
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

A Dialectical Basis for Software Development Tool
Building
P Wernick
University of Hertfordshire, p.d.wernick@herts.ac.uk

B Christianson
University of Hertfordshire

M J. Loomes
University of Hertfordshire

D W. Shearer
University of Hertfordshire

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Wernick, P; Christianson, B; Loomes, M J.; and Shearer, D W., "A Dialectical Basis for Software Development Tool Building" (2000).
AMCIS 2000 Proceedings. 31.
http://aisel.aisnet.org/amcis2000/31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/31?utm_source=aisel.aisnet.org%2Famcis2000%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Dialectical Basis for Software Development Tool Building

P Wernick, B Christianson, MJ Loomes and DW Shearer

Department of Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, England

tel. ++44 1707 286323 fax ++44 1707 284303

p.d.wernick@herts.ac.uk

Abstract

We identify typical problems in the interactions of
people with current software-based systems. In particular
we observe the need to expend significant on-going effort
to adapt these systems to reflect changes in the world
about them, the need for people to adapt their working
practices to fit in with these systems, and the inflexibility
of these systems when faced with unusual circumstances
or the need for change. We believe that these problems
follow, at least in part, from these systems being
developed and evolved using mechanisms each based on
one Inquiry System only. This basis leads to assumptions
being embedded in the mechanisms’ analysis outputs, and
in system designs and implementations. We suggest that
the problems noted may be mitigated by the use of a
dialectical approach to Inquiry System selection for
software development, based on the work of Hegel, which
places in opposition different models of a situation based
on different Inquiry Systems. We claim that such a
mechanism has the potential to make explicit some of the
assumptions which would otherwise be embedded
implicitly in the delivered system without being
questioned. We outline a research programme intended to
test this hypothesis, and suggest other research directions.

Introduction

The problems arising from the need for constant
evolution of software systems (Lehman 1998) and the
effects of their inflexibility on their users, as encountered
in everyday life (Chancellor 2000), have previously been
noted. In response to these issues we propose an
alternative to the philosophical basis of current software
development methods. The long-term objective of this
research is to identify and use tools developed for
philosophical analysis to inform and improve the practice
of software development. We set out below an initial
analysis of the current state of use of Inquiry Systems in
software development, note its weaknesses, and suggest
an improved approach. We also describe additional work
which we believe is required.

A Variety of Inquiry Systems

A fundamental element of any mechanism intended to
analyse a situation, or to hypothesise about how to change

it, is the way in which information is to be gathered and
organised; the ‘Inquiry System’. Mitroff (1973) describes
five types of Inquiry Systems (ISs), differing in their
philosophical bases. He states that the differences between
them result in different views of what constitutes
information, as well as how to obtain it. Thus, a model
built using one IS will differ from those developed using
others, in its view of the world and in the nature of the
elements forming its content.

Mitroff’s characterisation of the ISs can be
summarised as follows:

• Leibnitzian, in which innate ideas (primitive
variables, analytic truths) are combined into more
complex arrangements, using logic-based
mechanisms. A further mechanism determines
whether or not the process is converging to an
optimal set. The logical systems which result from
such an inquiry are claimed to display rigour, logical
coherence, precision, and unambiguity in the use of
terms. However, no defence of the selected set of
terms can be made from within the logical system,
and this IS, whilst suited to the analysis of sets of
symbols, is poor at representing experience/empirical
content;

• Lockean, inductive and consensual in its basis,
emphasising sensory data and building up from these
to its conclusions. The result is a combination of
human judgement (in contrast to Leibnitz’s logical
basis) and agreement between people. This IS can
take as its inputs much richer experiential data than
Leibnitzian systems. However, the simple
‘sensations’, ‘facts’ or ‘observables’ which form
Locke’s starting point have usually proved on
investigation to be more complex than he has
suggested, and have thus themselves required further
investigation. In addition, the effort required to obtain
the necessary consensus may be considerable;

• Kantian, which relies on building more than one
Leibnitzian model, each intended to explain the
phenomena under investigation, and collecting data
for each based on the demands of the model. The
inquirer is thus presented with models of the same
problem from multiple viewpoints, and is able to
select one model from those available as his or her

1548

chosen result. However, the creation of too many
models can overwhelm the recipient, the cost is
greater due to the necessity to build and collect data
for multiple models, and there is no guarantee that the
‘right’ model will be amongst those constructed;

• Hegelian, based on bringing conflicting models into
contact and learning from the result. The mechanism
requires the construction of two antagonistic, strongly
conflicting Leibnitzian models, embodying
conflicting sets of assumptions about the problem
under consideration. These models are then applied to
the same Lockean data set, with the aim of
demonstrating that both models can be supported by
the data, and that the diverging conclusions to be
drawn differ due to assumptions made in constructing
the models. These assumptions are thus opened up for
examination. The decision-maker builds his/her own
view of the situation, informed by witnessing the
conflict and examining the assumptions brought to
light. The advantages of this approach include the
active involvement of the decision-maker in
information interpretation and synthesis into the final
model, and the prevention of assumptions from being
hidden by agreement amongst all the other
participants. Therefore it is seen as being particularly
suitable for investigations into ill-structured
problems. However, it is less successful in examining
well-structured problems. A major problem is that of
selecting opposing Weltanschauungen;1 and

• the IS proposed by Singer, and extended by
Churchman, which emphasises a perceived need to
take an interdisciplinary approach to inquiry, and an
approach which encompasses scientific, ethical and
aesthetic viewpoints. The aim is to integrate all of
these within one frame of reference. As a result, the
primitive elements of information which are taken as
given and thus unquestioned by the other ISs
described, are regarded by a Singerian IS as aspects
to be opened up and studied. Unlike the other ISs, it
does not regard its primitives as representations of
reality, but suggests instead that any description
becomes become ‘real’ if its proponents can convince
enough people of its validity. The body of
information to be considered is no longer purely
scientific, but incorporates ethical aspects as well.
This IS gives the most comprehensive modelling of
the ISs outlined, but problems arise both in making
ethical content explicit and in the very complex
model specifications necessitated.

1 The weltanschauung is the world-view of the

observer, or, as Checkland has described it, “the
(unquestioned) image or model of the world” (1990:
319)

A Critique of the Current State of Software
Systems Development

An examination of the current state of the
development and use of software systems reveals a
number of problems. These include the following:

• the embedding, explicitly or implicitly, of
assumptions about the system, its environment and
the world in software products, necessitating
sometimes difficult ‘evolutionary’ changes or even
system replacement when these assumptions are
invalidated by time or change (Lehman 1998;
Loomes and Jones 1998). The need to evolve
software systems results in the evolutionary costs of a
software system exceeding the initial development
costs, sometimes comprising up to 60%2 of the total
system lifetime costs. This requirement also means
that part or all of the system in use at any particular
time is not well-suited to its environment;

• a lack of true user involvement in systems
development, in which the stakeholders are often
presented with a single option and not allowed to
make an informed choice between alternatives. For
example, a prototyping approach to software
development typically consists of presenting a user
with one version of a prototype system at a time and
asking if this is what they want or, if not, what is
wrong with it. By not allowing stakeholders to
compare and contrast different prototypes placed
before them simultaneously, this mechanism fails to
offer stakeholders a fully informed choice between
the range of alternatives which the technologies and
developers’ imaginations can provide. In addition, the
users can usually only respond within the framework
offered by the prototype and the mechanisms which
led to its development; radical criticisms are unlikely
to arise since the questions leading to them will not
be posed. This lack of choice may also reduce the
degree of perceived flexibility in the finished systems,
as fewer possible models of the problem and/or
solution are explored by system developers and
stakeholders. The complexity of the situation within
which the system will be embedded (and to which it
will need to be able to respond) is therefore
potentially underestimated, and the need for users to
adapt to the system when it is installed is thus
increased. In effect, people have become the tools of
‘the system’ rather than vice versa (Chancellor 2000);
and

2 Pfleeger (1998) reports surveys suggesting that 80% of

lifetime system effort is expended on its maintenance,
and that only 25% of this effort goes into preventive
and corrective maintenance.

1549

• the lack of recognition of the influence of the
developers’ mind-sets on software systems being
developed or evolved. These mind-sets are derived
both from the developers’ own previous experience
and from the tools, techniques, languages and
notations which they employ (Loomes 1990; Wernick
1996).

An Alternative to Current Uses of Inquiry
Systems in Software Development

In this section, we identify the Inquiry Systems in use
in current software development methods, and note that
each method only uses one IS in its information-gathering
work. We then suggest an alternative to the ways in which
ISs are used in these methods, and set out the anticipated
advantages of such an approach.

The Use of Inquiry Systems in Software
Development

On the basis of Mitroff’s interpretations given above,
we note that the Inquiry Systems underlying current
software development mechanisms generally appear to be
either Leibnitzian in style, as is typical of hard systems
design ‘methodologies’ such as SSADM (Downs et al.
1992) or Churchman/Singerian, such as Soft Systems
Methodology (SSM: Checkland 1990).

We also observe that only one IS is used for any one
stage in the process. At present, when more than one IS is
employed in a single software development mechanism,
the current approach is to employ them sequentially. The
output from one sub-process based on one IS, typically a
non-Leibnitzian IS, is used as the input to a second,
usually Leibnitzian, sub-process. Consider, for example,
Multiview (Avison and Wood-Harper 1993), which uses a
Churchman-based SSM analysis, followed by a hard
Leibnitzian methodology. In current practice, the use of
multiple ISs in combination to address difficult problems
is thus often reduced to the decision, which is potentially
difficult to reverse, of when to stop using one IS and start
using another.

We suggest that adopting a single IS in examining a
situation or building a model may result in an incomplete
understanding of the situation or in the development of a
limited range of models. This is because paradigmatic
assumptions (cf. Kuhn 1970) embedded in the IS itself
will direct and influence the questions which it is
necessary to ask and the interpretation of the answers
obtained, and because these assumptions will not be made
explicit and exposed to questioning. We question whether,
for example, a purely Leibnitzian approach would capture
all the nuances of a human-based situation. However, it
may also be asked whether multiple models based
exclusively on a Churchman or Singerian IS will capture
all the aspects needed for the incorporation of a hard

software-based system in the final human activity system,
given the current state of such software-based systems and
their underlying computational models.

We suggest that the adoption of a Hegel-like
dialectically-based approach may address this problem
successfully, thus alleviating some of the issues raised
above. Checkland has employed a Hegelian approach in
SSM, placing in opposition different (Churchman-based)
SSM root definitions to reflect differing viewpoints
(Checkland 1990: 261). However, we believe that a
weakness remains in this mechanism, since the IS
underlying all these root definitions is still the same, and
any assumptions implicit in that IS are perpetuated in all
its models. As a result, some of the benefit of a conflict-
based mechanism in identifying assumptions may be lost.

We do not take it as being immutable that, in adopting
a Hegelian IS as a framework, we are limited to the use of
a single IS to build the models to be opposed. We believe
that situations should be examined, models developed and
systems designed from multiple viewpoints obtained from
different ISs. In addition to the potential for exposing
assumptions in the ISs themselves, the use of more than
one IS may afford a greater opportunity to make explicit
the assumptions of the analysts concerned. In any analysis
task, the analyst is a part of the observation, recording and
analysis system; a multi-IS approach may provide a
mechanism for revealing at least partially how this
inevitability affects the models produced.

The analogy drawn previously between the
development of software systems and Feyerabend’s view
of science (Feyerabend 1993; see Wernick 1998) supports
the view that we may need to oppose a number of
different types of model, based on different ISs, to obtain
the wider range of viewpoints which we desire. The use of
different ISs here may also assist in provoking the conflict
needed to bring out the underlying assumptions.

A Mechanism Extending the Hegelian
Dialectic

We now outline an approach intended to place in
Hegelian opposition before a system’s stakeholders a
number of models developed using methods based on
different Inquiry Systems. The presentation of such a set
of models to stakeholders is intended to allow them see
the results of taking into account a wider set of
viewpoints.

This Hegel-based mechanism comprises:

• the development of models based on different ISs,
designed to reflect the current or projected future
state of the same part of the system and/or the same
situations – in this, it is unlike current mechanisms,

1550

• the presentation of these models to the intended
owners, users and other stakeholders of the system,
and

• the selection by the stakeholders, informed by
similarities and differences between the models, of
one of the models or of a composite model based on
selected features of more than one model as a basis
for proceeding.

We suggest that this approach would improve software
development processes by:

• making explicit and bringing to users’ attention at
least some of the assumptions currently embedded in
software systems analysis and design development
tools and people, and thus implicitly embedded in
software systems;

• facilitating greater involvement for stakeholders as
selectors of the solution, allowing them a greater
degree of choice amongst possible solutions and
providing them with greater understanding (and
therefore control) over the criteria by which such
decisions are to be made; and

• allowing the development of more flexible systems,
or at least of systems better able to cope with the
range of unusual circumstances and rare events found
in the real world and often missed or ignored by
analysts. This may be achieved as stakeholders’ views
of what is possible and necessary in the system are
informed by the presentation to them of a wider range
of situations, options and facilities generated by the
different ISs employed, rather than the limited set of
options seen from a single standpoint as at present.

Given the parallel efforts which need to be made in
each part of the development, it is inevitable that the
initial development of real-world software systems
employing this approach would cost more than traditional
mechanisms, due to the need to model each situation in
two or more ways. However, the benefit may be seen be in
terms of a system better able to cope with evolutionary
pressures over time. As noted above, the latter result in a
large proportion of system lifetime costs. The additional
initial investment in a Hegelian development mechanism
for a long-lived software system may therefore be justified
by savings later in the life of the system.

The Nature of ‘Conflict’ in the Hegelian-based
Inquiry System

In developing a software development mechanism
based on the Hegelian dialectic, a crucial question to be
addressed is that of how to conduct the process of placing
the different models in conflict in the presence of the
decision-makers in such a way as to optimise the learning
process.

In a scientific exploration, this public conflict could be
achieved by, for example, devising and conducting an
experiment intended to falsify one, and only one, of the
theoretical models under consideration. The result of this
experiment would show that this one model was (or was
not) supported by the now-augmented set of observations.
The order in which such experiments were devised and
conducted would not affect the results obtained from each
experiment.

However, the situation is different in the development
of software systems. In this case, the order in which
stakeholders are presented with, for example, different
prototype systems for examination may affect which
prototype they prefer, or which features they might take
from each to produce a combined model, as they learn
from exposure to successive prototypes more about their
problem and how to address it. This may even lead to a
need for different groups of analysts and of stakeholder
personnel to be involved in developing each model, to
avoid the clear division between the different ISs from
being bridged by exposure to other viewpoints. However,
such an approach would also result in a loss of synergy
over the entire set of people involved in the development,
since opportunities would inevitably be lost for members
of one IS group to learn about the situation from members
of other groups.

The purpose of the proposed conflict mechanism in
software development is also significant in considering
how such a mechanism should operate. Its currently
perceived objective is to bring to the surface the
assumptions embedded in each model and allow multiple
viewpoints to be considered, rather than to falsify one of a
set of scientific theories. In the former, the enemy is
incompleteness of the system functions or attributes,
rather than the identification of inconsistency in a
formalised system of scientific theory.

The mechanism would also need to emphasise the
nature and quality of the choices made available to
decision-makers, with the intention of informing them in
their decision-making processes. Some technical system
design decisions may need to remain with the software
developers, but the dialectical mechanisms would need to
inform decision-makers about how and why these
decisions were made.

By whatever means it is to be achieved, the placing of
two or more models in opposition to each other also
requires that those aspects which need to be compared
between models are capable of being compared
meaningfully; that is, these aspects need to be
commensurable (cf. Kuhn 1970). This requirement may
place a limit on the diversity of the ISs to be employed in
areas where comparisons need to be made, or to an
expectation that models may require some reworking or

1551

explanation in order to make the relevant aspects of each
model commensurable.

 Future Developments

The directions in which this line of research will take
us are not yet clear. However, some work is already under
way, viz. the extension of the philosophical analysis
described here, and the design of an investigation to apply
these ideas in a practical environment to test their validity
and usefulness. The long-term goal of this work is to
devise an improved philosophical basis for software
development mechanisms in general. We also hope that,
as our understanding of this basis grows, it will be
possible to make concrete suggestions as to how the
practice of current software development can be
improved.

Practical Applications of a Dialectically-Based
Inquiry System

What we have presented above is a hypothesis, based
on observation of the current state of software system
development. Practical investigations are needed to
determine whether the hypothesis can be supported in
practice, and to inform practitioners of any positive
conclusions which can be drawn at this stage. The long-
term objective of this research programme is neither to
develop a ‘super-methodology’ with the intention of
selling it as the solution to all problems in software
development, nor to validate the use of any particular tool
or set of tools used in combination. Instead, the aim is to
determine the success or otherwise of the philosophical
research direction, viz. to see whether, and if so how well,
the underlying dialectic-based mechanism works.

One possible programme of practical research would
start with the selection of a set of appropriate ISs and of
an existing approach based on each, to save the need to
develop new methods and test them individually before
starting the research. For example, it may be possible to
present, for comparison by stakeholders, models of
current situations or proposed software-based systems
developed using SSM with its Churchman-based IS, and
high-level systems models developed using a hard method
such as UML (Rational 2000) or SSADM (Downs et al.
1992) with their Leibnitzian basis. Given the current state
of software development, it may be advantageous at
present to employ at least one Leibnitzian method or tool-
set, in order to reflect the computational models
underlying software implementation mechanisms and thus
make implementation of the finally-selected model easier.

The selected approaches would then be incorporated
into a single project plan. Models developed using the
different ISs would be placed before a group of
stakeholders, to allow them to make comparisons and to
devise a unified model. Guidance to the stakeholders on

how to perform this comparison, and support during the
process, would almost certainly be required.

An analysis of the lessons to be learned from this
process would need to consider how well the different
standpoints adopted and models created work together in
bringing to the surface the assumptions implicit in the
situation, in each approach and in the system functions
identified by each approach. The ways in which the
comparisons were performed and their degree of success
would also need to examined and improved, to inform
further investigations. The outputs of the synthesis of the
models created could also be compared with the outputs
of each approach taken individually. The results of this
analysis would be fed into succeeding practical research
exercises, possibly employing different sets of ISs.

Furthering the Philosophical Examination

The thinking behind the examination of the current
state of software development and its potential for
improvement by application of mechanisms based on
Hegel’s work may lead us to the examination of other
related philosophical questions. Currently open questions
include how to select the Inquiry Systems underlying a
software development method, and how to bring models
developed using those ISs into contention.

Looking from a wider perspective, how might the ISs
selected interact with other elements of the Kuhnian
disciplinary matrices (Wernick 1996; Wernick and
Winder 1997) on which the method, and each of the tools
comprising it, is based? We suggest initially that the ISs
adopted will interact, for example, with the computational
models underlying the notations to be used for model-
building, to produce a more or less ‘hard’ approach, and
that these in combination will in turn affect the degree of
‘hardness’ of the final system. The effect of this choice on
other possible elements of the disciplinary matrix and how
influential they are in determining the mind-set which they
project on to their users, is a question for future
investigation.

Summary

We have observed that the mechanisms currently in
use for the analysis of human activity systems, and the
devising of software-based tools intended to improve the
working of those systems, are each based on the use of a
single Inquiry System at any one stage. We suggest that
such an approach might fail to capture a sufficiently wide
range of relevant information about the situation to enable
a long-lasting software-based system to be developed and
installed, and may also embed assumptions in the software
itself which might cause problems later in the life of the
system. We therefore conclude that the feasibility of
approaches incorporating more than one IS at the same
time should be examined, and the results of such studies

1552

compared with those obtained from using current
mechanisms.

References

Avison, D.E. and Wood-Harper, A.T. Multiview: An
Exploration in Information Systems Development, Alfred
Waller, Henley-on-Thames, 1993, reprint of 1990 revised
edition.

Chancellor, A.. untitled column, Guardian Weekend, 19
February 2000, p.5.

Checkland, P. Systems Thinking, Systems Practice,
Wiley, Chichester, 1990, reprint of 1984 revised edition.

Downs, E., Clare, P. and Coe, I. Structured Systems
Analysis and Design Method, Second Edition, Prentice
Hall, New York, 1992.

Feyerabend, P. Against Method, third edition, Verso,
London, 1993.

Kuhn, T.S. The Structure of Scientific Revolutions,
Second Edition, Enlarged, University of Chicago Press,
Chicago, 1970.

Lehman, M.M. “The Future of Software - Managing
Evolution”, invited contribution, IEEE Software Jan-Feb
1998, pp.40–44.

Loomes, M. J. “Selfconscious or Unselfconscious
Software Design?”, J. Information Technology, (5), 1990,
pp.33–36.

Loomes, M.J. and Jones, S. “Requirements Engineering:
a Perspective Through Theory-Building”, Proc. Third
International Conference on Requirements Engineering,
Colorado Springs, CO, April 6–10 1998, pp.100–107.

Mitroff, I.A. “Systems, Inquiry and the Meanings of
Falsification”, Philosophy of Science, (40), 1973, pp.255–
276.

Pfleeger, S. Software Engineering: Theory and Practice,
Prentice Hall, 1998.

Rational Rational Software Corporation web site on UML,
http://www.rational.com/uml/index.jtmpl, (current 6
March 2000).

Wernick, P. A Belief System Model for Software
Development: A Framework by Analogy, PhD thesis,
Department of Computer Science, University College
London, 1996.

Wernick, P. “Feyerabend and Information Systems
Development : Against Methods?”, Systemist, (20),
December 1998, pp.256-259.

Wernick, P. and Winder R. “Software engineering as a
Kuhnian discipline”, in Winder R., Probert S. and Beeson
I. (eds.) Philosophical Aspects of Information Systems,
Taylor and Francis, London, 1997, pp.117–129.

1553

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Dialectical Basis for Software Development Tool Building
	P Wernick
	B Christianson
	M J. Loomes
	D W. Shearer
	Recommended Citation

