
Association for Information Systems
AIS Electronic Library (AISeL)

ACIS 2007 Proceedings Australasian (ACIS)

2007

An Approach Using Formally Well-founded
Domain Languages for Secure Coarse-grained IT
System Modelling in a Real-world Banking
Scenario
Christoph Brandt
Université du Luxembourg, christoph.brandt@uni.lu

Thomas Engel
Université du Luxembourg, thomas.engel@uni.lu

Benjamin Braatz
Technische Universität Berlin, bbraatz@cs.tu-berlin.de

Frank Hermann
Technische Universität Berlin, frank@cs.tu-berlin.de

Hartmut Ehrig
Technische Universität Berlin, ehrig@cs.tu-berlin.de

Follow this and additional works at: http://aisel.aisnet.org/acis2007

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ACIS 2007
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Brandt, Christoph; Engel, Thomas; Braatz, Benjamin; Hermann, Frank; and Ehrig, Hartmut, "An Approach Using Formally Well-
founded Domain Languages for Secure Coarse-grained IT System Modelling in a Real-world Banking Scenario" (2007). ACIS 2007
Proceedings. 62.
http://aisel.aisnet.org/acis2007/62

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Facis2007%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2007?utm_source=aisel.aisnet.org%2Facis2007%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis?utm_source=aisel.aisnet.org%2Facis2007%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2007?utm_source=aisel.aisnet.org%2Facis2007%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2007/62?utm_source=aisel.aisnet.org%2Facis2007%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

386

An Approach Using Formally Well-founded Domain Languages for
Secure Coarse-grained IT System Modelling in a Real-world Banking

Scenario
Christoph Brandt, Thomas Engel

Computer Science and Communications Research Unit
Université du Luxembourg
Luxembourg, Luxembourg

E-Mail: {christoph.brandt, thomas.engel}@uni.lu

Benjamin Braatz, Frank Hermann, Hartmut Ehrig
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin
Berlin, Germany

E-Mail: {bbraatz, frank, ehrig}@cs.tu-berlin.de

Abstract
In this paper we show how distributed coarse-grained IT systems in a real-world banking scenario can be
modelled using domain concepts and languages that are standing on top of formal methods. We further show
how these methods help to enforce structural security requirements, like firewall placements. In contrast to
today’s diagrams of IT landscapes, this approach makes use of the full power of formal methods, being at the
same time completely transparent to the people using it in the scenario. This is what makes this theoretical
approach applicable in a real-world environment where people are highly sensitive to set-up costs and any
daily operational overhead.

Keywords
Exogenous component coordination, security, algebraic graph transformation, meta-modelling, domain-specific
language, domain concepts

Introduction
The problem addressed in this paper is the question of how to handle structural security issues, like firewall
placements, of distributed coarse-grained IT components in a decentralised and global banking organisation.
The concrete case that is used as a representative example is the real-world situation of the Credit Suisse
Luxembourg, S.A. This case is referred to as “the scenario” in the following.

The scenario encompasses coarse-grained IT components like databases, applications for portfolio management
or order processing. It is run by highly skilled technical staff. The average workload is high, and the expertise is
well focused. Security issues come in as something holistic and cross-functional, driven by internal and external
stakeholders, limited by given restrictions. Internal stakeholders are, for example, local or headquarter staff
enforcing their security policies; external stakeholders show up as, for example, government requirements, like
certain public security standards that must be implemented. Limitations naturally arise because security is cross-
functional to actual competences, skills and experiences. So, for example, mastering database security and
application security on its own does not necessarily result in a secure distributed system, and having security
competences in both fields is not realistic for a single expert. It is therefore important to find a solution to help
people in the scenario to model, build, administrate, monitor and control such a local IT landscape respecting
given restrictions in terms of security set-up time, daily operational workload and available competences. In this
sense, the requirements for the solution are derived from the scenario, and the solution itself must prove to be
helpful in the scenario later on.

First, from a methodological point of view, the solution proposed in this paper shows how to abstract from the
scenario using a mathematical model. It further shows how to handle the building blocks of such a model using
a mathematical method. Therefore, the models as well as the modelling process are both based on mathematics.
While the coordination model Reo and Abstract Behavior Types (ABTs) are used to model the distributed
system, algebraic graph transformation is used as technique for generating and editing these models. Second,
from a practical point of view, this paper presents ways to hide the mathematical issues from the people in the
scenario. This is done to reduce the set-up cost before being able to apply this approach, as well as to minimise
the daily operational overhead after implementing the solution in the scenario.

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

387

Because the internal implementation of components in the scenario is not known, the focus has to be on message
streams between them. The chosen techniques Reo and ABTs fulfil this requirement, since they allow the
modelling of exogenous coordination of components by connectors. Because component and connector models
of distributed systems can be interpreted as graphs, algebraic graph transformation applies ideally for specifying
complex editing operations controlled by security restrictions. Its mathematical foundation allows a systematic
and even automatic analysis of possible states in the modelling process, but it also facilitates inherent safeness of
editing operations, as far as desired.

In this paper, we first reflect the current industrial practice of how to address the issue. Then we introduce Reo
and Abstract Behavior Types as the formal building blocks during system modelling and algebraic graph
transformation as a technique to create system models at the concept level that are in line with structural security
requirements. We show further how the formal and the concept layer are related and how the first one can be
derived from the second.

Current Industrial Practice
Before presenting our approach, an overview of the current industrial practice is given. This is done to motivate
the concrete need for a better solution. To do this we present first the actual real-world situation, second we
present an assumed best practice for it.

Looking at the real-world environment there is, from our perspective, a significant need for a further scientific
study regarding the actual industrial situation. Such an insight would enable producers and consumers of
security products to focus on more holistic and integrated solutions not available and used so far. We claim that
such solutions would reduce costs beyond today’s limits, extend flexibility and they would be of much higher
quality as most products the market currently offers. So, not little of today’s consulting, integration, and
customisation efforts should be reducible.

We also claim that this has not happened yet because of a lack of theoretical knowledge that causes these
mentioned practical problems as well as others. Current interests of players, consumers and producers, because
of the market setting do not let us expect this happening within the market itself. External intervention will be
needed. Most producers are so cost-driven that no investment into research beyond concrete today’s customer
requirements is done. And customer requirements are mainly driven by external demands of compliance
frameworks, not by a genuine interest in security. We therefore claim that this is a fundamental argument for
public founded research projects that consumers and producers are partnering and co-financing, as in the
presented case.

The actual real-world situation is driven by the application of different kinds of compliance frameworks (ISO
27001:2005, ISO 27002:2007, SOX, CobiT) to existing IT landscapes to enforce certain security requirements.
Unfortunately, these frameworks do not support a sound interplay. Furthermore, they are applied ex post
causing late error recognition and thus, resulting in more or less good fixes regarding the security issues of an
existing IT landscape in a given business context. We claim that these ex post fixes not really solve the
underlying security problems. They emerged as incremental build-ups over time and were not developed
methodologically. Because of its overall relevance for society a deeper scientific study beyond what is available
would be helpful.

But even without investing much into research a possible best practice solution can be given. It could already be
realised as a first step towards a better solution. It can further serve as a benchmark for the theoretical solution
presented later on. This assumed best practice shows that today’s informal drawings of IT landscapes can be
much better handled by domain-specific modelling. We will argue that even this state-of-the-art approach
clearly demonstrates the need for theoretical solutions to be developed, so that practical questions can be treated
in a more satisfying way.

As an assumed best practice we propose that in order to model, administrate, monitor and control structural
security, like firewall placements, of a distributed system, respecting cost and time restrictions as well as
competence profiles of people available in the scenario, domain-specific modelling should be applied, yielding
higher abstraction by hiding implementation-specific details to lower levels and, thus, giving people the freedom
to focus on domain-specific issues only. The domain level in the scenario is clearly the handling of coarse-
grained IT components and their connectors. The underlying assumption is that glue code to connect these
components can be generated based on high-level domain-specific specifications. In the best case, the
implementation level does not have to be touched at all by the infrastructure experts in the scenario.

Seeking efficiency, industry is primarily looking for tools supporting the ongoing work, seldom for pure
methods. So, computer-aided software engineering (CASE) tools, better meta-CASE tools, are the appropriate
choice here. Their specific benefit is the separation of concerns: the meta-CASE tool provider is the expert at
building CASE tool functionality; the people in the scenario are the experts of their domain. This division of

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

388

labour is missing from CASE tools for fixed modelling languages such as UML and from development
frameworks for (domain-specific) visual language tools. In the first case, either the provider should be an expert
of the domain addressed or the domain expert has to encode his terminology into the notions used by the
modelling language. In the second case, the people in the scenario must become experts in building CASE tools.
Both is not realistic to be assumed.

For demonstration purposes MetaEdit+ (Tolvanen 2005, Luoma et al. 2004) is taken to be the meta-CASE tool
used here. MetaEdit+ is widely accepted and proved its utility in industry. By the help of MetaEdit+ concepts of
the domain can be defined. Their visual representation is used further on to model a distributed system like the
one in the scenario. Rules and restrictions of how to combine these visually represented concepts are governing
structural security issues. Later on, scripts generate the needed glue code. The primary benefit is the one of
generation, which cuts costs and reduces set-up as well as maintenance time. The secondary benefit is the one of
consistently applying the defined rules and restrictions during the modelling process, as well as the scripts
generating the glue code. This yields enforced structural security rules, and constant quality, seen from a
technical point of view, in the final code.

However, even though practical, this assumed best practice is still not able to deliver guaranties needed for the
security issues in the scenario. The main reason for that is a missing mathematical model, which describes the
handling of syntax and semantics of the used visual and non-visual languages, as well as their interplay. So, no
proofs can be given. For example, the domain concepts are not suitable for model checking. They lack a
mathematical foundation. Conflicts between security rules cannot be treated mathematically, because they are
not defined using any mathematical model.

The presented approach in this paper addresses these issues. It shows how to save the benefit of domain-specific
modelling using meta-CASE tools with all mentioned advantages like cost cutting and time savings and
demonstrates how to apply abstract algebra to build a foundation for proofs that are needed to yield reliable
security statements later on that are not able to be granted by the application of today’s compliance frameworks.

Coordination Model
In this paper we are using Reo (Arbab 2004) as the underlying coordination model, on which the domain-
specific business language resides. Reo emphasises the exogenous coordination of components by glue code and
thereby directly supports our requirement of treating them as “black boxes”. In contrast to functional, imperative
and object-oriented models, e. g. Abstract Data Types, Reo does not rely on interface signatures or synchronous
operation calls, but only on message streams. This definition, however, does not prevent the implementation of,
for example, interface signatures and several kinds of synchronisation mechanisms on top of the message
streams.

Components, Connectors and Channels
In Reo a system consists of components, which are joined using connectors. These connectors are themselves
constructed out of simpler connectors and channels. Channels can be seen as the simplest, atomic kind of
connectors. Connectors are represented as graphs, where edges correspond to channels and their channel ends
coincide on the nodes. Each channel has exactly two channel ends, each channel end coincides on exactly one
node and an arbitrary number of channel ends may coincide on each node. For each channel end y we denote by
ŷ the unique node on which the channel end coincides. For each node N we denote by [N] the set of channel
ends coincident on N. Thus, for all nodes N and channel ends y ∈ [N] we have ŷ = N and for all channel ends y
we have y ∈ [ŷ]. Figure 1(a) shows an example, where five components C1, … , C5 are connected using various
connectors. In Figure 1(b) we see how connectors may be reused in systems and other connectors by referencing
them in the graph. The system has exactly the same topology as the flat system in Figure 1(a), but the
presentation with connector references and reuses leads to a more concise arrangement.

 (a) Flat system (b) System with connector references

Figure 1: Examples of Reo systems

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

389

Channels do not have a direction themselves in Reo, but their ends do. A source end accepts data into the
channel and a sink end promotes data out of the channel. Channels may have ends with different or identical
kinds. A channel with two source ends is called drain, while a channel with two sink ends is a spout. In a
connector, the channel ends [N] coincident on a node N may be partitioned into disjoint sets Snk(N) of sink ends
and Src(N) of source ends. A node N is called sink node if only sink ends coincide on it (Snk(N) = [N] ≠ {}),
vice versa it is called source node if only source ends coincide (Src(N) = [N] ≠ {}). In all other cases ([N] = {}
or (Snk(N) ≠ {} and Src(N) ≠ {})) the node is called mixed node. Components may only be connected to sink or
source nodes, where they may read from sink nodes and write to source nodes, but they may not be connected to
mixed nodes.

Channel types differ in the coordination of writing operations on their source ends and reading operations on
their sink ends. Note that Reo allows a user-defined set of primitive channel types to be used. Some examples of
possible channel types are given in the next subsection.

Primitive Channel Types and Their Composition
Let us consider the following examples of primitive channel types, where their visual representation is given in
Figure 2(a). Note that, in contrast to UML and other semi-formal techniques, these visualisations correspond to
well-defined entities with a precisely given semantics. Sync facilitates synchronous communication: The
writing of a data element at the source end and the deliverance at the sink end happen simultaneously, i. e. data
may only flow through the channel if one of the components or channels connected to the source end is ready to
write and all of the components or channels connected to the sink end are ready to read. SyncDrain has two
source ends and only allows the writing of data elements on both ends simultaneously. SyncSpout non-
deterministically produces data elements which can be read from both sink ends simultaneously. FIFO1 allows
the entities at the source end to write data into its buffer and entities at the sink end to read this data element
from the buffer afterwards. If the buffer is full it must first be emptied through the sink end before another data
element may be written through the source end. FIFO1(d) is much like FIFO1, but the buffer is initially filled
with the data element d, which must first be taken through the sink end before the first element can be written to
the source end. Filter(pat) is a synchronous channel dropping all data items not conforming to the pattern pat.

 (a) Channel types (b) Alternator (c) Inhibitor

Figure 2: Channel types and compositions

One of the most outstanding features of Reo is the possibility to create very complex connectors out of a rather
small set of primitive channel types. Alternator-example: Let us consider the connector in Figure 2(b). It has
two source nodes 1 and 2 and a sink node 3. The SyncDrain ensures that data may only be written to the source
nodes simultaneously. This can only happen if the entities at sink node 3 are ready to read the data item from
source node 1. Moreover, the buffer of the FIFO1 channel must be empty and therefore ready to accept the data
item from source node 2. After a write the buffer first has to be emptied by delivering its content to sink node 3
before another write to nodes 1 and 2 can succeed. Thus, this connector delivers data items from source nodes 1
and 2 to sink node 3 in a strictly alternating order starting with an item from source node 1.

Inhibitor-example: The connector in Figure 2(c) allows data to flow synchronously from source node 1 to sink
node 2 if the upper FIFO1 buffer is filled and the lower FIFO1 buffer is empty. This is possible since the upper
buffer is filled initially with the data element ‘*’. The SyncDrain synchronises the flow from node 1 to 2 with
the data item flowing from the upper buffer to the lower buffer. Some time later this item can flow back to the
upper buffer to enable another flow from source node 1 to sink node 2. If a data item is written to source node 3
the lower buffer is filled with this element and all future flows through the connector are inhibited, since the two
FIFO1s mutually block each other.

Formal Semantics
Different kinds of formal semantics have been proposed for Reo. Arbab & Rutten (2003) and Arbab (2005) give
a coalgebraic semantics based on Abstract Behavior Types (ABTs). ABTs are defined as relations between input
and output ports and are used as the semantic models for components and connectors. The messages flowing
through these ports are modelled as timed data streams (TDSs) 〈α,a〉, where α is a possibly infinite stream of
data items and a is a strictly increasing stream of real numbers representing the points in time, at which the
corresponding data items in a flow through this port. For example, Sync can be modelled as a relation between

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

390

an input TDS 〈α,a〉 and an output TDS 〈β,b〉 with 〈α,a〉Sync〈β,b〉 ≡ (β = α) ∧(b = a) and FIFO1 can be modelled
as 〈α,a〉FIFO1〈β,b〉 ≡ (β = α)∧(ai < bi < ai+1 for all positions i in the streams).

Baier et al. (2006) use constraint automata to specify accepted languages of TDS tuples. The transitions in
constraint automata are labelled with the names of the ports on which messages are observed simultaneously and
constraints on the data items in these messages. Constraint automata can also be used to specify requirements
and provisions of components and connectors. Since they are close to ordinary automata and labelled transition
systems this semantic foundation of Reo is suitable to provide model-checking techniques.

Domain-specific Business Language
The scenario observed in the modelling of the coarse-grained IT infrastructure at Credit Suisse shows that the
usage of formal techniques like Reo is not practicable in such an environment. In fact, we need a domain-
specific language (DSL) tailored to the skills of IT infrastructure architects. Such a DSL should be close to the
informal, intuitive drawings used today, so that these users are not coerced into the steep learning curve
necessary to introduce a formal technique. In order to avoid sacrificing the formal foundation, this DSL should,
however, have relations to underlying Reo models. An example of a model in such a language can be found in
Figure 3(a), where illustrative images are used as symbols for components and connectors. In Figure 3(b) the
underlying Reo model with its connectors and components is given, where the components are depicted in red
while the connectors are depicted in green. We observe that a single connection in the DSL model corresponds
to a whole connector in Reo with multiple source and sink nodes for the different directions of bidirectional
connections. In order to formalise the relation between Reo and the DSL and the manipulation of models in both
languages we give an introduction to the theory of typed graphs and algebraic graph transformation in the next
section.

 (a) IT infrastructure in DSL (b) IT infrastructure in Reo

Figure 3: DSL model and underlying Reo model

Typed Graphs and Algebraic Graph Transformation
In this section we are using the theory of typed graphs and algebraic graph transformation, as it is presented e.g.
by Ehrig et al. (2006), to define on the one hand a formal relation between Reo and a prototypical domain-
specific language and show on the other hand how to model transformations such as refactorings or automatic
modifications and translations. Graph transformation was chosen because it has a sound mathematical
foundation with a long history of research and a wealth of theoretical results.

Typed Graphs and Language Families
A graph G=(N,E, src, trg) consists of a set N of nodes and a set E of edges together with functions src, trg:E→N
assigning to each edge its source and target node. A graph homomorphism h: G→G’ = (hN, hE) consists of two
functions hN: N →N’ and hE: E→E’, which are compatible with the source and target functions, i.e. src’○hE =hN
○src and trg’○ hE =hN ○ trg (see Figure 4(a)). Graph homomorphisms may translate, merge and embed nodes
and edges of the source graph in the target graph. Given a graph TG, called type graph, a typed graph (G,type)
consists of a graph G and a typing morphism type: G→TG. Hence, every node of G is labelled with a node type
(a node of TG) and every edge with an edge type (an edge of TG). A typed graph morphism is a homomorphism
h:G→G’ compatible with the typings, i.e. type’○h = type (see Figure 4(b)). The category of all typed graphs and
their morphisms for a given type graph TG is denoted by TG(TG).

 (a) Graph homomorphism (b) Typed morphism

Figure 4: Morphisms for graphs and typed graphs

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

391

These algebraic notions can be used as a simple formalisation for meta-modelling, where the type graphs are the
meta-models or schemas defining an abstract syntax for a class of models, represented by the typed graphs as
instances. Meta-models in the sense of MOF (OMG 2006) are, however, much more expressive than type
graphs. They can e. g. declare multiplicities, inheritance and attributes of model elements. Some extensions that
provide similar features for graphs are given by Ehrig et al. (2006). In this paper, however, we will confine
ourselves to the case of simple typed graphs without additional features.

As an example of type graphs and typed graphs consider Figure 5. In Figure 5(a) a simple meta-model for Reo is
given by the type graph TGReo, where node types are defined for Reo nodes, components, connectors and
channels, and their connections are given by the edge types represented as arrows. In Figure 5(b) the abstract
syntax of the components PC, BAS and DB and the connector FW from the Reo model in Figure 3(b) is given
by an instance graph ReoNetDSL ∈ TG(TGReo). We give the typing morphism by annotating the types of nodes and
edges after a potential identifier and a colon. Note that the connections between these building blocks are not
formalised in this model, because they will be specified by domain-specific models later on.

Homomorphisms between type graphs can be used to relate a family of languages of typed graphs. An overview
of the proposed language family for domain-specific languages based on Reo is given in Figure 6, where also
the intended users of the different sublanguages are visualised. All arrows are graph homomorphisms, where
dashed arrows are the typing morphisms between instances and there schemas, while solid arrows are type graph
and instance morphisms relating Reo and the domain-specific language by “part of ”-relationships.

(a) Meta-model TGReo

(b) Reo model ReoNetDSL

Figure 5: Meta-model for Reo with instance model

Figure 6: Language family for distributed systems

Experts for formal methods, Reo experts in particular, use the language defined by the type graph TGReo to
create Reo models like ReoNetDSL, but using the visual notion as in Figure 3(b). Independently, technical experts
define meta-models for domain-specific languages, which are instances of the “meta-meta-model” TGDSL given
in Figure 7(a). Schemas for domain-specific languages consist of node types for components, connections and
interfaces. In our example the meta-model TGNetDSL in Figure 7(b) defines a very simple modelling language for
network infrastructures, which has component types for clients, servers and firewalls and connection types for
HTTP and database connections; e. g., the component type BeaAS for application servers has interfaces HTSrv
and DBCln, where HTSrv can be used to connect its instances to some other component with a HTCln interface

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

392

via a secure or insecure HTTP connection with type Sec or Insec, and DBCln can be connected to a database.
TGNetDSL serves as a bridge between two language levels: On the one hand it is an instance of the schema TGDSL,
on the other hand it is itself a schema for the user models, network infrastructures in our example, manipulated
by domain experts.

 (a) Meta-model TGDSL (b) Meta-model TGNetDSL

Figure 7: Meta-model for DSLs with meta-model for NetDSL

The domain experts as end users in our scenario can now use the domain-specific language without explicit
skills in the underlying formalisms. As an example the DSL model UserMod, whose visual representation was
given in Figure 3(a), is shown as instance of TGNetDSL in Figure 8.

Figure 8: Instance model UserMod for IT infrastructure

The formal and the technical experts work together in creating the mapping from domain-specific types in
TGDSL-instances to connector definitions in Reo models. These mappings are instances of TGMap shown in Figure
9(a). The edge types between CompT from TGDSL and Comp and Conn from TGReo are used to assign underlying
Reo components and connectors to the domain-specific component types. The intermediate node types Link, In
and Out and the corresponding edge types are used to relate domain-specific interfaces with corresponding
source and sink nodes in Reo and domain-specific connections with links between these ports. The mapping
MapNetDSL from the connector, component and connection types of TGNetDSL to the corresponding Reo connectors
and components as well as source and sink nodes is given in Figure 9(b). For example, the Reo component PC is
assigned to the domain-specific component type DellPC, which has an interface HTCln consisting of an Out
node for request and an In node for responses. These nodes are realised by the corresponding Reo nodes of PC,
but also by Reo nodes of the connector FW, which is assigned to another domain-specific component type
(CiscoFW) having an HTCln interface. The domain-specific connection type Sec consists of two Links in the
mapping, one for each direction of the secure HTTP connection.

 (a) Meta-model TGMap (b) Mapping MapNetDSL

Figure 9: Meta-model for mappings with mapping for NetDSL

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

393

Such a mapping can be used to facilitate the automatic construction of a complete Reo model from UserMod or
some other domain-specific model. More precisely, the building blocks from ReoNetDSL are copied for each
occurrence of a component with corresponding component type and these copies are connected using
synchronous channels according to the links specified for the connection types in MapNetDSL. This complete Reo
model can then be model checked or otherwise validated.

Note that the integrated type graph TGIntegr does not have to be given explicitly to define the relationships
between Reo and the DSLs. It can rather be constructed as a colimit of the meta-models for Reo, DSL type
graphs and mappings over their respective common terminologies TerminologyReo and TerminologyDSL. Here, the
category theoretical notion of “colimit” can be understood as disjoint unions over common parts. Likewise, the
whole definition NetDSL of our example DSL can be understood as an amalgamation of its constituent parts
ReoNetDSL, TGNetDSL and MapNetDSL.

Graph Transformation, Grammars and Refactoring

Given a type graph TG a transformation rule p = (L←K→R) is defined by three typed graphs L,K,R ∈ TG(TG)
and two typed graph morphisms l: K→L and r: K→R, where l is injective. The application of a rule p to a host
graph G by an injective match m: L→G is given by a double-pushout (DPO) as in Figure 10 resulting in a graph
G’. Such an application is denoted by G ⇒ G’. Intuitively, an application can be described as the removal of all
elements in L that are not reached from K resulting in the context graph C and the addition of the elements in R
and not reached from K. If r is non-injective the transformation merges identified elements. A transformation G0
⇒* Gn is given by a sequence G0 ⇒ … ⇒ Gn of rule applications.

Figure 10: DPO transformations

Transformation rules may be used as productions in graph grammars. Those grammars are quite similar to
Chomsky grammars for textual languages; a type graph TG, a start graph S ∈ TG(TG) and a set of productions
define a language L = {G ∈ TG(TG) | S ⇒* G } of typed graphs. Since in most cases not all instances of a type
graph are desired as possible models, grammars should be given for all considered model languages in the
scenario: Reo, the domain-specific type graphs, the mappings between them and the domain-specific languages
themselves. Grammars can also be used to provide syntax-directed editing, e. g. by using a tool like Tiger (Ehrig
et al. 2005) which generates visual editors based on graph grammars, where the rules can also be edited in the
visual notation of the DSL.

Rules can also be used to define refactorings of typed graphs. A refactoring modifies the structure of a model
without changing relevant properties, where the choice of “relevance” may vary. If a refactoring is built from
the productions of a grammar it is guaranteed to produce syntactically correct models. As an example of such a
rule consider Figure 11, where a domain-specific model is refactored by merging multiple firewalls. The left-
hand and right-hand graphs L and R of the rule are explicitly depicted, while the preserved part K is given by the
interface nodes 1, 2, 3 and 4 contained in both graphs.

(a) Visual notation

(b) NetDSL instance graphs

Figure 11: Refactoring rule for domain-specific models

Moreover, rules may be designed to serve as automatic model transformations. Such rules are applied to a model
as long as possible using all valid matches. This mechanism is useful for tasks like the translation of models or

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

394

to perform some cleaning operations, but also to enforce structural patterns. For example, the rule in Figure 12
protects each application server with a firewall.

(a) Visual notatation

(b) NetDSL instance graphs

Figure 12: Insertion of a firewall

Negative Application Conditions and Conflict Detection
While such model transformations can be used to “clean up” a model and enforce structural requirements ex
post, it is also possible to prevent the occurrence of forbidden structures in advance by negative application
conditions (NACs). A NAC prohibits the application of a rule if certain additional structures are found in the
host graph. More precisely, we claim that security requirements can be modelled by graph constraints on the
domain-specific model. Due to a general correspondence between graph constraints and application conditions
(Ehrig et al. 2006) this allows to assure security properties by applying productions with such NACs.

For example, the editing rule creating insecure connections could be equipped with a NAC prohibiting direct
connections to application servers, such that the structure repaired by the rule in Figure 12 cannot arise in the
first place. Such a behaviour is desired in the scenario if production systems are concerned, which shall never be
in a state that violates security requirements.

Another benefit of the theory of algebraic graph transformation is the possibility of automatic conflict detection
based on critical pairs. Critical pairs are minimal situations in which two rules can be applied, such that the
application of one rule prevents the application of the other one. This may become relevant in the scenario if
different developers modify the model concurrently and later want to merge their work. If, e. g., one developer
removes an element that the other one has duplicated, the question arises which operation should precede. The
main result of the theory is that there is a finite set of critical pairs describing all possibilities for such conflicts.
At least for some of them sensible resolutions can be designed once and for all on the critical pairs, thereby
aiding in distributed concurrent development.

Discussion and Future Work
The assumed best practice, presented after mentioning the current real-world situation, illustrated how to cut
down costs and development time by leveraging the level of abstraction using domain-specific modelling
supported by the tool MetaEdit+. However, the notion of concepts used in MetaEdit+ and similar tools to
implement such languages is not able to provide a sound basis for formal reasoning. Only productivity gains
were realised, and quality issues were able to be treated only on a technical level.

In contrast to that, the approach of using the Reo coordination model and Abstract Behaviour Types as well as
algebraic graph transformation in addition to a domain-specific language yields to similar productivity gains and
provides a sound basis for formal reasoning. So, people can use the domain language as intuitively as in the first
case to model, administrate, monitor and control their environment of distributed coarse-grained IT components.
And they do get as an additional benefit security guarantees out of applicable formal methods like graph
transformation or model checking.

Future work will have to handle the mathematically sound definition of a complete domain-specific language in
this scenario, like it has been done e. g. for UML state machines and sequence diagrams (Hermann et al. 2006),
such that its semantics can be defined by a model transformation to underlying formal techniques, e. g. Reo
which is used in this paper. It will also regard the interaction with model checkers and theorem provers. Model
checkers should check for such things as tunnelling through a system. Theorem provers should help checking
the consistency and completeness of security requirements assigned to components and connectors.

References
Arbab, F. (2004), ‘Reo: A channel-based coordination model for component composition’, Mathematical
Structures in Computer Science 14(3), 329–366. Preprint available at http://homepages.cwi.nl/_farhad/
MSCS03Reo. pdf, doi:10.1017/S0960129504004153.

18th Australasian Conference on Information Systems Secure System Modelling
5-7 Dec 2007, Toowoomba Brandt

395

Arbab, F. (2005), ‘Abstract behavior types: A foundation model for components and their composition’, Science
of Computer Programming 55, 3–52. Preprint available at http://ftp.cwi.nl/CWIreports/SEN/SEN-
R0305.pdf, doi:10.1016/j.scico.2004.05.010.

Arbab, F. & Rutten, J. J. M. M. (2003), A coinductive calculus of component connectors, in D. Pattinson,
M.Wirsing & R. Hennicker, eds, ‘Recent Trends in Algebraic Development Techniques, Proceedings of
the 16th International Workshop on Algebraic Development Techniques (WADT 2002)’, Vol. 2755 of
Lecture Notes in Computer Science, Springer, pp. 35–56. Preprint available at http://ftp.cwi.nl/
CWIreports/SEN/SEN-R0216.pdf, doi:10.1007/b94458.

Baier, C., Sirjani, M., Arbab, F.&Rutten, J. J. M. M. (2006), ‘Modeling component connectors in Reo by
constraint automata’, Science of Computer Programming 61(2), 75–113. doi:10.1016/
j.scico.2005.10.008.

CobiT (2007), Control objectives and related information technologies, IT Governance Institute (ITGI), Vers.
4.1, ISBN 1-933284-37-4.

Ehrig, H., Ehrig, K., Prange, U. & Taentzer, G. (2006), Fundamentals of Algebraic Graph Transformation,
EATCS Monographs in Theoretical Computer Science, Springer.

Ehrig, K., Ermel, C., Hänsgen, S. & Taentzer, G. (2005), Generation of visual editors as Eclipse plug-ins, in
‘Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2005)’, IEEE Computer Society. Preprint available at http://tfs.cs.tu-berlin.de/publikationen/
Papers05/EEHT05.pdf.

ISO/IEC (2005), Information technology - Security techniques - Information security management systems –
Requirements (ISO/IEC 27001:2005), Beuth Verlag, Berlin, Wien, Zürich.

ISO/IEC (2007), Information technology - Security techniques - Code of practice for information security
management (ISO/IEC 27002:2007), Beuth Verlag, Berlin, Wien, Zürich.

Hermann, F., Ehrig, H. & Taentzer, G. (2006), A typed attributed graph grammar with inheritance for the
abstract syntax of UML class and sequence diagrams, in D. Varro & R. Bruni, eds, ‘Proceedings of the
5th International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT
2006)’. To appear in Electronic Notes in Theoretical Computer Science, preprint available at
http://tfs.cs.tu-berlin.de/publikationen/Papers06/HET06.pdf.

Luoma, J., Kelly, S. & Tolvanen, J.-P. (2004), Defining domain-specific modeling languages: Collected
experiences, in J.-P. Tolvanen, J. Sprinkle & M. Rossi, eds, ‘Proceedings of the 4th OOPSLA Workshop
on Domain-Specific Modeling (DSM 2004)’, number TR-33 in ‘Computer Science and Information
System Reports’, University of Jyväskylä. Available at http://www.dsmforum.org/events/
DSM04/luoma.pdf.

OMG (2006), Meta Object Facility (MOF) Core, v2.0, http://www.omg.org/cgi-bin/doc?formal/ 2006-01-01.

SOX (2002), Sarbanes-Oxley Act, US Law, Pub. L. 107-204, 116 Stat. 745.

Tolvanen, J.-P. (2005), ‘Domain-specific modeling for full code generation’, Methods & Tools 13(3). Available
at http://www.methodsandtools.com/archive/archive.php?id=26.

Acknowledgements
This work is co-sponsored by the Credit Suisse Luxembourg, S.A., and the Ministre de la Culture, de
l’Enseignement supérieur et de la Recherche of Luxembourg.

Copyright
Christoph Brandt, Thomas Engel, Benjamin Braatz, Frank Hermann and Hartmut Ehrig © 2007. The authors
assign to ACIS and educational and non-profit institutions a non-exclusive licence to use this document for
personal use and in courses of instruction provided that the article is used in full and this copyright statement is
reproduced. The authors also grant a non-exclusive licence to ACIS to publish this document in full in the
Conference Proceedings. Those documents may be published on the World Wide Web, CD-ROM, in printed
form, and on mirror sites on the World Wide Web. Any other usage is prohibited without the express permission
of the authors.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	An Approach Using Formally Well-founded Domain Languages for Secure Coarse-grained IT System Modelling in a Real-world Banking Scenario
	Christoph Brandt
	Thomas Engel
	Benjamin Braatz
	Frank Hermann
	Hartmut Ehrig
	Recommended Citation

	Microsoft Word - 74.DOC

