
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2008 Proceedings Americas Conference on Information Systems
(AMCIS)

2008

A New Method for Conflict Resoluton Based on
Multi-Agent Reinforcement Learning Algorithms
Donghua Li
lidonghua@nuaa.edu.cn

Ju Jiang
jiangju@nuaa.edu.cn

Huajun Gong
ghj301@nuaa.edu.cn

Jianye Liu
liyac@nuaa.edu.cn

Bin Jiang
binjiang@nuaa.ecu.cn

Follow this and additional works at: http://aisel.aisnet.org/amcis2008

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Li, Donghua; Jiang, Ju; Gong, Huajun; Liu, Jianye; and Jiang, Bin, "A New Method for Conflict Resoluton Based on Multi-Agent
Reinforcement Learning Algorithms" (2008). AMCIS 2008 Proceedings. 356.
http://aisel.aisnet.org/amcis2008/356

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2008%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008/356?utm_source=aisel.aisnet.org%2Famcis2008%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Li et al. Conflict Resolution Based on Multi-agent Reinforcement Learning Algorithms 

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 1 

A New Method for Conflict Resolution Based on Multi-
agent Reinforcement Learning Algorithms 

Donghua Li 

Affiliation 

lidonghua@nuaa.edu.cn 

Ju Jiang 

Affiliation 

jiangju@nuaa.edu.cn 

Huajun Gong 

Affiliation 

ghj301@nuaa.edu.cn 

Jianye Liu 

Affiliation 

liyac@nuaa.edu.cn 

 

Bin Jiang 

Affiliation 

binjiang@nuaa.ecu.cn 

ABSTRACT  

Conflict resolution is a research topic for game theory (GT) and conflict analysis. A decision support system (DSS) is very 

helpful for conflict decision making. Reinforcement learning (RL) is an efficient method to learn knowledge by agents 

themselves. Although successful applications of RL have been reported in single-agent domain, a lot of work should be done 

in the case of multi-agent domain. Nash Q-learning is a famous learning algorithm for multi-agent RL. Based on the Nash Q-

learning, a novel DSS: multi-agent RL based DSS (MRLDSS) is proposed in this paper and is tested by using several typical 

examples of conflict resolution. Experimental results show that the proposed architecture and algorithm can solve conflict 

resolution problems correctly and efficiently.  

Keywords  
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INTRODUCTION 

The research purpose of this paper is to apply multi-agent RL technique to establish a DSS for conflict resolution. DSS is 

firstly introduced by Scott Marton and Garry in the beginning of 1970's (Marakas, 1993). A DSS is a new synthesized form 

that consists of an electronic data process (EDP) and a manage information system (MIS). A DSS is applied to support 

structured, semi-structured or unstructured decision and allows users' participation. 

DSS has gone through several development periods. Now, IDSS (Intelligent DSS) is a new focus in DSS research (Wu and 

Chen, 2007). IDSS is the combination of artificial intelligence (AI) and DSS. With the expert system (ES) technology, IDSS 

can make more fully use of human knowledge or intelligent knowledge, i.e., description knowledge about decision, decision 

processing knowledge and reasoning knowledge to make decision correctly and efficiently. According to the architecture of 

IDSS, it can be divided into: ES-based IDSS, ML-based IDSS, Agent-based IDSS, and so on. 

Game Theory, which specializes in conflict analysis, was invented by John von Neumann and Oskar Morgenstern. Since the 

World War II, it has bloomed and formed many conflict resolution concepts (Fang, Hiple, and Kilgour, 1993). The concepts 

of Nash stability and general metarationality (GMR) are two of the most important ones and will be used in this paper. 

Reinforcement learning (RL) describes a method of mapping the set of states to the set of actions for obtaining the maximal 

long-term reward. The maximal long-term reward trend is formed through rewarding the expected results and punishing the 

unexpected ones (Kazuo, 2000). 

The rest of the paper is organized as follows. Section 2 gives the basic concepts of RL and Game Theory (GT). The 

architecture of the proposed MRLDSS and the description of the suggested algorithm are provided in Section 3. Section 4 

presents the experimental procedures and results. Some conclusions drawn from the experimental results are summarized in 

Section 5. 



Li et al. Conflict Resolution Based on Multi-agent Reinforcement Learning Algorithms 

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 2 

BACKGROUND 

Single-agent Q-learning 

Single-agent Q-learning is a widely used RL algorithm proposed by Watkins (Sutton, and Barto, 1998; Watkins and Dayan, 

1992 ). 

Definition 1: An RL problem is a quadruplet <S, A, r, T>, where S is a discrete state space, A is a discrete action space, r: S

×A→Re is a reward function defined below for an agent, and T: S×A→△(S) is the transition function, where △(S) is the 

set of probability distributions over state space S. 

For the one-step Q-learning algorithm, it updates its state-action values as 

1 1 1( , ) (1 ) ( , ) [ max ( , )]k t t k t t t k t
a A

Q s a Q s a r Q s a    


    .  (1) 

In the above equation, Qk(st, at) is the state-action value, called Q-value or value function, for action at in state st after the kth 

updating. The initial Q-values, Q0(st, at), st∈S, at∈A, can be set randomly. rt is the instant reward given to the agent after it 

takes the action at and transfers to the new state, st+1. Step-size or learning rate, α, is a changeable parameter between 0 and 1 

and is decreased during learning process. The factor of discount, γ, measures how the immediate rewards are weighted 

against the future rewards. In addition, this discount factor ensures that the returns from all the visited states are finite.  

Multi-agent Q-learning 

Littman extended the single-agent Q-learning to the case of multi-agent environment for zero-sum game and develop the 

multi-agent Q-learning algorithm, Minimax-Q (Littman, 1994). Based on the method, Hu and Wellman developed the Nash 

Q-learning algorithm. In Nash Q-learning, Hu and Wellman defined “optimal Q-values as Q-values received in a Nash 

equilibrium (Hu and Wellman, 2003)”. The goal of Nash Q-learning is to find the Nash Q-values of different learning agents. 

Definition 2: An n-player RL problem is a set <S, A1…An, r1…rn
, T>, where S is the state space, Ai is the action space of 

agent i, ri: S×A1×…×An→Re  is the reward function for agent i, and T is the state transition function. In this paper, T=1. 

In this situation, the Nash Q-values function of agent i is defined as follow 

1

,* 1,* ,*

1( , ) ( , , , )
t

i joint i i n

k t t

s S

Q s a r v s  






    ,    (2) 

where (π1,*,…, πn,*) is the optimal joint policy in a Nash equilibrium, and Vi(st+1,π
1,*,…, πn,*) is the total discounted reward 

of agent i over infinite periods starting from state st+1 when all agents follow the equilibrium strategies. ajoint is the joint action, 

and ri is the reward of agent i (i=1,…,n) when all the agents take joint action ajoint and divert to the new state, st+1. 

Nash Q-learning updates the Q-values as 

int

1 1( , ) (1 ) ( , ) [ ( , )]i joint i joint i i jo

k t k t t k tQ s a Q s a r NashQ s a       .  (3) 

Where, 
1 1( )i

k tNashQ s 
 is the Q-value of agent i in state st+1 for the selected Nash equilibrium. The main difference between 

Nash Q-learning and single-agent Q-learning is how to use the Q-values of the next state to update the Q-values of the 

current state. For single-agent Q-learning method, the algorithm selects the optimal Q-value of the next state; for Nash Q-

learning algorithm, it adopts the Q-values in Nash equilibrium (Hu and Wellman, 2003). 

Equilibrium States of Conflict Analysis 

The environment to which the proposed multi-agent RL algorithm is applied is an n-DM RL problem defined by Definition 2. 

Individual stability and associated equilibrium are introduced within the framework of the graph model for conflict resolution 

(Fang et al., 1993). First consider the definitions for various types of movements among states as controlled by the DMs. In 

particular, Ri(s) is the set of reachable states, which DM i or agent i  can reach in one step, or unilateral movement, from 

state s . ( )iR s
 is the set of states, referred to as unilateral improvements (UIs), that belongs to Ri(s) and their payoffs are 

larger than that for state s  for DM i . Let Pi(s) be the payoff of DM i  for state s . Take the chicken game as an example, the 

state space and payoff are shown in Table 5. 
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Definition 3: Nash stability: state k∈S is Nash stable for DM i (i∈N), iff (if and only if) ( )iR k   . If k is Nash stable for 

all DMs, it is the Nash equilibrium state (Fang et al., 1993). 

 In the case of Nash stable, player i expects that player j will stay at any state it transfers to, i.e., player i  believes that any 

state that it transfers will be the final state. As an example of Nash stability, consider state 3 from DM 1's viewpoint in 

chicken game. If DM 1 unilaterally moves (UMs) from state 3 to state 1, his payoff changes from P1(3)=2 to P1(1)=1. Hence, 

state 3 is Nash stable for DM 1 since he has no UI from state 3. Because state 3 is also Nash stable for DM 2, it constitutes a 

Nash equilibrium. 

Definition 4: General Metarational (GMR): state k∈S is GMR for DM i (i∈N), iff for every 1 ( )ik R k  there exists at least 

one k2∈Rj(k1) with Pi(k2)≤Pi(k). 

Thus, under GMR, DM i expects that DM j will respond by hurting DM i if it is possible for DM j to do so. Therefore, k is 

stable iff DM j can hurt DM i if DM i takes any UI. Here, in the chicken game, for instance, DM 1 has an UI from state 4 to 

state 2 because P1(4)=3 and P1(2)=4. However, DM 2 has an UM from state 2 to state 1 which is less preferred by DM 1 to 

state 4 (P1(1)< P1(4)). Hence, state 4 is GMR for DM 1. Since state 4 is also GMR for DM 2, this state is a GMR equilibrium. 

ARCHITECTURE OF MULTI-AGENT REINFORCEMENT LEARNING BASED DECISION SUPPORT SYSTEM 

Instruction about the Architecture 

The proposed architecture of multi-agent RL based DSS (MRLDSS) is shown in Figure 1. This architecture consists of 4 

modules: user interface module, model-matching module, intelligent learning module, and model-extract module. The user 

interface module is used to exchange information between users and MRLDSS. The model-matching module is used to 

process the information provided by users and tries to determine whether there is a matched model in the existing model-

base. If the input problem can match with one of the existing models, the existing model is used to make the decision for the 

given problem directly. Otherwise, pass the given problem to the intelligent learning module (it is the multi-agent RL part in 

the Figure 1), and then the intelligent learning module learns the optimal decision policy for the problem. If the learned 

decision policy is stable and reliable, a new model is obtained and added to the model-base through the model-extract 

module. 

 

Figure 1. DSS Architecture 

Algorithm Description 

In Hu and Wellman's paper (Hu and Wellman, 2003), they verified the Nash Q-learning with a grid-world game. However, a 

decision making problem of GT is different from a grid-world game. We should develop a new algorithm to solve decision 

making problems based on Nash Q-learning. Nash Q-learning learns the Nash equilibrium of the current Q-values. The goal 
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of the proposed algorithm is to search the equilibrium states defined by GT. However, the equilibrium states have nothing to 

do with the Q-values. Therefore, in this algorithm, the equilibrium Q-values are used to update the Q-values. 

The Q-values function of equilibrium is the same as that of Nash Q-learning. But here, the (π1,*,…, πn,*) is the joint policy to 

stay at equilibrium state. In the proposed algorithm, the Q-values are updated as follow. 

1 1 1( , ) (1 ) ( , ) [ ( )]i joint i joint i i

k t k t t k tQ s a Q s a r AEQ s        ,   (4) 

where 1 1( )i

k tAEQ s   is the Q-value of state st+1 at which every agent is assumed to tend to stay. For the joint action staying 

at state st+1 is assumed, and the real joint action is unknown. So it is called AEQ (Assumed Equilibrium Q-value). 

The reward function is based on the all agents’ joint action and the current state. If an agent reaches its stable state, it will get 

a reward of its current payoff; else it will get a zero. 

Two methods are used to select actions based on the Q-values. The first one is the simulated annealing (SA). In the beginning 

of learning, the agent does not have knowledge about the correct action selection, so, the Q-values cannot represent its real 

intention. SA selects actions in this situation to ensure fully exploring over all the state space. The second one is the greedy 

method. After learning enough times, the agent forms its policy. So selecting an action with the largest Q-value is reasonable. 

To explain the proposed algorithm clearly, a simple example that satisfies Definition 2 with two agents and two feasible 

actions is used here. The state space and payoff of this example are shown in Table 1 (assumed the two agents have the same 

actios), and the Q-values are updated as follow: 

1( , , ) [ ( )]i i j i

tQ s a a r AEQ s     ,     (5) 

where 1 1( ) ( , , )i j

t i t s sAEQ s Q s a a  . 

state Agent 1 Agent 2 

action payoff action payoff 

1 a1 P1(1)  a1 P2(1)  

2 a2 P1(2) a2 P2(2) 

3 a3 P1(3) a3 P2(3) 

4 a4 P1(4) a4 P2(4) 

Table 1. States and Payoffs 

 

The pseudo code of the proposed algorithm is provided in Table 2. 

Initialize     // initial the necessary parameter 

Q1←φ, Q2←φ, α←0.3, γ←1,select state randomly; 

stepRecord←φ;    // record the convergent step number 

stateRecord←φ;   // record convergent state every time 

c2←0;     // the number of continued convergent to the same s 

loop 1  while k<N, loop continued 

c1←0;     // the number of continued stay at the same s 

step←0;    //convergent step number 

   loop 2  while c1<m loop continued    //if c1<m, it  converges 

      a1←ActionSelect, i=1,2 // select action 

      lastState←currentState; 

       currentState←new state st+1; 

      / , 1,2i

Nash GMRr reward i     //calculate reward 

      Qi←(1-α)Qi+α[ri+AEQi(s)], i=1,2;   //update Q-values 

      if st+1==st 

        c1←c1+1; 
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      else 

        c1←0; 

       step←step+1; 

Return to loop 2; 

stepRecord(k)←step; 

stateRecord(k)←st 

if stateRecord(k)== stateRecord(k-1)  

  c2←c2+1; 

else 

  c2←0; 

if c2 >n   //continued converged to a state more than n times 

reset all 

return to loop 1 

Table 2. Pseudo Code of the Proposed Algorithm 

Comparing of the three RL Algorithms 

Table 3 lists the differences among the three algorithms mentioned above. The differences between the proposed algorithm 

and the others are summarized as follows. 

1. The Q-table is different. Both the proposed algorithm and Nash Q-learning consider the opponent's actions, but the 

single-agent Q-learning does not. 

2. The “optimal” Q-value is different. For updating the Q-values, single-agent Q-learning uses the largest Q-value that it 

can get in the next state; Nash Q-learning uses the Q-value that all agents select the joint action to Nash equilibrium in 

the next step; and the proposed algorithm uses the Q-value that all agent select joint action to stay at the next state. 

3. The estimated opponent's Q-values are different. In Nash Q-learning, it is necessary to estimate opponents' Q-values for 

calculating the Nash equilibrium. However, neither the proposed algorithm nor the single-agent Q-learning needs. 

 Single-agent Q-learning Nash Q-learning The proposed algorithm 

Q-values 

“optimal” Q-value 

estimate opponent's Q-values 

Q(s, a) 

Max Q 

no 

Q(s, a1,…,an)  

Nash Q 

yes 

Q(s, a1,…,an) 

AEQ 

no 

Table 3. Comparing of the Three Algorithms 

EXPERIMENTAL RESULTS 

In this section, two famous examples of conflict resolution are used to evaluate the proposed algorithm.  

Prisoners' Dilemma 

In this example, there are two prisoners and each one has two actions to be selected: confession (C) and defence (D). Table 4 

gives the state space and payoffs of the prisoners' dilemma problem. It also gives out the equilibrium state. Here, “√” means 

yes, and “×” means no. 

state P1 P2 equilibrium 

action payoff action payoff Nash GMR 

1 

2 

3 

4 

C 

C 

D 

D 

1.0 

5.0 

0.0 

3.0 

C 

D 

C 

D 

1.0 

0.0 

5.0 

3.0 

√ 

× 

× 

× 

√ 

× 

× 

√ 

Table 4. States and Equilibrium of Prisoners' Dilemma 
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Chicken Game 

In this game, two drivers are racing toward to each other and each driver can either swerve or not. Table 5 provides the state 

space and payoffs. Where, S means swerving and D means no. 

state D1 D2 equilibrium 

action payoff action payoff Nash GMR 

1 

2 

3 

4 

D 

D 

S 

S 

1.0 

4.0 

2.0 

3.0 

D 

S 

D 

S 

1.0 

2.0 

4.0 

3.0 

× 

√ 

√ 

× 

× 

√ 

√ 

√ 

Table 5. States and Equilibrium of Chicken Game 

 

Experimental Results 

In real games, players cannot change their decisions after they took them. One game ends after all players take their actions. 

For learning, all the games are assumed to be repeatable (Sandholm and Crites, 1996). The experimental results of the two 

examples are shown in Figures 1, 2, 3, and 4, respectively. 

 

 

Figure 2. Equilibrium States of Prisoners' Dilemma 
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Figure 3. Learning Process of Prisoners' Dilemma 

 

 

Figure 4. Equilibrium States of Chicken Game 

 

 

Figure 5. Learning Process of Chicken Game 
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Experimental Results Analysis 

Figures 2 and 4 give out the stable states after 50 tries. These are the equilibrium states. The two figures show that the 

equilibrium states obtained with the proposed algorithm are the same as those provided by GT in Tables 4 and 5. These 

results evaluate the proposed algorithm. Figures 3 and 5 show the learning process of the proposed algorithm. Obviously, it 

learns fast. 

The results above verify the feasibility of the proposed algorithm. After learning, all the equilibrium states can be obtained 

with the modified reward function. Besides, the proposed algorithm converges fast. 

CONCLUSION 

This paper suggests a novel method to solve conflict problems: searching for the equilibrium states with a proposed multi-

agent RL algorithm. The experimental results show that the multi-agent RL method can be used to establish a DSS for 

conflict resolution. The proposed algorithm can search for the different equilibrium states for a given problem correctly and 

efficiently. Now the proposed algorithm can only evaluate the equilibrium states defined by the existing game theory. 

However, a powerful decision support system should provide users more choices and even let them define their own 

equilibrium states for different agents. The proposed algorithm has the potential and this is our future work. 
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