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ABSTRACT 

Auctions are often not independent from each other, and the movement of bidders across different auctions is one of the key 
linkages.  We propose different measures of bidder movements (which we call bidder migration in this paper) and how such 
migration affects the price outcome of later auctions.  Moreover, we identify two potentially confounding effects: the learning 
effect where bidders learn to become more sophisticated bidders, hence driving down the price of later auctions; and the 
desperation effect where bidders, in a hope to obtain the product that they previous couldn’t win, tend to increase the prices.  
We empirically investigated these effects using bidding history data from eBay and Generalized Linear Model specifications.  
We further discussed potential applications of bidder migration for online auction platforms, such as bidder segmentation, 
dynamic promotions, and shill bidder detection.  These bidder migration measures can be provided to internet auction sellers 
as a value-added service,  

Keywords 

Online auctions, bidder migration, bidder learning, competition among auctions 

INTRODUCTION 

A fundamental question of a market mechanism is how to efficiently allocate scarce resources, and the fundamental principle 
of the welfare economics suggests that efficiency is achieved when these resources are allocated to those with the highest 
willingness to pay: competitive equilibrium is Pareto optimal.  However, even when such optimal allocation can be achieved, 
the literature has said very little about what happens to those parties whose demand stay unfulfilled and, consequently, 
“migrate” to other auctions (Bapna 2004).  When these migrating buyers – or bidders in an auction setting – re-appear in later 
transactions, will they behave differently from other buyers? Will their presence affect the outcome of the auction (e.g. price), 
and will it affect process through which the final prices of the auctions are reached? Our literature review finds that other than 
anecdotal evidence of consumer learning or bidder experimentation (Armantier 2004), we do not yet know the relationship 
between bidder migration and its effect on the market outcome, especially from the perspective of sellers or auctioneers.   
This is also part of an emerging literature on the relationship among auctions.   

From the perspective of service research, a bidder’s history is valuable information for market participants, especially sellers 
on auctions.  However such information is largely missing from existing auction platforms.  Our paper argues that 
information about bidders’ history, such as measurements of bidder migration, can be easily implemented by auction 
platforms and then be provided to market participants as a value-added service.  Such services, by increasing information 
transparency, could potentially lead to overall efficiency gains.  

To fill this gap in literature as well as practice, we address the following specific questions in this study: What are the 
meaningful measures of bidder migration? How significant is the phenomenon of bidder migration? Does the migration affect 
the outcome of an auction and if so, how? How does the migration affect the price dynamics of auctions? And, how do 
bidders adapt or change their bidding strategies over time as a result of migration?   

From the perspective of auction practitioners, the study of bidder migration can provide benefits at least in the following 
aspects.  Firstly, as we shall see, measurements of bidder migration provide additional and much richer information about 
bidders than the feedback scores.   Such measurement can also be given on a specific category level, and can be provided to 
sellers prior to their listing so that they would be able to better configure the auction to achieve the highest final price.  
Secondly, with additional information about bidders becoming available, sellers can even provide targeted promotions to 
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potential bidders or buyers.  Last but not least, auction marketplace such as eBay can provide related measurements to sellers 
as a value-added service. 

We start by deriving several measures for bidder migration with different levels of granularity. Bidder migration is broadly 
defined in our paper as the sequential movement of bidders across auctions with different ending time.  Typical bidder 
behavior in auctions includes observation (watching the progress of auctions) and participation, of which placing bids is the 
most consequential type for the sellers and the auction mechanism; therefore it is the focus of our current study.  We focus on 
the sequential migration of bidders among different auctions offering the same product.  Concentrating on a single product is 
a starting point for us to understand more general inter-auction relationships through bidder migrations, such as those from 
one product to another (substitute and complementary products).  

Using TreeMap software, we empirically demonstrate the prevalence of bidder migration in our sample.  Furthermore, our 
data analysis shows that the dominating effect of migrating bidders appear to be a downward pressure on the price of later 
auctions.   

Bidder migration is not a new phenomenon, but the data collection would have been much more difficult in an offline setting.   

CONCEPTUAL BACKGROUND AND LITERATURE REVIEW  

The phenomenon of bidders migrating from one auction to another has implications beyond auctions.  The process that 
buyers on markets are matched with sellers can also be considered a process of auction in the framework of Walrasian 
Tâtonnement.  This process, introduced by Leon Walras and widely adopted in economics, presume an auction process to 
find the market clearing prices for all products that give rise to the concept of general equilibrium, where demand and supply 
in all markets clear at the same time.  Perfect information and no transaction costs are implicitly assumed in this process.   

Few studies have been conducted, particularly empirical ones, on the topic of bidder or buyer learning across transactions.  
The lack of data is likely to be the most important reason.  In this section, we will review the current literature on consumer 
learning and the role of experience in marketing and economics literature, with an emphasis on those related to auctions.  As 
will be shown, while some previous research has touched upon the topic of learning and experience, our current study is 
unique in several ways:  

1) We use more comprehensive and detailed transaction history data than has been previously available;  

2) We propose a system of increasingly sophisticated measures of bidder migration; and  

3) We empirically separate two confounding effects that could occur when buyers migration from one transaction to another. 

A number of theoretical researchers, especially in economics, have studied the role of experience or learning that could affect 
the outcome of transactions, particularly auctions.  For instance, Hon-Snir, Monderer and Sela (1998) analytically modeled 
the role of learning in first-price auctions, where bidder types are determined before the first round.  They showed that after 
sufficiently long time, the bidders’ bids are identical, in equilibrium, to those in the one-shot games where bidder types are 
commonly known.  This suggests that at least in the context of their analysis, theoretical predictions from auction theories 
can only hold after bidders learned. It highlights the importance of better understanding the process through which bidders 
learn from their experience, which is one of the focuses of our paper. In another analytical paper, Jeitschko (1998) studied the 
role of information transmission and learning in a model of sequential auctions, where bidders have independent private 
values.  Winning bids in these auctions can be used by participants in the auction to infer opponent types, which in turn 
affects the “price path” of sequential auctions.  Horner and Jamison (2008) also proposed an analytical model of sequential 
common-value auctions with asymmetrically informed bidders.  These theoretical processes can be regarded as a special case 
of what we discuss in this paper, where the pool of bidders remains constant across auctions. In real-world auctions, however, 
the pool of bidders changes frequently, especially when some bidders exit the market after losing or winning in previous 
auctions, or when new bidders arrive.   

Some authors in recent years have also empirically explored this topic using data from real auctions or experiments.  Wilcox 
(2000) is most closely related to our current research, where the author specifically studied the role of experience in internet 
auctions.  He argued that consumer learning, as measured by their “experience” level, drives the bidding process toward the 
outcomes predicted by theoretical auction research.  This paper also uses eBay as its research context.  Our paper, however, 
extends Wilcox (2000) in many ways.  (1) We consider not just the learning process, but also the effect of desperateness that 
results when bidder demand is not satisfied in previous auctions.  Our result indicates a contingent effect of bidder learning 
missing in Wilcox (2000).  (2) More importantly, our data highlight “learning” in much greater detail: not only do we have 
the complete bidding history of each bidder (including the timing and amount of each bid), we also study the learning of 
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bidders from previous loss, which is not captured by the “experience level” data used1.  Other marketing research suggests 
that participation or experience itself is a learning process (“experiential learning”, e.g. Armantier 2004). Therefore, our data 
allow far more detailed analyses of the learning process than found in previous studies.  

There have also been a number of studies using experimental data to examine the role of learning in auctions, such as Guth et 
al (2003) which studied auction outcomes under both first-price and second-price rules.  They found that, interestingly, 
learning does not drive bidding toward the benchmark solution.  Beyond auctions, there is a large literature related to 
learning, such as organization learning (through exploration and exploitation) (e.g. March 1991), learning in the context of 
supply chain models (e.g. Valluri and Croson 2005), and consumer learning in marketing (e.g. Hogg and Lewis 2005). For 
example, Iyengar, Ansari and Gupta (2007) studied the role of consumer learning and its implications for service quality and 
usage.  Amaldoss and Jain (2005), in their study of conspicuous consumption, discussed the role of consumer learning for 
monopolistic pricing policies.  Overall however, these are  less directly related to our current investigation which focuses on 
actual bidding data.  

Our investigation is rooted in the work of Bapna, Goes, Gupta and Jin (2004), who offered a taxonomy of bidders.  We use 
this taxonomy to distinguish the migration of different bidders and their effects, as well as the learning process of bidders as 
they migrate.   

We propose that bidder migration could have two potential influences on later auctions.  The first influence, which we shall 
call learning effect for simplicity, is related to the economics and marketing literature of consumer learning.  Literature has 
identified two general types of learning: observational learning and experiential learning (Armantier 2004), and our study is 
specifically focused on the experiential learning of bidders (placing bids).  Marketing literature also refers to the movement 
of bidders across auctions and how previous outcomes affect their probability of participation in later auctions (Ariely and 
Simonson 2003; List and Price 2005).  Bapna, Goes, Gupta and Jin (Bapna, Goes et al. 2004) also suggest bidder learning 
effects, though only as a post-hoc analysis. To the best of our knowledge, systematic examination of this phenomenon is 
rather scarce; there is even less work from the perspective of auction sellers or discussions of how studying such 
phenomenon can affect the sellers.  

Meanwhile,  as long as a bidder’s utility from consumption of a product is time dependent – which is almost a standard 
assumption in economics and finance – we propose that when bidders migrate to later auctions they are likely to increase 
their bid so as to obtain the product.  This could, in turn, induce an upward pressure on the final price of later auctions.  In our 
paper we call this desperation effect for simplicity.  The empirical difficulty lies in separating two concurrent effects in the 
data.  We shall attempt to tease out their different effects by using different measures of bidder migration, the details of which 
is discussed in the next section.    

MEASURING BIDDER MIGRATION 

In this section, we propose a system of measures for bidder migration.  In general, we differentiate bidders in two 
dimensions: (1) whether they won or lost previously; and (2) whether they were evaluators in previous auctions. For the 
purpose of the current paper we measure bidder migration statically: we measure bidder migration after an auction has 
concluded, and we do not differentiate bidders who participated in three previous auctions vs. just one previous auction; they 
carry the same weight in our current set of measures.  While this is a limitation, the simplistic measures used here are also 
more intuitive.  Moreover, such detailed measurements will not result in significant difference in our estimation results since 
the length of time in our sample is not sufficiently long.  We have included our set of extended measures of bidder migration 
in the appendix, however; and our models and results can be easily replicated under the new measures.  

1. Defining Bidder Migrations 

We measure bidder migration using several mutually exclusive measures, as we shall expand on, and the relationship among 
these measures can inform us about the learning vs. desperation effects that emerge when bidders migrate.  

The concept of “evaluator” originates in Bapna et al (2004), where Bapna and his colleagues classified bidders into five 
categories:  

1. Early evaluators – places just one maximum bid early in the auction 
2. Middle evaluators – places just one maximum bid in the middle of the auction 

                                                           
1 As indicated in Wilcox (2000) (page 373), the “experience level” data used in his paper only captures the number of times a 
bidder participated in auctions and won. Inherently, such measure does not consider participations without success.  
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3. Opportunists – late bidders 
4. Sip-and-dippers – places two bids; one early and one revised bid late 
5. Participatory bidders – bid throughout; early entry and late exit 

 

Overall, evaluators spend much less monitoring cost in the auctions than the others.  But as we discuss in Appendix 1, the 
results for early evaluator seems more distinctive than middle evaluators; therefore, in our paper, we define evaluators using 
the same measures that Bapna and his colleagues defined early evaluators, and definite the remaining bidders non-
evaluators.  More detailed discussions are in Section 5.  

Here are some more notations before we proceed:  

:  set of bidders for auction 
:  set of non-evaluators for auction  (explanations below)
:  set of losing bidders for auction 

i

i

i

i
i

i

Λ
′Λ
′′Λ

 

Our first definition of  bidder migration, 1
iBM (where BM stands for “Bidder Migration”),is the ratio between the number of 

bidders who lost and were non-evaluators in previous auctions, to the total number of bidders in the current auction:  

1 1{ | }1

1( ( ))
i i i i

i i
j i t t

i
i

j
BM −

− −
∈Λ − <

′ ′′∈ Λ ∪Λ

≡
Λ

∑ ∪ i

i

 

Where  

i – auction (-i: other auctions for the same product); j – bidder; t – time;  –auction end time; , where 1t ij ∈Λ iΛ is the set 

of bidders in auction i and iΛ denotes the number of unique bidders in that auction. 1(.) is an indicator function that takes a 
value of 1 if (.) is satisfied, and 0 otherwise.  

The above diagram (Figure 1) is an illustration of 1
iBM . Note again that this measure is a static measure; each set indicates 

the bidders of that auction, regardless of how many bids they placed there.  In this diagram, each oval or circle stands for an 
auction.  The shaded circle is our auction of interest, and the other two ovals are auctions that end earlier than the end of the 
circle auction.  So in the upper left auction, there are four bidders, in the lower left oval, there are 6 bidders, and so on. By 

1
iBM , the focal auction (shaded) has a bidder migration index of 3/6=0.5.  

 

The second measurement of bidder migration focuses on evaluators who lost previously.  Specifically, our second 
measurement of bidder migration is:  

Figure 1: Bidder Migration Index 
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1 1{ | }2

1( ( ))
i i i i

i i
j i t t

i
i

j
BM −

− −
∈Λ − <
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≡
Λ

∑ ∪ i

where i−′Λ is the complementary set of i−′Λ  

The third measurement focuses on bidders who won previously, and are non-evaluators: 

1 1{ | }3

1( ( ))
i i i i

i i
j i t t

i
i

j
BM −

− −
∈Λ − <

′′∈ Λ ∪Λ

≡
Λ

∑ ∪ i

 

And the last measurement focuses on bidders who won previous and were evaluators:  

1 1{ | }4

1( ( ))
i i i i

i i
j i t t

i
i

j
BM −

− −
∈Λ − <

′ ′′∈ Λ ∪Λ

≡
Λ

∑ ∪ i

 

To summarize, we classify bidders along the above-mentioned two dimensions, in the following manner:  

Table 1: BM1-BM4 

 Non-evaluators Evaluators 
Losers in prev. 
auctions 

1
iBM   

2
iBM  

Winners in prev. 
auctions 

3
iBM   

4
iBM  

 

Note that all bidders in a given auction will be placed in the above 2 2 just once.  For instance, if Joe lost in a previous 
auction and was an evaluator in that auction, he will be counted when calculating 2

iBM , but not any of the other three 

measures.  If Linda won a previous auction and was not an evaluator there, she will be counted in the calculation of 3
iBM , 

but none of the other three.   

2. Linking Bidder Migration Measures to Price Effects 

As we argued previously, two potential effects that could occur when bidders migrate are the learning effect, which we 
hypothesize to exert a downward pressure on prices; and the desperation effect, which would likely result in higher prices.  
We mentioned that the difficulty lies in teasing out the effect of these two effects.  In this section, we shall argue that, using 
the four measurements as defined above, we can tease out these effects.   

As we mentioned above, the distinction between winners and losers is to focus on the “desperation effect” whereby bidders 
are likely to bid higher because of unfulfilled demand.  On the contrary, the difference between evaluators and non-evaluators 
are to expose the “learning effect”.  Hence, we have the following results which will inform our model building:  

1) The difference between 1
iBM and 2

iBM can be regarded as a proxy of learning effect for bidders who lost 

previously; and 4 )i i
3(BM BM− the learning effect for bidders who won previously.  In other words, in Table 1, 

the difference across columns is the learning effect after controlling for desperation effects.  
2) By the same token, the difference between 1 3

i iBM BM− can be considered a proxy of desperation effects for non-

evaluator bidders; and 4 )i
2( iBM BM− the desperation effect for evaluators.  In other words, in Table 1, the 

difference across rows is the desperation effect after controlling for learning effects. 
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In our model specifications, we will first use these measures independently but will later use the above differences to study 
the price effect of desperation versus learning.   

DATA AND EMPIRICAL EVIDENCE OF BIDDER MIGRATION 

Our data include the complete bidding history of 27 products on eBay during a three-month period in 2002.  There are over 
10,000 auctions in our dataset.  For all these products, we found consistently more than 50% bidders engage in auctions in the 
same category more than once.  Out of over 10000 auctions, the bidder pool of only 5.79% auctions are purely made of first-
time bidders. 

The following is a box plot of 1
i

4
iBM BM− in our dataset (Figure 2):  

 

Figure 2: Box plot of bidder migration measures 

The graph on the last page (Figure 3) is an illustration of bidder migration index across different products in our dataset using 
the TreeMap software developed by the Human-Computer Interaction Lab (HCIL) at the Department of Computer Science, 
University of Maryland College Park2. Each “cell” indicates an auction; in addition the warmer the color, the higher the value 
of bidder migration index for that auction.  This Treemap is calculated according to 1

iBM . 

PRICE EFFECTS OF BIDDER MIGRATION 

1. Calculating Bidder Migration Indices 

The first measurement of bidder migration, 1
iBM , distinguishes between different types of bidders according to literature on 

bidder heterogeneity (Bapna et al 2004).  This measurement is also interesting from a theoretical perspective because 
although generally a bidder’s unfulfilled demand should have an impact on later auctions, if a bidder participated in an earlier 
auction without sufficiently strong motivations to win in those (for instance, just to see how auction works), they are not very 
different from individuals who participate for the first time (non-migrating bidders).  By focusing on bidders that are not 
evaluators – serious bidders –the price impact of bidder migration will only be stronger.   

In calculating 1
iBM , we focus on “early evaluator” because out of the five categories of bidders, early evaluators are the least 

engaged in an auction.  Another reason is that the distance of this group of bidders from others is much more distinct than 
middle evaluators, especially if we consider both the 1999 and 2000 samples in Bapna et al (2004). (See appendix about the 
specific definition of “early evaluator” as well as Table 4 and Table 5 from Bapna’s paper.)  Therefore, in our analysis, we 
exclude the following bidders as evaluators when calculating 1

iBM  (please see appendix for details; this leads to a 
conservative estimate of the impact of bidder migration):  

1) Number of bids is smaller than 2 (1.11 + 2*0.39); 

2) Time of first bid is smaller (earlier) than 1.97+2*0.99 = 3.95 (time normalized to 10); 
                                                           
2 http://www.cs.umd.edu/hcil/treemap/ 
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3) Time of last bid smaller (earlier) than 2.09 + 2*0.95= 3.99 (time normalized to 10). 

In other words, we count a bidder as a non-evaluator in an auction if he or she places more than 2 bids in the auction AND if 
the first bid is placed earlier than 3.95 (out of a auction length of 10) AND if the last bid is earlier than 3.99.    

To estimate the price effect of bidder migration using 1 ~i
4
iBM BM , we estimated different specifications using the GLM 

(Generalized Linear Models) framework and select a model with best statistical fit through BIC (Bayesian Information 
Criterion).  More details of this step is discussed in the next section 

2. Model Specification and Selection 

Our dependent variable is the price of auctions.  Since the distribution of price in our sample is quite dispersed, we take the 
logarithm of prices as the dependent variable.  Independent variables are the typical variable in online auction studies, 
including seller experience (logarithm); starting bid; duration of auctions; number of bids, and bids per person.  We also 
include dummies for product categories as additional explanatory variables.  The results that we report here do not include 
seller experience or duration, since they consistently turned out insignificant; however it should be noted that results on our 
key explanatory variable – bidder migration measures – are robust to the inclusion or exclusion of these variables.  In fact, 
using BIC (Bayesian Information Criteria) as the model selection criteria, we always favor models without these two 
explanatory variables.  

For model specification, we tested several specifications of the Generalized Linear Model, which is a generalization of the 
classical ordinary least squares3.  Our results indicate that Gamma distribution with log link function outperforms other 
specifications with the lowest BIC score. We will therefore focus and report the results from this specification.   

More specifically, our model is 

1

log Price ~
(log Price)=g ( * )

Gamma
E BM Xα β− +

 

Where and BM are the corresponding measures for bidder migration, which we specify 

below. The models are then estimated using the -glm- procedure in Stata 10.  

Starting bid
Number of Bids
Bids per person

Category dummies

X

⎛ ⎞
⎜ ⎟
⎜=
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎟

 

To understand the price effect of bidder migration, we studied two sets of statistical models.  In the first set of models we use 
1
iBM through 4

iBM as an independent variable, entering the above equation direction to estimate the effect on price.  In the 
second set of models, we use the difference across columns or rows in Table 1 to better capture the learning effect versus 
desperation effect.  Results from these two sets of models are consistent with each other.  We shall briefly report the first set 
of results and then focus on the second set for discussion.  

3. Estimation Results 1: 1
iBM through 4

iBM as independent variables 

In the first set of models, we directly use the four measures as independent variables. The results are presented below.  

Table 2: Estimation Results 1 

 With 1
iBM  With 2

iBM  With 3
iBM  With 4

iBM  

Log(start bid) .04*** .04*** .04*** .04*** 

                                                           
3 OLS is an instance of GLM with identity link and normal distribution.  
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Log(bids per person) -.03*** -.04*** -.04*** -.04*** 

Log(number of bids) .20*** .21*** .21*** .21*** 

Intercept .59*** .56*** .56*** .57*** 
1
iBM  -.06*    

2
iBM   0.5***   

3
iBM    -.05*  

4
iBM     -.01 

(Legend: * p<0.05; ** p<0.01; *** p<0.001) 

 

As we discussed on page 4, by studying the difference across adjacent cells or definitions in the “matrix” of bidder migration 
measures (Table 1), we can incrementally study the effects of learning and desperation while controlling for the other.  For 
instance,  and 1

iBM 2
iBM  both take into account bidders who lost in previous auctions (holding the “desperation effect” 

constant), and their difference highlights the marginal effect of learning. 1
iBM

4
i

and , on the other hand, both consider 
non-evaluators (controlling for the “learning” effect), hence their difference accounts for the marginal contribution of the 
“desperation effect”.  By contrast, the difference between and BM , or 

3
iBM

2
i

1
iBM BM  and , does not allow a clean 

interpretation of the comparative effect of learning and desperateness.  

3
iBM

 

As we can see from Table 2 above, the estimation results of other variables (controls) are quite stable across these four model 
specifications.  For the measures on bidder migration, however, there is a difference.  Note that with 4

iBM the price effect is 
not sigificant – these are the bidders who are only evaluators and who had won previously.  In other words, neither learning 
nor desperation effects show up for this group.  2

iBM , by contrast, are the bidders who are evaluators (not that serious in 
their participation) but never won before.  This is the group where learning effect should dominate, since their desperateness 
of obtaining the product is more obvious.  And this is confirmed by the positive and significant coefficient in Table 3.  

3
iBM , which focuses on nonevalutor-winners, dims the desperateness but embodies the learning effect, shows a negative 

coefficient: they are not desperate to get the products, and the learning from being an active participant in the auction process 
is associated with a negative price for later auctions. All these are consistent with our predictions.  

However, interpretation is less clear for 1
iBM , which is the percentage of bidders who lost and were non-evaluators 

seriously.  While it appears safe that the negative coefficient indicates the learning effect to dominate the desperation effect, 
we note that in this set of models, all these measures enter the estimation separately and we are less clear in teasing out 
different price impacts of bidder migration.  Hence we move on to the next set of models, with the same specification but 
slightly different bidder migration measures, to estimate and empirically separate these two effects concurrently.  Our 
rationale for this specification has been discussed in Section 3.2.  

4. Estimation Results 2: Difference between Measures to Capture Different Effects 

Again, we now turn to incorporate multiple bidder migration measures in one model to tease out the relative effects of 
learning vs. desperation.  To briefly summarize our previous discussion, in Table 1 –  

 

1. The difference across columns is the learning effect after controlling for desperation effects.  
2. The difference across rows is the desperation effect after controlling for learning effects. 
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We now estimate the same specification of generalized linear model but with the differences as independent variables.  The 
estimation results are as follows:  

Table 3: Estimation Results 2 

 With 
1 2( )i iBM BM−  

With 
3 4( )i iBM BM−  

With 
1 3( )i iBM BM−  

With 
2 4( )i iBM BM−  

Log(start bid) .04*** .04*** .04*** .04*** 

Log(bids per person) -.03*** -.04*** -.04*** -.04*** 

Log(number of bids) .20*** .21*** .21*** .21*** 

Intercept .58*** .56*** .56*** .57*** 
1 2( i i )BM BM−  -.04***    

3 4( )i iBM BM−   0.00   

1 3( )i iBM BM−    -.00  

2 4( )i iBM BM−     -.02* 

(Legend: * p<0.05; ** p<0.01; *** p<0.001) 

Again, we argued that lose/win denotes the 'desperateness' while evaluator/nonevaluator denotes 'learning' effect. Therefore 

the coefficient on indicates the learning for bidders who lost previously; that on 
1( iBM BM− 2 )i

4 )3( i iBM BM−  indicates the 
learning for those winning bidders.  From the results we see that the learning effect for bidders who lost previously are much 
stronger (-.04) then for bidders who won before (0, nonsigificant).   
 
On the other hand, 

1 3( i i )BM BM− denotes the "desperation effect" for serious bidders who actively participate in the bidding 
process of previous auctions; and 

2( i
4 )iBM BM−  denotes the desperation effect for evaluators.  From the results in Table 3, we 

see that serious bidders (nonevaluators) can keep their “cool” and not be overwhelmed because they lost previously; by 
comparison, evaluators are more likely get desperate for the products, hence increase the price for later auctions.  
 

IMPLICATIONS 

Studying the migrating behavior of bidders has significant implications for practitioners in auctions.  We propose three 
potential applications of this measurement.   

First, bidder migration goes beyond the traditional feedback score that has been widely used in online auctions.  These 
feedback scores, particularly those used on eBay, changes only when a user completes a transaction; after each auction has 
completed, the feedback scores of only two users will change: that of the seller and of the winning bidder.  In addition, 
feedback score is a conglomerate number that does not distinguish the role of the user or the feature of the product.  By 
contrast, bidder migration captures important information about bidders’ previous actions that have not been made available 
to sellers.   

Bidder migration provides a new perspective for sellers to design their auctions.  When to start an auction, when to end an 
auction, and how high to set the starting bid and/or reserve price, all these decisions will be improved if the seller has a better 
understanding of the group of individuals who is likely to participate in his/her auction.  In other words, information about 
previous auctions will be beneficial to the auctioneers to learn about their potential “customers” (i.e. bidders).  Furthermore, 
having bidders’ migration information could improve sellers’ ability to dynamically predict the price evolution, as well as the 
final outcome (Wang, Jank et al. 2006). 

For instance, when a seller is ready to set up a new auction, the platform (such as eBay) can provide as value-added service 
information regarding bidder migration activities in the category where the seller is planning to list his auctions.  When there 
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is very significant migration in that category (or a related one), sellers might consider setting a very low starting or reserved 
price so as to attract bidders.  When there’s very low migration, setting the starting or reserved price low might result in less-
than-desirable final prices.   

Secondly, we argue that bidder migration can be used as a mechanism for customer segmentation, or “bidder segmentation”.  
Segmenting customers enables sellers to extract higher levels of rent from transactions, as documented by the price 
discrimination literature in economics and marketing literature; we argue that this is also feasible for sellers who use the 
auction format.  For instance, from our analysis we find that the bidders who are serious in their bidding strategy (as 
measured by 1

iBM  and 3
iBM ) exert downward pressure on the final auction prices.  Hence, for auctioneers with multiple 

items, it would be advisable for them to try to reduce the number of serious bidders in one auction, thereby reducing the 
1
iBM or 3

iBM  index.  This can be achieved either by setting up multiple concurrent (identical) auctions, or even reaching 
out to these customers using targeted advertising, and offer them the opportunity to buy outside the auction.  Alternatively, 
bidders can be offered discount on future fixed-price auctions.  Although much remains to be done to make this practical, we 
believe that segmenting bidders could be potentially profitable for sellers as well as efficiency-improving.   

While the “traditional” segmentation mechanisms such as customer demographics or price sensitivity is not directly 
observable for auctioneers – since it raise concerns for customer privacy, and might not be accurate anyway – bidder 
migration behavior can be provided to auctioneers by platforms such as eBay as a value-added service.  In fact, while 
customer demographics can change frequently (e.g. change in job status and personal life) and are unlikely to be always up-
to-date, their participatory behavior are more likely to reflect their current underlying characteristics.   Segmenting bidders on 
behavior can be considered as a generalization of segmenting on demographics, only more accurate.     

Another potential application of bidder migration is to detect shill bidding. If a bidder is consistently migrating across 
auctions, never wins an auction, and shows up consistently in the same seller’s auction, this bidder is more likely to be a shill 
bidder than the average bidder.  

CONCLUSIONS AND FUTURE RESEARCH 

We selected eBay as the context for our analysis due to the following reasons: eBay is the largest C2C online auction 
platform and attracts a lot of attention; thus, our results can potentially generalize to a wide range of consumers; also, eBay 
offers many product categories, which makes it possible to study bidder learning across a wide variety of different product 
types (e.g. one-of-a-kind products vs. commodities).  Moreover, bidding data can be readily obtained from eBay (in contrast 
to other auction sites) which is essential for measuring bidder migration and learning.  

Our current paper presents some of the first empirical evidence of how bidder movements across auctions impact the 
outcome of later auctions.   More specifically, we identified two potentially confounding effects: the learning effect where 
bidders learn to become more sophisticated bidders, hence driving down the price of later auctions; and the desperation 
effect wherein bidders, in a hope to obtain the product that they previous couldn’t win, tend to increase the prices.  We 
empirically verified these two different effects using bidding history data from eBay.  Moreover, we showed that these two 
price effects are contingent upon each other:  learning effects are stronger for bidders who are evaluators, and the desperation 
effect is more evident among bidders who are evaluators.  Last but not least, our research has proposed measures for bidder 
migration which can be easily adopted by auction platforms and then provided to market participants as a value-added 
service.  

This research is consistent with an emergent stream of literature on the competition among auctions.  We argue that other 
than sellers and products, bidders constitute another important linkage among auctions, which has unfortunately received 
very little study in the past.  We hope that the measures we proposed in this paper as well as the results that we derived from 
data analysis provide the first step in the direction of research in this fruitful area.  Auctions can be related to each other even 
through the bidders; therefore, early auctions provide valuable information about the bidders for later auctions; and these 
auctions can be for the same product, or even for related, complementary products.  Incorporating such information can have 
significant value for both researchers and for practitioners.  In a sense, such information-transmission illustrates that the 
relationship among auctions need not always be competitive, but could very well be at least partially complementary.  

In the appendices (Appendix 2 and 3) to this paper, we propose more detailed measures of bidder migration that takes into 
account bidder history (i.e. the number of times that they participated in earlier auctions) as well as the time length since their 
prior participation, which is meant to capture a decay effect of learning. We are currently updating our analyses with these 
more detailed measures.  
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APPENDIX 1: DEFINING “EARLY EVALUATORS” 

To define “early evaluators” in our sample, we refer to Table 4 and 5 in Bapna (2004): 

Middle evaluators are quite distinct from Opportunists in 1999 sample but much less so in their 2004 sample, especially the 
mean of the “Time of Last Bid”.  On the other hand, “early evaluators” seems to be quite distinct in both samples.  Therefore, 
to be conservative in our estimates, we focus on early evaluators when calculating our bidder migration measures.  

More specifically, a bidder is considered an early evaluator in an auction if (mean + 2 times standard deviation for 1999 or 
2000, whichever is smaller):  

1) Number of bids is smaller than 2 (1.11 + 2*0.39) 
2) Time of first bid is smaller (earlier) than 1.97+2*0.99 = 3.95 (time normalized to 10) 
3) Time of last bid smaller (earlier) than 2.09 + 2*0.95= 3.99 (time normalized to 10) 
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(Source: Bapna et al 2004) 

 
(Source: Bapna et al 2004) 

 

APPENDIX 2: EXTENDED MEASURES FOR BIDDER MIGRATION 

It should be noted that the definitions in the paper above do not capture multiple losses in the past, because we used “union”; 
for instance, if the bidder loses in two previous auctions when they come to the third auction, he or she would count 
equivalently in the calculation of the migration index of the third auction as another bidder who just lost once previously.  
More importantly, both the learning effect and unfulfilled-demand effect has a time dimension: the learning could be 
decaying over time, and the “desperateness” from unfulfilled demand is also likely to either diminish or exacerbate over time.  
Hence, in this section, we shall extend the above measures to incorporate these issues.  But since these issues equally apply to 

1
i

4
iBM BM− , for simplicity, here we only discuss these extensions using 1

iBM .  

To take into account number of times they participated previously, we propose a fifth measurement of bidder migration as 
simply the number of times that all bidders in the current auction have bid in previously concluded auctions, or  
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As a further extension, consider the following time line that an auction progresses through:   

 
Given that certain other auctions could start4 during this process, another measurement of bidder migration could be 
proposed as a function of time.  Simply put, whenever a bid is placed, we find out how many times the originator of this bid 
has participated in previously concluded auctions, and add it to the same measure on all other bidders in the current auction.  
Mathematically,  

0

1

{ | }

( ) 1( )
i it i
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where is the set of bidders of auction i at time t and 1(.) is an indicator function that takes a value of 1 if (.) is satisfied, 
and 0 otherwise.  

itΛ

All measures above can be further enhanced to include a term to allow for discounting: the longer the end of the earlier 
auction, the smaller the impact (or learning effect) that remains; alternatively, the notion of discounting suggests that the 
effect from ancient bids is already integrated into more recent bidding behaviors.  Assuming an exponential discounting rate 
of r, the discounted measure of bidder migration of auction i at time t can be written as:  

0

1

{ | }

( , ) 1( )
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These extensions allow for more sophisticated statistical modeling as well as better interpretation of analytical results.  For 
simplicity however, in the following data modeling we would focus only on the static, non-discounted measures of bidder 
migration ( 1

iBM BM− ) as a first step in this direction.  

APPENDIX 3: DEFINING BIDDER MIGRATION FROM A BIDDER’S PERSPECTIVE 

We can also define bidder migration from a bidder’s perspective.  The advantage of these measures is that we can observe the 
change of bidder behavior along their migration routes.  Simply speaking, a migration index for a bidder is the number of 
concluded auctions that a bidder has participated in.  It is a number that varies over time. Similar to the measures above, we 
can also measure a bidder’s migration index in several ways.   

It should be noted that a bidder’s migration index is distinctly different from his or her feedback score, which measures the 
number of positive feedbacks provided to him or her by other users.  The feedback score is used by eBay as a measurement 
of bidder reputation.  Important as it is, in many situations the feedback score is quite lacking in providing sufficient 

                                                           
4 Other auctions can also conclude during this process, and a current bidder in the focal auction could have one more lost / won auction in 
his / her record, and this would have an effect on some of the measures.  

0
it  1

it

0
kt  1

kt

Bidder  A

Bidder  B; lost in auction k
Bidder  C
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information about a bidder to a seller: having a hundred positive feedbacks in buying paper clips probably is not convincing 
enough when the next auction is for an HDTV.     

Bidder migration index, by contrast, provides a potentially much more relevant measure for auction sellers.  By defining 
bidder migration on different levels (product level, category level, and so on), auction sellers can have a much better 
understanding of his bidder pool and better assess the transaction risks.  

Before we delve into the details of this second set of measurements of bidder migration, it would be worthwhile to consider 
the relationship between defining migration from a bidder’s perspective versus from a seller’s perspective.  Theoretically, if 
we have the complete transaction history records of all auctions that all bidders have participated in, these two sets of 
measurements would be equivalent; we should be able to derive one measure from the other.  If we have all the measures for 
all current bidders in an auction, we can calculate the index for that auction.  If we know all the bidder migration indexes of 
all auctions that a bidder participates in and how they change relative to his bidding time, we can also calculate a bidder’s 
migration index.  

However, conditions for such equivalence are very difficult to satisfy.  In particular, for researchers, we are restricted by the 
amount of information we will be able to gather.  We are only able to gather bidding history of auctions in certain categories 
for certain products, during a certain period of time.  Although such practical limitations prevent us from a full understanding 
of the dynamics of bidder learning, our study from auctions’ perspective provides a first step in that direction.  Moreover, this 
situation is similar to what auction sellers are faced with, so in our current study, our focus would be bidder migration from 
seller’s perspective.  Nonetheless, for the sake of generality, in this section we briefly outline measurements from the 
bidder’s perspective.  For auction platform such as eBay however, these measures can be easily implemented and provided as 
a value-added service for merchants who wish to better manage their auctions. 

A bidder’s migration index is the number of previously concluded auctions that a bidder has participated in at the time he or 
she places a bid in one particular auction.  Given the observation that bidders could be participating in multiple auctions for 
one product simultaneously, this index is a value that changes over time for each bidder; more specifically, it changes 
whenever an auction that the bidder participates in ends.  Since we do not have observation of bidders when they do not 
submit a bid, in our current dataset we can only look at migration based on actual bids placed. Similar to 1 4

i iBM BM− , the 
measure from the bidder’s perspective can also be enhanced with a time dimension to allow for more detailed statistical 
modeling and better interpretation of results. 
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Figure 3: TreeMap 

 
Legend:  

 

Brighter color or cells to the upper left corner in each category indicates higher level of bidder 
migration.  Darker colors or cells to the lower right corner indicate lower level of migration. We 
can see that bidder migration is, on average, highest for luxury items such as Rolex or Cartier 
wristwatches and for Oakley sunglasses. On the other hand, it is very small for tape dispensers or 
calculators. 

 

 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	Bidder Migration and Its Price Effects on Auctions
	Mingfeng Lin
	Wolfgang Jank
	Recommended Citation


	ABSTRACT
	Keywords

	INTRODUCTION
	MEASURING BIDDER MIGRATION
	1. Defining Bidder Migrations
	2. Linking Bidder Migration Measures to Price Effects
	DATA AND EMPIRICAL EVIDENCE OF BIDDER MIGRATION
	PRICE EFFECTS OF BIDDER MIGRATION
	1. Calculating Bidder Migration Indices
	2. Model Specification and Selection
	3. Estimation Results 1: through as independent variables
	4. Estimation Results 2: Difference between Measures to Capture Different Effects
	IMPLICATIONS

	CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES
	APPENDIX 1: DEFINING “EARLY EVALUATORS”
	APPENDIX 2: EXTENDED MEASURES FOR BIDDER MIGRATION
	APPENDIX 3: DEFINING BIDDER MIGRATION FROM A BIDDER’S PERSPECTIVE


