
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 2008 Proceedings International Conference on Information Systems
(ICIS)

2008

Dealing With Ambiguous and Fluctuating
Requirements of Embedded System Development:
A Case-Study
Wolfgang Molnar
University of Warwick, w.a.molnar@warwick.ac.uk

Joe Nandhakumar
University of Warwick, joe.nandhakumar@wbs.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/icis2008

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Molnar, Wolfgang and Nandhakumar, Joe, "Dealing With Ambiguous and Fluctuating Requirements of Embedded System
Development: A Case-Study" (2008). ICIS 2008 Proceedings. 61.
http://aisel.aisnet.org/icis2008/61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301341849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis2008%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2008?utm_source=aisel.aisnet.org%2Ficis2008%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2008%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2008%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2008?utm_source=aisel.aisnet.org%2Ficis2008%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2008/61?utm_source=aisel.aisnet.org%2Ficis2008%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Twenty Ninth International Conference on Information Systems, Paris 2008 1

DEALING WITH AMBIGUOUS AND FLUCTUATING

REQUIREMENTS OF EMBEDDED SYSTEM

DEVELOPMENT: A CASE-STUDY

Traitement des exigences ambigües et fluctuantes dans le cadre du développement

de systèmes embarqués : une étude de cas.

Wolfgang Molnar

University of Warwick

Warwick Business School

Coventry CV4 7AL, UK

W.A.Molnar@warwick.ac.uk

Joe Nandhakumar

University of Warwick

Warwick Business School

Coventry CV4 7AL, UK

Joe.Nandhakumar@wbs.ac.uk

Abstract

This paper presents the findings of a case study that investigates how developers and managers

deal with ambiguous and fluctuating requirements during an embedded system development in a

structured process management environment. In particular, this paper focuses on improvisation

and bricolage actions as a coping strategy by software developers and managers. This research

adopts an interpretive approach that involves the collection and analysis of qualitative data. In

this study, we observed a turbulent environment with situated improvisational and bricolage

responses from developers and managers. The organizational structured process management

framework was not sophisticated enough to deal with the existing challenges. Moreover, some

improvisational and bricolage activities became institutionalized and, hence, became

organizational routines of developers and managers. This paper indicates the value of reflexive

practices as vital issues for strategic conduct in the event that improvisational and bricolage

activities were deployed as a coping strategy.

Keywords: Information technology requirements, Information system development, Information

systems management

Résumé

Ce document présente les résultats d’une étude de cas sur le comportement des développeurs et managers

face à l’ambiguïté et la fluctuation des exigences (cahier des charges) dans le cadre du développement de

systèmes embarqués. Cette étude se concentre plus particulièrement sur l’improvisation (« bricolage ») en

tant que stratégie d’adaptation de la part des développeurs et des managers.

Introduction

The elicitation and management of requirements for software systems is one of the most critical and complex

organizational activities within the software development lifecycle (Coulin et al. 2006; Nuseibeh et al. 2000; Reel

1999). Within the software development lifecycle, baseline requirement elicitation, analysis, specification, and

validation are the activities typically performed after project initiation and preliminary planning, but before system

conception and design (Wiegers 2003). This initial set of requirements will be updated as new requirements are

added or old specifications are revised (McConnell 2006). Hickey and Davis (2003) describe this multifaceted phase

of the development lifecycle as ‘learning, uncovering, extracting, surfacing, and/or discovering the needs of

customers, users and other potential stakeholders’. Its very multi-disciplinary nature is subject to many factors and a

variety of both technical and social issues (Coulin et al. 2006; Jiao et al. 2006; Nuseibeh et al. 2000). When

performed poorly, the results usually include intensive rework, schedule overrun, and in some cases, project and

system failure (Hickey et al. 2002). Therefore, it is important and necessary to properly conduct the elicitation and

management of requirements to avoid additional expense in terms of time, effort, and cost (Coulin et al. 2006; Jiao

et al. 2006; Nuseibeh et al. 2000). Some guidelines are provided by the practices for software requirement

specifications recommended by the Institute of Electrical and Electronics Engineers (IEEE 1998). This guideline

(IEEE 1998) describes the nature of software requirement specifications, whereas the principle concerns are:

functionality, external interfaces, performance, attributes, and design constraints imposed on an implementation.

Clearly, requirement elicitation and management is highly dependant on the specific project, as well as

organizational and environmental characteristics and circumstances (Christel et al. 1992). However, the elicitation

and management of requirements are necessary prerequisites for any type of software development (Coulin et al.

2006; Nuseibeh et al. 2000).

Requirement elicitation and management has become even more complex in the context of embedded system

development because it bands together the realms of software and hardware. Embedded system development is

fundamentally different to nonembedded systems because it addresses specific constraints such as hard timing

constraints, limited memory and power use, predefined hardware platform technology, and hardware costs (Graaf et

al. 2003). The embedded system developers must understand interdisciplinary product application domain

knowledge (Curtis et al. 1988), and physical requirements such as memory, power, and real-time issues (Graaf et al.

2003; Lee 2000; Lee 2002). In addition, many business constraints must be taken into account in industrial new

product development environments (Manhart et al. 2004). Gajski and Vahid (1995) claim that an embedded systems

functionality is usually fixed and is mainly determined by the system interaction with its environment. However,

functionality has steadily shifted from hardware to software (Lee 2000). This paradigm shift from hardware to

software has several consequences. For example, it is possible to compile late software specification in response to

fluctuating requirements. The use of software also facilitates the reuse of previously-designed functions if the code

was written at a processor independent, abstract level (Goossens et al. 1997). Despite these software advantages,

traditional software process models (plan/specification driven models, and evolutionary models) need well-defined

requirements as well as good management of requirement fluctuations (Kettunen et al. 2005; Sommerville 1996). In

addition, structured methods to tackle the elicitation and management of requirements are needed along with several

agile methodologies (Fowler et al. 2001), such as Feature-driven development or Extreme programming (Cockburn

et al. 2001). Kettunen and Laanti (2005) claim that undisciplined programming (ad hoc, chaotic “hacking”) usually

appears differently from disciplined software process models, particular the problem of incomplete, volatile, and

uncontrolled requirements. Projects using hacking tend to either skip or obtain a brief set of requirements and, as a

result, there is no need to manage the requirements (Kettunen et al. 2005). Furthermore, it is possible to

accommodate a certain amount of requirement fluctuations, provided that the key personnel remain in the project

(Kettunen et al. 2005). In summary, dealing with the elicitation and management of requirements is a vital part of

the software process, and there are no simple shortcuts or magic solutions (Wiegers 2003).

The worlds of business and technology have become turbulent, high-speed, and uncertain, involving a process of

both creating change and responding rapidly to fluctuation (Cockburn et al. 2001). The various methodologies of

software process models provide different ways to respond to the challenges of dealing with ambiguous and

fluctuating requirements. Although some structured methodologies may inadequately refer to the problem of volatile

settings, most plan/specification-driven models and evolutionary models provide some strategies to overcome these

challenges (Kettunen et al. 2005). Whereas, agile methodologies emphasize that fluctuation is part of the

development process in a turbulent and uncertain environment (Fowler et al. 2001). Improvisational and bricolage

activities that were not influenced or less influenced by structured and agile methodologies differ in the way they

tackle the challenge with ambiguous and fluctuating requirements. In general, improvisation is positively associated

with accelerated product development in turbulent industries (Akgün et al. 2002). Organizational scholars see

improvisation as an effective behavioral strategy for dealing with change, particularly under dynamic conditions

(Hmieleski et al. 2006). Improvisational activities are spontaneous, which means there is no time gap between the

planning and execution of such activities (Moorman et al. 1998a). Augier and Vendelø (1999) claim improvisation

can be considered a rapid problem-solving technique that is used by organizations to cope with surprises. Transcripts

of organizational improvisation observations indicated that the individual improvisers did not have a holistic

understanding of the entire system. However, the team of improvisers engaged various activities that worked for the

system in its entity. So, the joint improvisations of individual improvisers created a system of improvisational action

(Moorman et al. 1998a). Improvisational actions may often involve bricolage, but bricolage also occurs when

planning precedes execution (Baker et al. 2006; Cunha 2005; Moorman et al. 1998b). Information system

development activities may also involve bricolage (Ciborra 1996), which is defined as making do with the items or

resources at hand (Levi-Strauss 1966). Although bricolage may occur in non-improvisational contexts (Miner et al.

2001), improvisation and bricolage are not the same construct. Two main differences exist between the constructs of

improvisation and bricolage. First, bricolage may involve gathering and creating something with the items or

resources at hand (Levi-Strauss 1966). This physical character of bricolage makes it different from improvisation,

which is more general. Second, bricolage may occur with pre-planning, whereas improvisation involves the lack of

planning. Additionally, many researchers portray bricolage and improvisation as a coping strategy to secure

organizational reliability (Amabile 1988; Cunha 2005). Innes and Booher (1999) describe bricolage as a nonlinear,

holistic approach to dealing with difficulty that results in some practical product. Improvisation and bricolage may

therefore be seen as applicable practices in turbulent environments (Cunha 2005; Weick 1998).

Our study investigated the problem of dealing with ambiguous and fluctuating requirements during an embedded

system development in an ISO 9001 certified organization. While there are many studies on ambiguous and

fluctuating requirements in the field of information and system development, this issue has not been explored in

detail in an embedded system development context with structured process management. Furthermore, not many

studies have investigated the strategic role of improvisation in the context of embedded system development. This

paper aims to address these gaps. How do software developers and managers deal with ambiguous and fluctuating

requirements in this context and with what consequences? How does the structured process management

environment shape the requirement gathering and management practices? What are the implications for the

elicitation and management of requirements in such a context? This paper seeks to address these core questions by

focusing our research on the improvised and bricolage actions during an embedded system development. We present

our theoretical foundation in the next section. The third section will clarify our research methodology and will be

followed by a case description and our analysis. This paper concludes with a discussion and implication of our

findings for embedded system development.

Theoretical foundation

Although the purpose of this research is to derive a theoretical interpretation from the empirical data (Orlikowski

1993), we also draw on contrasting theoretical pillars to elaborate our theoretical interpretation. The requirement

engineering used in sophisticated software process models, such as waterfall, spiral, or agile methodologies, provide

various ways in which the process of elicitation and management of requirement can occur in a turbulent and

uncertain environment. We pool these software process models together because they imply a certain structure and

inhibit a diffuse course of action. On the other hand, improvisational and bricolage activities are in contrast to

structured practices and techniques, and provide an ample and comprehensive approach to comply difficulties in an

unstable environment.

The three main strands of software process models (specification, evolutionary, and agile development) (Fowler et

al. 2001; Sommerville 1996) have a different understanding of the requirement engineering process. The idea of a

specification development approach involves piecewise execution of defined steps, which leads to the initial goals of

the entire procedure (Ghezzi et al. 1991; Sommerville 1996). For example, the requirement engineering procedure

may be characterized by three activities (Gebhard et al. 2000): first, an elicitation phase of the features collects

needed data of the requirements (Gebhard et al. 2000); second, during a structuring phase the gathered data is

grouped to enable the third and final step of writing a specification of requirements (Gebhard et al. 2000). The goal

of an evolutionary development approach is to conduct several cycles of the development process to allow for

adjustment in the project timeframe (Boehm 1986). During the cycles, or rounds, the following topics should be

clarified (Boehm 1986): objectives, constraints, alternatives, risks, risk resolution, risk resolution results, planning

for the next phase and commitment. Therefore, the list of requirements will be compiled in greater detail with every

evolution. Although the agile development approach is a “lighter” approach toward building software (Fowler et al.

2001), it contains several structural guidelines that vary from one methodology characteristic to another. According

to the agile manifesto, the agile development approach should provoke an ongoing requirement elicitation process

with high involvement of stakeholders (customers, business people, and software developers) (Fowler et al. 2001).

This constant gathering and management of requirements is enabled through open communication channels between

stakeholders (Fowler et al. 2001). This focus on the stakeholders and communication is the core of agile methods for

systems development (Cockburn 2001). The implication is that the creation of system developments is limited by

human expression. One procedure in which the system development might work well is called a methodology. This

is a set of conventions the development team adapts to suit different situations. The comprehensive frameworks of

agile methodologies like XP, Scrum, etc. are tight enough to provide a process and structural curriculum for the

education of starters in agile development (Cockburn 2001; Cockburn 2004). We may conclude that the three main

strands of software process models have various structural needs in common; for example, stepwise work-off,

evolution rounds, or constant interaction with stakeholders.

Improvisational and bricolage activities are in contrast to the structured practices and techniques. These activities are

situated and occur during the software process, but are not limited to these development activities. Weick (1998)

states that spontaneity and intuition are two vital dimensions of improvisation. Weick (1998) claims that alteration,

revision and discovery are purer instances of improvisation because they are an expression of the full

improvisational spectrum and because these kinds of changes occur smoothly. In contrast, activities that shift, switch

or add are weaker instances of improvisation; this is as a result of unique improvisation and because these kinds of

changes occur suddenly. In addition to this classification scheme, Weick (1998) states that previous experiences,

current settings, and any given situation provides the pretext for compiling these elements. These pretexts imply

tendencies and support some particular development while excluding others (Weick 1998). Mirvis (1998) examines

four paradoxes of improvisation: rehearsed spontaneity, anxious confidence, collective individuality, and planned

serendipity. These paradox pairs seem to become apparent simply through the creative dynamics of contrary forces.

Ciborra (2002) observes three dimensions of bricolage. First, tinkering or fiddling tricks are used to continue

development in an unpredictable setting. Second, trial and error activities are applied to extend the amount of

experience when actions are necessary in a volatile environment. Finally, bits and pieces are pooled together to

accomplish a specific purpose. The pooled items (entities) form a creative collage of resources, which are used in

ways for which they were not initially proposed. Ciborra (2002) emphasizes the necessity of all dimensions to gain a

competitive advantage. Situated activities are a comprehensive approach to encounter challenges in an unpredictable

setting. In summary, improvisation and bricolage are different; but they also share some characteristics such as their

occurrence in the continuum between coincidental and methodical activities. Since situated software processes are

our focus in this paper, we concentrate on the common features of improvisation and bricolage.

Table 1 lists the three main strands of software process models (specification, evolutionary and agile development)

as part of the structured development approach. In addition, the table shows two characteristics of the situated

software processes. However, improvisation and bricolage have common characteristics to a certain extent, as

bricolage may frequently occur during improvisation (Weick 1998).

Table 1. Development characteristics of structured software process models and attributes of the

situated software processes

Theme Differentiation Author

Structured Software

Process Models

Development

Characteristic

Evolution (Boehm 1986; Sommerville 1996)

Agile (Fowler et al. 2001)

Situated Software

Processes

Attribute Improvisation (Ciborra 2002; Mirvis 1998; Weick 1998)

Bricolage (Ciborra 2002)

Change is often understood through the altering and revising of work, which may emerge in the improvisation and

bricolage of everyday activities (Ciborra 2002; Orlikowski 1995). These continuous activities of alteration and

revision may over time become more habitual and routine (Giddens 1986). Human actors often become aware of

such habits through conscious reflection or when some form of disruption occurs to routines. Habitual actions create

the feeling of security – ontological security – that is convenient and comforting (Giddens 1986). However, human

actors may come up with solutions through conscious reflection to overcome problems in adhering to rules in certain

contexts. These solutions might cause a break in the routine if the organizational actors cannot follow the rules.

These solutions might involve improvisational and bricolage activities. The constituent of the solutions might be

articulated thoughts and knowledge in a form that can be shared in an organizational context, hence mainly in

context, hence mainly in discursive consciousness of the organizational actors (Giddens 1986). In this theoretical

background, we try to elaborate our understanding and derive practical implications for the elicitation and

management of requirements in a structured process management environment.
Research approach

This research was conducted in an engineering company (Þ <Thorn> – a pseudonym) in Germany. The researchers

were able to collect detailed, qualitative data concerning the context and processes of software developers’ actions

(Avison et al. 1995; Currie 2004; Walsham 1993). The case study adopted an interpretive epistemological

assumption, meaning that the access to reality was through social comprehension (Orlikowski et al. 1991; Yin

1994). Thorn is an ISO 9001 certified organization and develops products for the automotive market. It is large

enough to support adequate data for the study and its software developers and managers were motivated to

participate in this research. The study was carried out during the development process of an embedded system (ε

<Epsilon> – a pseudonym). We arranged 19 interviews (two group interviews and 17 semi-structured interviews),

each lasting approximately 90 minutes and held in a calm atmosphere (Table 2). In addition, an observer spent an

extended period of time with the software development team (description in section “Research Site Context”) to

make detailed observations of Thorn, its culture, and practices. By performing these informal visits and discussions

from January 2007 until June 2007, we discovered the social character of the software developers and their group

activities in a natural setting. The researchers strived for a better understanding of the requirement elicitation phase

in a structured processes environment. Participants of this research were assured that their statements would remain

anonymous and they would not be explicitly linked to their company or product. Most interviews were taped and

transcribed, and detailed notes were taken of the observed work practices during each visit.

Table 2: Thorn interviews

1 Semi-structured interview Product manager Marketing

2 Semi-structured interviews Middle manager Software

1 Semi-structured interview Quality manager Quality

1 Semi-structured interview Senior manager Development, Finance

Total 19 Interviews Þ

Along with ISO 9001 documents, other records such as meeting reports were qualified and examined as a reference

to the observed developer actions. These data sets of qualitative material, which were comprised of observational

notes, interview transcripts, and company documentation, were filed electronically. They were read and reread to

gain familiarity with the information and to determine trends. Miles and Huberman (1994) refer to the analysis

approach applied here as three-tier-coding. The first step, descriptive coding, is exercised to obtain knowledge of the

three-tier-coding. The first step, descriptive coding, is exercised to obtain knowledge of the case’s nature by

attaching meaning to the data. In this way, the researchers are able to bring basic phenomena into the foreground.

The second step, called interpretive coding, is conducted to clarify the significance and to relate the context of the

basic phenomena. The final step - pattern coding - helps to classify data by content of the basic phenomena rather

than by the origin of information, and hence to apply patterns. By applying this three-tier-coding procedure to the

collected data sets, we were able to comprehend the topic of this research (requirement elicitation and management

in a structured process setting) through the value that participants of this research gave to the actions and context.

Hence, we were able to establish a bottom-up conceptualization of the obtained and analyzed data sets while using

two theoretical abstractions (structured software process models and a situated software processes) as sensitizing

instruments.

Case Description

Research Site Context

The site where this research was carried out is called Þ <Thorn> (pseudonym) and is located in Germany. It is

engaged within the automotive sector, a business field known for high competition. Thorn’s business model consists

of two pillars: to supply services at the customer site within the automobile sector, and to develop high-tech products

in that sector. Thorn has seen significant growth since it was founded eight years ago, because its products have a

reputation for creativity and customer orientation. Currently, Thorn employs more than 180 people, and through this

enlargement the entire business management underwent major changes, including the establishment of a structured

process management framework five years ago. This certificate from an independent organization shows that Thorn

implemented a process management framework according to the standards of ISO 9001. Thorn does comply with

these standards, because its process management efforts are regularly evaluated by an independent organization. The

described standards of ISO 9001 cover processes of the entire organization and are not limited to the product

development process. Nevertheless, the product development process was described in great detail with eight

multifarious figures, 27 documentation outcomes and 19 links to other documents. This research is largely based on

the actions of the middle management, project manager, and associates of the development department.

The director of the hardware and software development was also the senior manager and Thorn’s co-founder – we

call him Michael. The software development manager was Gabriel (middle management – software, system

architecture). Although his main duty was to run the software department (seven software developers at two

locations), to a large extent he was also responsible for the system architecture, including hardware and software. As

quality manager, David’s responsibility is to manage the compliance of ISO 9001 standards through internal audits

and support. With the growing success of Epsilon, the tasks of Ester (product manager – marketing) became more

and more focused on its marketing. The role of Martin (project leader) was vital for the success of the studied object:

the development of a new embedded system. During the initial phase of this development, Martin spent half of his

time as a service supplier with the initiator of that new embedded system and half with the developers of this system.

As a consequence, he had first-hand contact with the customers as well as the developers. Table 3 lists the various

organizational actors whose responses were vital for this study.

Table 3: Organizational actors

Name (pseudonym) Layer Responsibility

David Quality manager Quality

Michael Senior manager Development, Finance

The development of a new embedded system (ε <Epsilon> – a pseudonym) at Thorn was the focus of this

Thorn was the focus of this investigation, and in particular we studied the requirement elicitation and management

efforts in a structured process management environment. The embedded system was an electronic device based on

Linux that used software to connect with the various bus systems of a given test vehicle or test equipment. Its

purpose was to record all transmissions on these bus systems and store it on a hard disk. Furthermore, it was

possible to connect Epsilon to a laptop by using its client software, enabling readout and analysis of the stored data.

The business fields for this device were the research and development departments of car manufacturers, and the

product launch of Epsilon caused a significant change in this market niche.

“What would I do?”

In the research and development departments within the automotive industry, it is necessary to verify products

before they enter the assembly plant or reach the customer. However, since today’s cars are full of distributed high-

tech devices, such as various sensors, a DVD changer, a navigation system, or satellite radio, some devices may

influence others in an unwanted way by customers with high expectations of premium cars. To counteract that

problem, the availability of a tool to detect these errors by collecting all data was long a dream for many developers

in the automobile industry. Martin (project manager) worked at that time to manage the defects concerning the

various manufacturers of high-tech devices. As a consequence, he had a profound understanding of the developers’

situation. Although some engineering companies were asked to submit proposals for developing such a tool, Thorn

got the tender to develop it. Martin was chosen to lead that project, which at the initial phase of product

development seemed to be “just another project”, as stated by Michael (senior manager). Martin mentioned:

“We started with a relatively simple idea and ended up with a complex product. … The time during the initial

specification was loaded with trouble. We needed to bring together the requests of the customer and the

possibilities of reality. After the creation of a successful prototype, they <the customer> tried to implement more

features. However, we brought them back to earth. … At some point we had to decide which features should be

developed and which should not. Bringing their desires concerning the Epsilon together was not always easy.”

According to Michael, an enormous amount of requirements had to be satisfied during the development of an

embedded system within the automobile sector. He informed the researchers that various stakeholders contributed

and, as a result, the number of features grew. It is interesting to note that other departments at the customer site

joined the original department in ordering Epsilon. These departments have also seen some benefits from Epsilon for

their own operations. However, these additional departments had a slightly different focus of operations, which

resulted in different requirements for Epsilon. The draft specification had been written shortly after the initial idea.

Martin claimed:

“After the first rereads of the draft specification, we needed to improve it. Consequently, the list of requests kept

growing.”

Several software and hardware developers stated:

“They <the customer> desired the all-in-one device suitable for every purpose. We were lucky that at some point

they understood that this was not possible.”

Gabriel (middle manager/software) claimed:

“The customer did not really know what he wanted. So he came out with the wise solution to integrate every

possible idea. However, we needed to cap these flourishing ideas and put the features into a state which was

realizable.”

Some of the desired features were truly born in dreamland, because they were hardly or not at all achievable due to

technical limitations. Using these different and partly contrasting requirements, it was Martin’s responsibility to

derive the baseline requirements. Martin’s mature understanding of the needs and wants of the test engineers at the

customer site was certainly an advantage. Martin stated that he kept asking himself:

“What would I do or have if I was in the situation of a developer in the automobile industry?”

Technical requirements and organizational circumstances

Thorn’s hardware development strategy was based on various processor platforms. This strategy was influenced by

the rigid environmental requirements (temperature conditions and humidity, etc.) and the usual processor families

used in the automobile environment. Although this technical platform was used in a previous Thorn project, some

new components were necessary to comply with several issues of the Epsilon requirement baseline. The platform

strategy helped Thorn to overcome these difficulties in time. As one developer mentioned, it is interesting that

besides the obvious requirements, a lot of referenced requirements (e.g. temperature conditions, user surface

perception, etc.) did not make the requirement elicitation and management efforts easier. Furthermore, the customer

contributed with varying levels of detail. Martin mentioned that for some parts of Epsilon, the customer was very

concerned and specified the requirements in great detail. For example, it was mandatory to use a specific processor

to communicate with the vehicle. The software package of this processor was predetermined and Epsilon developers

needed to implement it in the hardware and software. On the other hand, Martin explained that the 32-Bit and the

digital signal processor were not regulated at all. In addition, the internal departments at Thorn (marketing, hardware

and software department) also had some concerns about the technical requirements. For example, whereas the

provided hardware platform initially had a USB adaptor, the software department had no resources to program a

USB driver. At some point, Ester (marketing – product manager) decided to leave the USB port out, for economic

reasons. Later, the customer inquired about that feature that was unfortunately dropped out of the Epsilon hardware.

Within Thorn, different opinions existed regarding the value of the structured process management framework of

ISO 9001. Higher up the hierarchical ladder within the company, the prevalent opinion was that internal motivation

was the major reason why Thorn introduced this structured process framework. In contrast, organizational members

claimed that external constraints around the company were the reason for introducing the ISO 9001. Developers

voiced serious doubts about the practical usefulness of ISO 9001 in their daily tasks. For example, one of the

developers claimed,

“Within a good company, ISO is not necessary!”

“Individual motivation and common sense for quality is of greater value than ISO 9001!”

“ISO 9001 raises bureaucracy but is necessary for the company’s products.”

In contrast, other interviewees mentioned the advantages of ISO 9001, such as less friction between the different

departments of Thorn. In addition, David (quality manager) claimed that all processes were necessary for the well

being of Thorn. Higher in the company hierarchy, the opinion was strong that internal reasons, such as company

growth, were the reason for the implementation of ISO 9001. Although the structured processes were established

some years before the Epsilon project was started, internal stakeholders still practiced different approaches.

However, in many cases, these approaches were applied to the current problem and met the circumstances of that

time. Ester explained:

“We did and do a lot of things on top of or besides our standardized processes. A framework for support and

service of a complex series product was not established, so we needed to do something about it. We hired people

for these responsibilities.”

David stated that some people still needed training and support in complying with the structured process, although

the organization is ISO 9001 certified for several years. Gabriel claimed:

“We <developers> at Thorn are a bunch of tinkering enthusiasts who like to fix problems. However, this does

not mean that we produce results of poor quality. … Concerning the requirements, it is worthwhile to mention

that Martin put a lot of effort into structuring the various requirements. Nevertheless, the situation during the

requirement elicitation phase was quite chaotic and driven by time pressure.”

So, Martin established and fostered a good relationship with the customer. However, a constraining factor during the

initial phase of Epsilon was the time pressure, as several interviewees stated. As a consequence, Thorn hired more

people to relieve their employees, and the organizational leaders put more effort into interdepartmental procedures

to enhance their structured processes, as Michael mentioned. Martin explained:

“I had a list of requirements from the customer and the known platform created by Thorn. I just needed to join

them. However, we had some problems in meeting deadlines, because the estimations around that project were

way too optimistic. … I think that the developers should have had a better understanding of the final product.

This would have been beneficial for the later integration of the various software parts into one system.”

Managing the complexity

Although some parts of the baseline requirements were not as detailed, the development started. Both Thorn and the

customer knew that some issues needed to be redefined during the development. Thorn developers and the project

manager reported some contradicting requests from the customer. Therefore, Martin needed to negotiate some of

these requests because some of the collected requirements were ambiguous or different to other requirements. A

number of features were first mentioned during the development, because at the beginning the customer was

unaware of the possibilities, as Gabriel claimed. In addition to this continuous refinement of some requirements,

there were also necessary changes. Martin said:

“Well, the changes we performed were within the usual scope of fluctuations. Of course, the developers were

unhappy to change or redo something they had already created.”

Many developers claimed:

“The frequent changing of priorities and issues did not make things any easier.”

“Sometimes it was very frustrating to change things quickly to adjust to the latest fluctuation.”

“Frequently we needed to modify some issues.”

With the increasing number of features, the complexity of the latter product grew as well. Furthermore, contrasting

wishes of new customers posed another problem when coordinating the development.

In addition to Epsilon’s increasing product complexity, changes inside Thorn were another factor of disturbance.

Hiring new people and the introduction of new processes created some distraction at the beginning. Gabriel

mentioned:

“We hired some new people during the development. We knew that this would not boost our current

development efforts, but we thought more about improving our competencies in the long run.”

Martin stated:

“At the beginning there were only a few people involved. Later, there were more and more people from different

departments who had influence.”

Another valuable difference in the Thorn processes was the introduction of a new meeting called change-control-

board. This weekly meeting channeled the various requirement fluctuations during the development and

maintenance phase. All internal stakeholders were invited to discuss recent modifications of Epsilons’ requirements.

These discussions helped the stakeholders to keep up with the recent issues. Gabriel mentioned that the change-

control-board enabled new team members to better understand the development processes of Thorn. In particular,

Martin claimed that the change-control-board was vital for the success of the Epsilon development.

Analysis

Many themes emerged from the data: ambiguous requirements at the beginning of Epsilon development, fluctuating

requirements during the Epsilon development, and diverse influences of structured processes. We think it is

important to differentiate between the partly ambiguous requirements that were lacking in various parts, and the

fluctuating requirements that caused the adjustment of development activities. The reasons for doing so were the

different realms of possibilities of these two situations; nevertheless, both situations comprehended technical

challenges. With ambiguous requirements that were lacking in various parts, there was room for interpretation from

every side of the stakeholder as these requirements were not specified. However, fluctuating requirements had a

describable situation in the past and were adjusted to meet a different setting. Furthermore, the analysis identified

diverse influences of structured processes.

Challenging ambiguous requirements

Ambiguous requirements at the beginning of the Epsilon development formed the entire process. These ambiguous

requirements were expressed by a requirement baseline of Epsilon, which varied in different detail levels of product

features; hence, the comprehended technical challenges. For instance, one processor and its related hardware and

software environment were described in detail, whereas the 32-Bit and digital signal processors were not regimented

at all. The description of this one processor included fragments of its software core to guarantee interoperability

within the tested bus environment. On the other hand, the main processor (32-Bit) and other parts of the hardware

and software needed only to comply with some environmental standards, such as temperature and humidity.

However, these rudimentary requirements were already implicit in the automotive environment. In addition, the

differences between the contributions of several stakeholders were significant because those involved with Epsilon

emphasized different product features during the requirement elicitation and management phase. During the initial

time of Epsilon, the customer was a harmonized voice with one distinct approach to solving particular problems

with the proposed tool. Later in the requirement elicitation and management phase, this harmonized voice became

polyphonic because other departments contributed their views on the projected device. In addition to the customer’s

polyphony voice, departments inside Thorn had concerns about some features. As explained in the case study, the

story about the USB connector was unfortunate in some ways. It is worth mentioning that this emerging landscape

of requirements needed to be elicited and managed by Martin. He did not use any requirement software to manage

the gathered requirements; instead he used common sense and his experience as a former service supplier.

Therefore, his effort and tacit knowledge during the requirement elicitation and management phase was vital for the

market success of Epsilon.

The baseline requirements specified only some rudimentary customer needs, paired with the available choices of an

existing technical platform at Thorn. However, the requirements were not specified in detail and some parts needed

to be explained at a later stage of development. We found that the developers’ usual responses to this challenge of

ambiguous or lacking requirements were improvisation and bricolage activities. Despite this situation, the goal of

the development was clear for the developers, although only Martin had a sophisticated understanding of that

domain. So, Martin was also the contact person for the developers so as to avoid unnecessary activities by the

developers. Clearly, parts of Epsilon included a higher amount of improvisation and bricolage than others. This

reflects the situation of the baseline requirements, which could have been elaborated upon. Improvisation and

bricolage activities were also common to fill the gaps between the knowledge deficits of Martin and the developers.

The developers had a better knowledge of technical matters concerning the details of the Epsilon development. As a

result, these experienced gaps were covered by improvisational and bricolage activities. These reoccurring

improvisation and bricolage activities by the developers also caused a growing complexity because, on top of some

improvisational and bricolage, outputs needed to be further improvised and tinkered with. This loop of

improvisational and bricolage activities ended when the customer accepted an advanced model of Epsilon. At this

time, the customer qualified the technical artifact of Epsilon as the established baseline requirements. However,

some minor adjustments were still necessary to comply with the changing environment.

Fluctuating requirements

These fluctuating requirements during the Epsilon development prompted several adjustments of the Epsilon

development activities. Even though the baseline requirements were established, the turbulent environment called

for several modifications during the development. This turbulent environment was in many cases unpredictable,

such as hardware proclamations, slightly different features for the customer, and new Thorn internal requirements

for better testing of the embedded system. In the area of hardware development, it is vital to have a stable set of

parts to reproduce the same device without any loss of quality. As only one part of Epsilon was running through a

proclamation process of its manufacturers, Epsilon developers needed to adjust the technical specification of the first

hardware platform to ascertain the availability of all parts of Epsilon. Another fluctuation of requirements resulted in

a minor alteration of the customers’ requirements. This minor alteration of the previously-accepted advanced

prototype of Epsilon brought additional work on parts of the software. Besides this, a request of modification from a

different Thorn department caused several adjustments of the requirements for that device and its embedded

software. Unfortunately, Thorn focused on practical tests of Epsilon relatively late. These briefly explained

examples are just a digest of the numerous fluctuating requirements during the Epsilon development. One of the

reasons why Thorn was forced to comply with these fluctuating requirements was the circumstances of the

demanding quality standards in the automobile industry as well as the goals they set themselves.

In contrast to the ambiguous requirements at the beginning of the Epsilon development analyzed above, the

fluctuating requirements provided the developers with a different technical challenge. The investigated incidents

were situated in a relatively well-known circumstance. Although none of the previously-stated fluctuating

requirements (hardware proclamation, new customer features, and requirement for testing purposes) were

predictable, all of them had a describable prehistory and a clear goal of what should be changed. This condition is in

contrast to the ambiguous requirements at the beginning of the Epsilon development. Nevertheless, the given

theoretical foundation of situated software processes in the form of improvisation and bricolage matched the

analyzed activities of the developers. So, the developers’ response to these fluctuating requirements was

improvisation and bricolage activities. Such improvisation and bricolage activities were common to comply with the

market forces and to refine the software because of fluctuating requirements from various stakeholders. As Gabriel

mentioned in one interview, the status of tinkered software was getting more and more ver-bastelt (neologism:

German prefix ver- = forth, pre-, off, wrong and German verb bastelt = tinker � further tinkered). As a result, the

tinkered software, which was as yet manageable, became more complex. However, Thorn was able to adjust its

high-tech product to the new setting with improvisation and bricolage activities in response to fluctuating

requirements.

Structured processes

Although the structured processes of Thorn’s ISO 9001 framework described some guidelines concerning the

requirement elicitation and management phase, the researchers were not able to identify any compliance. Rather,

some developers and managers expressed concern regarding its practical help. Martin stated that at the beginning

nobody gave any thought to structural guidelines to run the project. Their main concern was to obey the ISO 9001

regulation at the organizational interface for procurement and documented meetings with other organizations. Aside

from these concerns, they ignored the standards for their day-to-day work. However, the researchers were able to

identify their activities as largely improvisational and bricolage actions. Although it included some risk to rely on

one person for the requirement elicitation and management, Martin was capable of rising to the challenges of this

task. His independence of software tools for these tasks showed a decent understanding of the necessary actions and

practices. The advantage of having this mature understanding of the wants and needs of developers at the first

customer site was a critical success factor for Epsilon. In addition, Martin needed to improvise and collect all

available information to complete the requirements. However, the fact that a complete list of requirements was never

formulated propagated itself in the development lifecycle. This element of improvisation and bricolage was not

restricted to the requirement phase, but was observable throughout the entire development. Gabriel put it this way:

“The people at Thorn are tinkering enthusiasts, who like to fix problems.” The lack of specified requirements

concerning the 32-Bit and digital signal processors were overcome with rule-of-thumb estimates by competent

contact persons at Thorn. With these estimates and his domain knowledge, Martin was able to create an internal

baseline of requirements to begin the Epsilon development. However, the set of requirements remained unstable in

some areas and required modification in other parts because the circumstances had changed. These circumstances

described the diffuse picture of unknowledgeable or unaware conditions.

Despite the low significance of the ISO 9001 framework for the developers in this context, we were able to observe

other forms of structural guidelines with a higher acceptance. The informal work atmosphere and work team culture

within Thorn influenced the initial requirement elicitation phase. Much of the information collected from contact

persons within Thorn remained unverified and was taken for granted. This trust and confidence in the abilities of

Thorn employees was very high during the initial phase of the development phase. The increasing demands of the

complex Epsilon development caused some setbacks and, as a result, some new processes were introduced. As

described in the case study, the change-control-board was introduced to allow internal stakeholders to discuss the

various changes and developments. However, the change-control-board was not only used to discuss the recent

fluctuations of requirements, but also to keep up with recent developments for all stakeholders. Moreover, new team

members were educated about Thorn’s internal processes and the current issues of the complex Epsilon

development. So, the change-control-board was a vital part of Thorn’s informal structured processes. In addition,

new employees were hired to fulfill tasks that had previously been handled inadequately. For example, various

stakeholders inside Thorn fulfilled their obligation to communicate effectively with customers. One idea that came

out of this new process was the plan to standardize the communication paths to customers. In summary, the

structured process framework of ISO 9001 induced the requirement elicitation and management practices so that

some reports of meetings with customers were predefined. So, the ISO 9001 framework did not significantly

influence the day-to-day activities of the developers or the managers. We found that the organizational ISO 9001

standards provided less practical help for the elicitation and management of requirements. Rather, Martin played a

key role as project manager for Epsilon, and although Thorn is a certified ISO 9001 organization, many processes

were undefined: the elicitation and management of requirements mostly involved improvisational and bricolage

actions. Setbacks and the increasing complexity of Epsilon were the triggers for more structures inside Thorn.

Discussion and implication

The above analysis indicates that improvisation and bricolage actions and practices can contribute significantly to

the resolution of master challenges during an embedded system development and particularly at the requirement

elicitation and management phase. In addition, we analyzed various process-related factors that influenced the

requirement elicitation and management phase. Much of the activities of the developers and managers within Thorn

involved improvisation and bricolage. Despite Thorn being an ISO 9001 certified organization, its structured

processes did not help the Epsilon development. But, several informal processes emerged from that situation and

became established organizational standard processes over time. The emerging processes are highly situated in that

particular environment and condition, and foil structured software process models. Although structured software

development methodologies pay attention to the problem of volatile requirements, improvisation and bricolage

occur outside the boundaries of these methodologies. Structured software development methodologies do not

address all these challenges of volatile requirements, which may occur during an embedded system development

project; that means they may not be sophisticated enough to cover these challenges.

Agile methodologies are accustomed to fluctuating requirements during the development lifecycle. However, some

proposed procedures are difficult to establish or become unmanageable with growing complexity (Berry 2002;

Pinheiro 2003). With the analysis of this case study in mind, we discuss the fact that structured software

development methodologies might not be an appropriate answer to blatant problems of volatile requirements. At the

beginning of the development, interpersonal relations and communications were important. Previous studies (e.g.

(Curtis et al. 1988)) also find that these interpersonal skills are needed for success. However, setbacks and the

increasing complexity resulted in changes of the Epsilon development procedures. This restructuring occurred

through some situated actions and practices when the developers and managers were aware of needed procedural

change. However, we want to highlight the motivation of action (Giddens 1986). The increasing complexity was a

severe problem and the developers and managers may come up with rational explanations. Nevertheless, the

motivations of action were the unusual circumstances and situations of setbacks, expressed in delayed development

deadlines and rework. To cope with the growing complexity, the developers looked for informal and ‘tried and

tested’ organizational standards. The changes applied at Thorn were common instruments to handle turbulent

settings (e.g. change-control-board) (Wiegers 2003). The involvement of improvisational and bricolage actions was

a routine behavior during the development, although these situated activities might appear as chaotic or lacking in

conciseness to outsiders. This routine behavior became experienced and become standards of the organization

practices. This routinized behavior improved the self-confidence of their day-to-day activities, and Giddens refers to

this as providing Ontological Security (Giddens 1986). So, the developers and managers continued to perform and

new institutionalized practices were then drawn on and subsequently became sediment experiences.

To interpret the degrees of improvisation and bricolage as sediment experiences, we trace back to its word origins.

Improvisation is paraphrased in Latin as neither quick nor unplanned, but it is called extemporalis actio (Ciborra

2002). So, it is action (outside of time), or outside the normal flow of time. From the observed activities, the

researchers may deduce the meaning improvisus with the meaning “not seen ahead of time” as a more adequate

description (Ciborra 2002). Bricolage is paraphrased as making do with the items or resources at hand (Levi-Strauss

1966). The circumstances we describe (ambiguous requirements at the beginning and fluctuating requirements)

involve different realms of possibilities. Both situations comprehended technical challenges but the degree of

improvisation and bricolage during these situations was another determination factor. Even though the improvisation

and bricolage activities with the ambiguous requirements at the beginning of the development involved unforeseen

dynamics in a turbulent environment, these dynamics were expected. However, these expected dynamics with the

ambiguous requirements involved no preplanning activities according to other structured software process models

(specification, evolution, and agile development characteristic). Planned serendipity was mostly comprised during

this phase of elicitation and management of requirements. Tinker and trial-and-error activities were applied during

this phase to accomplish the goal of a functioning prototype of Epsilon. Most of these activities were self-contained,

and motivated further improvisational and bricolage actions. These activities continued until the goal of a

functioning prototype of Epsilon was accomplished. In contrast to the ambiguous requirements at the beginning of

the development, the fluctuating requirements involved unpredictable dynamics in an unstable environment. The

developers and managers of Epsilon became suddenly aware of these fluctuating requirements, each in its different

previous history. The fluctuating requirements had in common that a specific goal was defined clearly. Obvious

aspects of the improvisational activities during the fluctuating requirements were rehearsed spontaneity and anxious

confidence. However, tinker and trial-and-error activities were also practiced during that time. These activities were

not self contained, but conditioned by the situation at that time. Its relatedness to a specific goal determined the

opportunities, hence the challenges also. The activities were strict and forward-oriented, and Ciborra (2002) calls

this passionless actor a problem-solving robot. This differentiation of sudden and not self-contained improvisation

and bricolage on one side and expected and self contained improvisation and bricolage activities on the other side,

contributes to the discussion on the degrees of improvisation and bricolage, which are vital for a better

understanding of the phenomena of situated processes in information system development.

Table 4 describes the situation and insularity of improvisational and bricolage activities. As discussed earlier, the

ambiguous requirements situation was expected by the developers and managers at Thorn. As a result of weak

specified requirements in that turbulent environment, the improvisational and bricolage activities became self-

contained. The activities were therefore not subject of stimuli from outside the group of developers and managers. In

addition, Figure 1 depicts the degree of improvisation and bricolage. Situation ‘A’ symbolizes the improvisational

and bricolage activities of developers and managers with ambiguous requirements during the embedded system

development. These activities were self-contained, and they motivated further improvisational and bricolage actions

to create a functioning prototype of Epsilon. Situation ‘B’ represents the situated activities brought about by

fluctuating requirements. These activities mostly involved improvisation and bricolage and were the response of

developers and managers to overcome the challenge of suddenly fluctuating requirements and, hence, to adjust

Epsilon.

Table 4: Situation and insularity of improvisation and bricolage

Example Situation Insularity Quotes of research site members

Ambiguous

requirements

Expected Self-

contained

Martin stated:

“What would I do or have if I was in the situation

of a developer in the automobile industry?”

Fluctuating

requirements

Sudden Conditioned Gabriel mentioned:

 “A number of features were clarified during the

development. Sometimes, the demanded

adjustment was unforeseen and reasoned change

or redo of items we had already created.”

Figure 1: Degree of improvisation and bricolage

In sum, the main finding of this research is that the improvisational and bricolage activities of developers and

managers were deployed as a coping strategy to deal with ambiguous and fluctuating requirements of embedded

system development. These improvisational and bricolage activities became institutionalized over time, such as the

change-control-board or the problem-solving robot (Ciborra 2002). Giddens (1986) claims that this continuity of

activities presupposes reflexivity, but reflexivity in turn is possible only because of the continuity of activities that

makes them particularly ‘the same’. In this context, reflexivity is the monitored character of the ongoing flow of

social life. That basis of improvisational and bricolage activities and reflexivity is in the discursive and practical

consciousness of developers and managers. Hence, developers and managers activities were founded on a critical

exposure to the respective situation. Although reflexive capabilities of human actors are typically part of day-to-day

conduct in the context of social activities (Giddens 1986), we need to emphasize its value for the success of

improvisation and bricolage as a coping strategy. To utilize these activities as a strategic conduct, structural

scaffolding may provide help to master these challenges. However, the analysis highlights that developers and

managers preferred to follow informal standards, whereas the formal structured process management frameworks

were ignored mostly by the developers and managers. We believe that guiding and elaborating on the reflexivity of

developers and managers might be realized more though informal routines because reflexivity operates mostly in

practical consciousness (Giddens 1986). These informal activities occur more on an interpersonal or social level and

may stimulate the reflexivity of developers and managers. Orlikowski and Hofman (1997) state enabling conditions

for improvisation in an organization level as aligning key change dimensions and dedicated resources for ongoing

support. We however focus more at individual and team levels and suggest that more reflexive practices as a part of

the interpersonal strategic conduct of an organization for better use of improvisation and bricolage. For practitioners,

this means that the interpersonal as well as the organizational strategic conduct would need to be adjusted if

improvisational and bricolage activities are to be deployed as a coping strategy.

Conclusion

This paper investigated the challenge of ambiguous and fluctuating requirements during an embedded system

development. From the perspective of the software developers, we tried to understand their comprehension of weak

specified and volatile requirements. The research provided insights into the improvisational and bricolage activities

of developers and managers. In addition, we answered the question of how the structured process management

framework of ISO 9001 induces the activities of developers and managers in that context. This investigation is based

on one project in a relatively small company. Future work could address the limitation by investigative case studies

about companies of different size and complexity. Furthermore, it would be valuable to investigate how higher

compliance with ISO 9001 standards would influence the reflexive capabilities in a similar setting. In this study,

improvisational and bricolage actions are examined as a coping strategy by software developers and managers.

Some improvisational and bricolage activities became informal standards and over time they became

institutionalized. This paper provides better insights into the improvisational and bricolage activities of developers

and managers during elicitation, and the management of requirements in a structured process management

environment. Moreover, two different degrees of improvisation and bricolage were found, as an expression of its

situation and insularity. The paper indicates that reflexivity as a part of the interpersonal strategic conduct of an

organization needs to be adjusted and just leveraged if improvisation and bricolage are to be deployed as a coping

strategy.

References

Akgün, A.E., and Lynn, G.S. "New product development team improvisation and speed-to-market: an extended

model," European Journal of Innovation Management (5:3) 2002, pp 117-129.

Amabile, T. "A model of creativity and innovation in organizations," Research in organizational behavior (10)

1988, pp 123-167.

Augier, M., and Vendelø, M.T. "Networks, cognition and management of tacit knowledge," Journal of Knowledge

Management (3:4) 1999, pp 252-261.

Avison, D., and Nandhakumar, J. "The Discipline of Information Systems: Let Many Flowers Bloom!," IFIP

Conference, 1995.

Baker, T., Miner, A.S., and Eesley, D.T. "Improvising firms: bricolage, account giving and improvisational

competencies in the founding process," Research Policy (32) 2006, pp 255-276.

Berry, D. "The inevitable pain of software development, including of extreme programming, caused by requirements

volatility.," International workshop on time-constrained requirements, Essen, Germany, 2002.

Boehm, B.W. "A spiral model of software development and enhancement," ACM SIGSOFT Software Engineering

Notes (11:4) 1986, pp 14-24.

Christel, M., and Kang, K. "Issues in requirements elicitation," in: Carnegie Mellon University Technical Report,

Software Engineering Institute, Carnegie Mellon University, Pittsbrgh, PA, 1992.

Ciborra, C. "The Platform Organization: Recombining Strategies, Structures, and Surprises," Organization Science

(7:2) 1996, pp 103-118.

Ciborra, C. The Labyrinths of information Oxford University Press, Oxford, 2002.

Cockburn, A. Agile Software Development: The Cooperative Game Addison-Wesley, 2001.

Cockburn, A. Crystal Clear. A Human-Powered Methodology for Small Teams Addison-Wesley Longman,

Amsterdam, 2004.

Cockburn, A., and Highsmith, J. "Agile software development, the people factor," Software, IEEE (34:11) 2001, pp

131-133.

Coulin, C., Zowghi, D., and Sahraoui, A. "A Situational Method Engineering Approach to Requirements Elicitation

Workshops in the Software Development Process," Software Process: Improvement and Practice (11)

2006, pp 451-464.

Cunha, M.P. "Bricolage in Organization," in: FUENL Working Paper Series, Universidad Nova de Lisboa, 2005.

Currie, W.L. "The organizing vision of application service provision: a process-oriented analysis," Information and

Organization (14) 2004, pp 237-267.

Curtis, B., Krasner, H., and Iscoe, N. "A field study of the software design process for large systems,"

Communications of the ACM (31:11) 1988, pp 1268-1287.

Fowler, M., and Highsmith, J. "The Agile Manifesto," Software Development (9:8) 2001, pp 28-32.

Gajski, D.D., and Vahid, F. "Specification and design of embedded hardware-software systems," Design & Test of

Computers (12:1) 1995, pp 53-67.

Gebhard, B., and Rappl, M. "Requirements Management for Automotive Systems Development," in: SAE 2000

World Congress, Society of Automotive Engineers, Inc., Detroit, MI, 2000.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. Fundamentals of Software Engineering Prentice-Hall, Upper Saddle

River, N.J., 1991.

Giddens, A. The Constitution of Society: Outline of the Theory of Structuration Polity Press, Cambridge, 1986.

Goossens, G., Van Praet, J., Lanneer, D., Geurts, W., Kifli, A., Liem, C., and Paulin, P.G. "Embedded software in

real-time signal processing systems: designtechnologies," Proceedings of the IEEE (85:3) 1997, pp 436-

454.

Graaf, B., Lormans, M., and Toetenel, H. "Embedded software engineering: state of the practice," Software, IEEE

(20:6) 2003, pp 61-69.

Hickey, A., and Davis, A. "The role of requirements elicitation techniques in achieving software quality," REFSQ,

Essen, Germany, 2002.

Hickey, A., and Davis, A. "Requirements elicitation and elicitation technique selection: A model for two

knowledge-intensive software development processes," Hawaii International Conference on Systems

Science, Big Island, HI, 2003.

Hmieleski, K.M., and Corbett, A.C. "Proclivity for Improvisation as a Predictor of Entrepreneurial Intentions,"

Journal of Small Business Management (44:1) 2006, pp 45-63.

IEEE IEEE Recommended Practice for Software Requirements Specifications The Institute of Electrical and

Electronics Engineers, Inc., New York, NY, 1998.

Innes, J.E., and Booher, D.E. "Consensus Building as Role Playing and Bricolage," Journal of the American

Planning Association (65:1) 1999, pp 9-26.

Jiao, J., and Chen, C. "Customer Requirement Management in Product Development: A Review of Research

Issues," Concurrent Engineering (14:3) 2006, pp 173-185.

Kettunen, P., and Laanti, M. "How to steer an embedded software project: tactics for selecting the software process

model," Information and Software Technology (47) 2005, pp 587-608.

Lee, E. "What’s ahead for embedded software," Computer (33:9) 2000, pp 18-26.

Lee, E. "Embedded Software," in: Advances in Computers, M. Zelkowitz (ed.), Academic Press, London, 2002.

Levi-Strauss, C. The savage mind University of Chicago Press, Chicago, 1966.

Manhart, P., and Schneider, K. "Breaking the Ice for Agile Development of Embedded Software: An Industry

Experience Report," International Conference on Software Engineering, 2004, pp. 378-386.

McConnell, S. Software estimation: demystifying the black art Microsoft Press, Redmond, WA, 2006.

Miles, M., and Huberman, M. Qualitative Data Analysis Sage Publications, Thousand Oaks, 1994.

Miner, A., Bassoff, P., and Moorman, C. "Organizational improvisation and learning: a field study," Administrative

Science Quarterly (46:2) 2001, pp 307-337.

Mirvis, P.H. "Practice Improvisation," Organization Science (9:5) 1998, pp 586-592.

Moorman, C., and Miner, A. "The Convergence of Planning and Execution: Improvisation in New Product

Development," Journal of Marketing (62:3) 1998a, pp 1-20.

Moorman, C., and Miner, A.S. "Organizational Improvisation and Organizational Memory," The Academy of

Management Review (23:4) 1998b, pp 698-723.

Nuseibeh, B., and Easterbrook, S. "Requirements engineering: a roadmap," International Conference on Software

Engineering, Limerick, Ireland, 2000.

Orlikowski, W.J. "CASE Tools as Organizational Change: Investigating Incremental and Radical Changes in

Systems Development," MIS Quarterly (17) 1993, pp 309-340.

Orlikowski, W.J. "Improvising Organizational Transformation Over Time: A Situated Change Perspective," in:

Working paper (Sloan School of Management); 3865-95, Sloan School of Management, Massachusetts

Institute of Technology, Cambridge, MA, 1995.

Orlikowski, W.J., and Baroudi, J.J. "Studying Information Technology in Organizations: Research Approaches and

Assumptions," Infomation Systems Research (2:1) 1991, pp 1-28.

Orlikowski, W.J., and Hofmann, D.J. "An Improvisational Model of Change Management: The Case of Groupware

Technologies," Sloan Management Review (38:2) 1997, pp 11-21.

Pinheiro, F. "Requirements honesty," Requirements Engineering (8:3) 2003, pp 183-192.

Reel, J.S. "Critical Success Factors In Software Projects," IEEE Software (May/June) 1999, pp 18-23.

Sommerville, I. "Software process models," ACM Computing Surveys (28:1) 1996, pp 269-271.

Walsham, G. Interpreting Information Systems in Organizations Wiley, Chichester, 1993.

Weick, K. "Improvisation as a Mindset for Organizational Analysis," Organization Science (9:5) 1998, pp 543-555.

Wiegers, K. Software Requirements Microsoft Press, Redmond, WA, 2003.

Yin, R.K. Case Study Research: Design and Methods Sage Publications, Thousand Oaks, CA, 1994.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	Dealing With Ambiguous and Fluctuating Requirements of Embedded System Development: A Case-Study
	Wolfgang Molnar
	Joe Nandhakumar
	Recommended Citation

	Microsoft Word - $ASQ4895154_File000001_75481134.doc

