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Abstract 

 
Spam, also known as Unsolicited Commercial Email (UCE), has been an increasingly 

annoying problem to individuals and organizations. Most of prior research formulated 

spam filtering as a classical text categorization task, in which training examples must 

include both spam emails (positive examples) and legitimate mails (negatives). However, 

in many spam filtering scenarios, obtaining legitimate emails for training purpose is 

more difficult than collecting spam and unclassified emails. Hence, it would be more 

appropriate to construct a classification model for spam filtering from positive (i.e., spam 

emails) and unlabeled instances only; i.e., training a spam filter without any legitimate 

emails as negative training examples. Several single-class learning techniques that 

include PNB and PEBL have been proposed in the literature. However, they incur 

fundamental limitations when applying to spam filtering. In this study, we propose and 

develop an ensemble approach, referred to as E2, to address the limitations of PNB and 

PEBL. Specifically, we follow the two-stage framework of PEBL and extend each stage 

with an ensemble strategy. Our empirical evaluation results on two spam-filtering 

corpora suggest that the proposed E2 technique exhibits more stable and reliable 

performance than its benchmark techniques (i.e., PNB and PEBL). 

 
Keywords: Spam Filtering, Single-Class Learning, Ensemble Approach, Text 
Categorization, Learning from Positive and Unlabeled Examples, Partially Supervised 
Classification  
 
 

1. Introduction 
With the advancement and proliferation of information and networking technologies, 
individuals and organizations have increasingly relied on emails for communications and 
information sharing. While enjoying this efficient and convenient communication 
medium, individuals and organizations are suffering from spam emails that have 
increased dramatically in the past few years. Spam, also known as Unsolicited 
Commercial Email (UCE) and Unsolicited Bulk Email (UBE), is Internet mail that is sent 
to a group of recipients who have not requested it (Boykin and Roychowdhury 2005; 
Whitworth and Whitworth 2004; Zhang et al. 2004). These unsolicited emails not only 
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consume users’ time and energy to identify and remove them, but also cause many 
annoying problems such as filling mailboxes, engulfing important personal emails, and 
wasting network bandwidth (Zhang et al. 2004). In some cases, spam emails may even be 
harmful; e.g., spam emails containing pornographic materials may be read by children 
(Zhang et al. 2004; Zorkadis et al. 2005). 
 
The volume of spam emails is growing increasingly because sending e-mails has nearly 
no cost and spammers can obtain e-mail addresses easily via email address harvesting 
tools. Jupiter Research (Taylor 2003) estimates that 4.9 trillion spam emails were sent 
worldwide in 2003. In addition, according to Brightmail (http://www.brightmail.com), a 
vendor for anti-spam software, the volume of spam as a percentage of all emails rose 
from 8% in January 2001 to 56% in November 2003. A Ferris Research report 
(http://entmag.com/news/article.asp?EditorialsID=5651) estimates that spam emails cost 
US companies $10 billion in 2003, where the cost estimate includes loss of user 
productivity, consumption of information technology resources, and help desk costs. A 
recent study (Fallows 2003) showed that 52% of email users say spam has made them 
less trusting of email, and 25% say that the volume of spam has reduced their email use. 
To reduce the aforementioned costs that result from spam emails, effective spam filtering 
that automatically discriminates spam emails from legitimate email is essential to 
individuals and organizations.  
 
Spam filtering has been considered as a classical text categorization task (Pantel and Lin 
1998; Drucker et al. 1999; Sebastiani 2002; Weiss et al. 1999), although other approaches 
have also been suggested (e.g., maintaining blacklists of frequent spammers). With this 
formulation, given a set of training instances that are preclassified as belonging to the 
spam or legitimate class, a classification analysis or supervised machine learning 
algorithm is employed to induce a classification model, which will then be used to 
classify incoming emails. Common classification analysis algorithms used in the context 
of spam filtering include Naïve Bayes classifier (Androutsopoulos et al. 2000a; Pantel 
and Lin 1998; Sahami et al. 1998; Schneider 2003), Support Vector Machines (SVM) 
(Drucker et al. 1999; Kolcz and Alspector 2001), RIPPER rule induction (Pantel and Lin 
1998; Drucker et al. 1999), Rocchio (Drucker et al. 1999), Memory-based reasoning 
(Cunningham et al. 2003; Sakkis 2001), AdaBoost (Carreras and Márquez 2001; Drucker 
et al. 1999), and maximum entropy model (Zhang and Yao 2003). While all these 
algorithms seem appealing, they have an explicit requirement on the set of training 
examples. That is, the training set must contain instances from both classes (i.e., spam 
and legitimate). Nevertheless, in most of real world scenarios, obtaining legitimate emails 
for training purpose is more difficult than collecting spam emails because individuals 
may be willing to contribute spam emails they have received but generally are reluctant 
to release their legitimate emails due to privacy concerns. In this case, it would be more 
appropriate to construct a classification model for spam filtering from positive (i.e., spam 
emails) and unlabeled instances only. 
 
The described categorization problem is regarded as “single-class learning or 
classification,” “learning from positive and unlabeled examples,” “partially supervised 
classification,” and “learning without negative examples” (Comité et al. 1999; Denis et al. 
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2002; Letouzey et al. 2000; Yu et al. 2004). Prior research has proposed several single-
class learning techniques that include the Positive Naïve Bayes (PNB) technique and the 
Positive Example Based Learning (PEBL) technique. Let the class of positive examples 
be Cp and that of negatives be Cn. PNB takes as its input a training set of positive 

examples and a set of unlabeled documents and requires an estimate Pr
^

(Cp) of the class 
prior probability of Cp (Denis et al. 2002). To determine an appropriate class for an 

unclassified document dj, PNB relies on Pr
^

(Cp) and estimates of the word probabilities 

Pr(wi|Cp) for each wi ∈ dj to derive the probability of dj belonging to the class Cp. 
Because of the unavailability of negative examples, PNB depends on the set of unlabeled 

instances and the estimate of the class prior probability of Cn (i.e., Pr
^

(Cn) = 1−Pr
^

(Cp)) to 

estimate Pr(wi|Cn) for each wi ∈ dj and then to derive the probability of dj belonging to 
the class Cn. 
 
Yu et al. (2004) propose PEBL that adopts a two-stage strategy for learning from positive 
and unlabeled documents. The Mapping stage uses a rough classifier to identify a set of 
“strong negative” examples from the unlabeled set of documents. Subsequently, PEBL 
employs Support Vector Machines (SVM) in the Convergence stage to maximize margin 
to make a progressively better approximation of the negative class. PEBL iteratively 
identifies and selects for training purpose more negative examples from the unlabeled set 
of documents until no more negative examples can be recognized. Finally, PEBL uses the 
initial positive examples and the negative examples previously identified from the 
unlabeled documents to train a classifier that will be used for class prediction for future 
documents. 
 
Although their empirical results are encouraging, these two techniques incur some 
inherent limitations in the context of spam filtering. As mentioned, PNB involves an 

estimate of Pr
^

(Cp) whose accuracy greatly affects the classification accuracy of PNB. 
However, in the spam filtering application, the percentage of spam emails is highly 
variable over time (Taylor 2003; Denis et al. 2002). In this case, an accurate estimate of 

Pr
^

(Cp) is difficult to obtain, possibly limiting the applicability of PNB for spam filtering. 
On the other hand, PEBL’s effectiveness highly depends on the accuracy of the initial set 
of “strong negative” examples identified by the rough classifier. If the initial “strong 
negative” examples are not trustworthy, the accuracy of negative examples selected in the 
Convergence stage of PEBL may gradually deteriorate over iterations; hence, possibly 
impairing the effectiveness of PEBL. 
 
In response, in this study, we propose an ensemble approach, referred to as E2, to address 

the PNB’s sensitivity to the estimate of Pr
^

(Cp) and the PEBL’s susceptibility to the 
accuracy of the initial set of “strong negative” examples identified in the Mapping stage. 
Specifically, we follow the two-stage framework of PEBL and extend each stage with an 
ensemble strategy to provide a more reliable single-class learning technique for spam 
filtering. Essentially, an ensemble classifier consists of multiple classifiers (referred to as 
base classifiers) induced from a given set of training examples. When classifying an 
unseen instance, the ensemble classifier combines the predictions of the base classifiers 
through voting or other mechanism (Bauer and Kohavi 1999; Breiman 1996; Dietterich 
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2000; Hansen and Salamon 1990; Opitz and Maclin 1999). Prior empirical results have 
demonstrated that the ensemble classifier generally attains better classification 
effectiveness than any individual base classifiers do (Dietterich 2000; Dong and Han 
2004; Opitz and Maclin 1999). In this vein, to improve the accuracy of the initial set of 
“strong negative” examples in the first stage, the proposed E2 technique adopts an 
ensemble approach that combines the predictions of the rough classifier of PEBL and 
PNB on the unlabeled examples. In addition, the second stage of the proposed E2 
technique constructs an ensemble classifier that adopts SVM, Naïve Bayes, and C4.5 as 
its base classifiers. In this study, we empirically evaluate the proposed E2 technique with 
two spam-filtering corpora and include PNB and PEBL as our performance benchmarks. 
 
The remainder of this paper is organized as follows: We review PNB and PEBL for 
learning from positive and unlabeled documents in Section 2. In Section 3, we depict the 
proposed E2 technique, including its overall process and algorithmic details. 
Subsequently, we describe our evaluation design and discuss some important 
experimental results in Section 4. Finally, we conclude in Section 5 with a summary and 
some future research directions. 
 

2. Literature Review 
In this section, we review PNB and PEBL, two well-known single-class learning 
algorithms, and depict their limitations to highlight our motivation. 
 
2.1 Positive Naive Bayes (PNB) 
Let Cp be the positive class (i.e., spam emails) and Cn be the negative class (i.e., 
legitimate emails). PNB takes a training set of positive examples PD and a set of 

unlabeled documents UD as its inputs and involves an estimate Pr
^

(Cp) of the class prior 
probability of Cp (Denis 2002). PNB classifies a document dj that consists of n words {w1, 
…, wn} with possibly multiple occurrences of a word as a member of the class by 

PNB(dj) = argmax
C∈{Cp,Cn}

 Pr
^

(C) ∏
i=1

n

 Pr
^

(wi|C). 

 

The prior probability Pr
^

(Cn) of the class Cn is estimated using 1−Pr
^

(Cp). Furthermore, the 
positive word probability Pr(wi|Cp) is estimated by the frequency that wi occurs in all 
training documents for the positive class Cp (i.e., PD) divided by all word occurrences for 

the documents in PD. That is, Pr
^

(wi|Cp) = 
N(wi, PD)

N(PD)
, where N(wi, PD) is the total number 

of times wi occurs in the documents in PD and N(PD) is the total number of word 
occurrences in PD. If a word wi in the document d does not appear in any documents in 
Cp, Pr(wi|Cp) will become 0. To avoid such an undesired situation caused by the 
described estimate for Pr(wi|Cp), PNB adopts the Lidstone’s law of succession to smooth 
the maximum likelihood estimate (Agrawal et al. 2000) and defines 

Pr
^

(wi|Cp) = 
N(wi, PD) + λ

N(PD) + λ×|V|
, where V is the number of distinct features in the training 

documents, |V| is the cardinality of V, and λ ≥ 0. 
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Because of the unavailability of negative training examples, the negative word 

probabilities are estimated from the unlabeled examples as: Pr(wi) = Pr(wi|Cn)×Pr(Cn) + 

Pr(wi|Cp)×Pr(Cp), where Pr(wi) is the probability that the underlying generative model 
creates wi. Accordingly, the negative word probabilities can be derived as 

Pr(wi|Cn) = 
Pr(wi) − Pr(wi|Cp)×Pr(Cp)

1 − Pr(Cp)
. The probability Pr(wi) can be estimated on the 

basis of the set of unlabeled documents by Pr
^

(wi) = 
N(wi, UD)

N(UD)
. Thus, the estimate for 

negative word probabilities Pr
^

(wi|Cn)  can be rewritten as 

Pr
^

(wi|Cn) = 
N(wi, UD) − Pr

^
(wi|Cp)×Pr

^
(Cp)×N(UD)

(1 − Pr
^

(Cp))×N(UD)
. Similarly, based on the Lidstone’s 

law of succession, the negative word probability is estimated as 

Pr
^

(wi|Cn) = 
(N(wi, UD) − Pr

^
(wi|Cp)×Pr

^
(Cp)×N(UD)) + λ

(1 − Pr
^

(Cp))×N(UD) + λ×|V|
. 

 
Due to the unavailability of negative training examples, most of the estimates involved in 

PNB are derived from the estimate Pr
^

(Cp). Thus, the effectiveness of PNB is greatly 

affected by the accuracy of Pr
^

(Cp) . However, in the spam filtering application, the 
percentage of spam emails is highly variable over time (Taylor 2003; Denis et al. 2002). 

In this case, an accurate estimate of Pr
^

(Cp) is difficult to obtain and dynamic adjustment 

of the estimate of Pr
^

(Cp)  that conforms to the true class distribution of the current 
situation is even more difficult, possibly limiting the applicability of PNB for spam 
filtering. 
 
2.2 Positive Example Based Learning (PEBL) 
PEBL attempts to induce a classification model that can differentiate the boundary of the 
positive and negative classes on the basis of a training set of positive examples PD and a 
set of unlabeled documents UD (Yu et al. 2004). PEBL adopts a two-stage framework, 
including the Mapping and the Convergence stage. In the Mapping stage, PEBL employs 
a rough classifier that draws an initial approximation of “strong negative” examples. 
Specifically, PEBL first identifies “strong positive” features by comparing the 
frequencies of features within the positive training and unlabeled examples. For example, 

a feature is considered as a “strong positive” feature if it occurs in more than α% of the 

positive training examples but only in β% of unlabeled examples in UD. On the basis of 
the identified list of the “strong positive” features, the unlabeled documents in UD that do 
not contain any of the “strong positive” features are selected and regarded as “strong 
negative” examples. The remaining documents in UD are referred to as “plausible 
positive” examples.  
 
In the Convergence stage, PEBL constructs an initial classifier based on the positive 
training examples and the “strong negative” examples identified in the previous stage. 
Subsequently, PEBL iteratively detects and includes more negative examples from the 
unlabeled examples using Support Vector Machines (SVM). At each iteration, PEBL 
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employs the classification model induced in the previous iteration to classify the current 
set of “plausible positive” examples into the positive or negative class. Afterward, PEBL 
expands the set of negative examples by incorporating the negative examples identified at 
this iteration and, accordingly, reconstructs a new classification model using SVM. The 
set of documents that are classified into the positive class at this iteration becomes the set 
of “plausible positive” examples for the next iteration. PEBL repeats the negative 
example selection and the classification model reconstruction process until PEBL cannot 
find any negative examples from the unlabeled examples in UD. As the result of the 
Convergence stage of PEBL, the class boundary eventually converges to the plausible 
boundary of the positive class in the feature space. 
 
Evidently, the effectiveness of PEBL highly depends on the accuracy of the initial set of 
“strong negative” examples identified by the rough classifier in the Mapping stage. If the 
initial set of “strong negative” examples indeed encompasses true positive examples, the 
accuracy of negative examples identifies in the Convergence stage of PEBL may 
gradually deteriorate over iterations and the resulting effectiveness of PEBL will be 
degraded. 
 

3. Design of E2  
To address the aforementioned limitations of PNB and PEBL, we propose an ensemble 
approach, referred to as E2, for single-class learning for spam filtering. Specifically, we 
follow the two-stage framework of PEBL and extend each stage with an ensemble 
strategy. Figure 1 illustrates the overall process of the proposed E2 technique that 
consists of two main stages, i.e., Mapping via Ensemble and Convergence via Ensemble.  
 

Ensemble
Classifier

Positive Training
Examples (PD)

Positive Training
Examples (PD)

Mapping
via Ensemble

Convergence
via Ensemble

Unlabeled
Examples (UD)

Unlabeled
Examples (UD)

Strong Negative
Examples from UD

Additional Negative
Examples from UD

 
Figure 1: Overall Process of the E2 Technique 

 

3.1 Mapping via Ensemble 
The Mapping via Ensemble stage starts with feature extraction and selection. In this study, 
we use all words in each document in the set of positive training examples PD or the set 
of unlabeled examples UD as the features of the document; i.e., without feature selection. 
We employ the Porter stemmer (Porter 1980) and perform stemming that removes the 
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suffixes and prefixes of words in documents. Subsequently, we use the bag-of-words 
scheme for document representation. That is, each document (in PD or UD) is 
represented as a feature vector, where w1, …, wn are the weights of features f1, …, fn and 
wi is the term frequency of fi in the document.  
 
Subsequently, the Mapping via Ensemble stage employs an ensemble of two classifiers 
for identifying strong negative examples from UD. Specifically, we use the rough 
classifier (employed by PEBL) and PNB and combine their predictions on the unlabeled 
examples to form the initial set of “strong negative” examples. On the basis of the 
positive examples in PD, the rough classifier of the original PEBL technique identifies a 
set of “strong negative” examples from UD. The rough classifier of PEBL first identifies 
“strong positive” features from positive and unlabeled examples by comparing the 
frequency of features within PD and UD. Specifically, in this study, two parameters are 

involved: positive threshold (αPT) and unlabeled threshold (αUT). Let Pr(fi, PD) is the 
probability of a feature fi that occurs in the positive examples and Pr(fi, UD) is the 

probability of fi appearing in the unlabeled examples. If Pr(fi, PD) > αPT and Pr(fi, UD) < 

αUT, we consider fi as a “strong positive” feature. Accordingly, we construct from PD and 

UD a list of “strong positive” features with respect to αPT and αUT. With the use of such 
list, an unlabeled example in UD that does not contain any of the “strong positive” 
features is identified as a “strong negative” example by the rough classifier of PEBL.  
 

Similarly, PNB, on the basis of the estimate Pr
^

(Cp), is employed to classify the unlabeled 
examples in UD into a subset of negative examples and a subset of positive ones. 
Consequently, the decision combination step of the Mapping via Ensemble stage 
combines the classification results of the two base classifiers (i.e., the rough classifier and 
PNB) and selects as “strong negatives” those unlabeled examples that are classified by 
both base classifiers as negative ones. The use of the consensus-based strategy could 
improve the accuracy of the initial set of “strong negative” examples. Thus, the PNB’s 

sensitivity to the accuracy of the estimate of Pr
^

(Cp) and the PEBL’s susceptibility to the 
accuracy of the initial set of “strong negative” examples can be mitigated. As a result, the 
Mapping via Ensemble stage produces the initial set of “strong negative” examples 
(referred to as N1) and retains the remaining unlabeled examples in the plausible positive 
examples (referred to as P1). 
 
3.2 Convergence via Ensemble 
The Convergence via Ensemble stage constructs an ensemble classifier by adopting SVM, 
Naive Bayes, and C4.5 as its base classifiers. Initially (i.e., at the iteration 1), both the 
positive training examples (PD) and the strong negative examples (N1) yielded from the 
Mapping via Ensemble stage form the training set TS1 for the three base classifiers (i.e., 

TS1 = PD ∪ N1). Each classifier then induces a classification model from the current 
training set and attempts to classify each plausible positive example in P1. When all base 
classifiers suggest the decision of the negative class for a plausible positive example, this 
example is then considered as a negative example; thus, forming an additional set of 
negative examples N2. The remaining plausible positive examples are then assigned to P2. 

At the next iteration i, the training set TSi = TSi-1 ∪ Ni from which the base classifiers are 
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re-trained to classify the plausible positive examples Pi into Ni+1 and Pi+1. This process 

continues until no more negative examples can be extracted (i.e., Ni+1 = ∅). Consequently, 
an ensemble classifier that consists of three base classifiers is obtained and will be used 
for classify any future unclassified instances. 
 
3.3 Prediction 
When receiving an unclassified document (i.e., email in this study), the proposed E2 
technique uses the ensemble classifier constructed in the Convergence via Ensemble 
stage for classification purpose. We employ a voting scheme to arrive at an overall 
classification decision from individual decisions suggested by the three base classifiers. 
Specifically, if two or more base classifiers assign the target unclassified document to the 
positive class (i.e., spam), it will be considered as belonging to the positive class; 
otherwise, it will be assigned to the negative class (i.e., legitimate email). 
 

4. Empirical Evaluation 
This section reports our empirical evaluation of the proposed E2 technique. We highlight 
our evaluation design that includes the spam-filtering corpora used for evaluation purpose, 
the evaluation procedure and evaluation criteria, and then discuss important comparative 
analysis results. 
 
4.1 Spam-filtering Corpora 
Our empirical evaluation employs two public spam-filtering corpora, namely LingSpam 
and PU1, contributed by Androutsopoulos et al. (2000b). The LingSpam corpus contains 
a total of 2893 emails, where 481 (16.6%) are spam (positive) and 2412 (83.4%) are 
legitimate emails (negative). For the 481 spam emails, attachments, HTML tags, and 
duplicate spam emails received on the same day were not included. The PU1 corpus 
consists of 1099 emails that include 481 (43.8%) spam messages and 618 messages 
(56.2%) legitimate emails. The 481 spam emails were collected by the corpus author over 
a period of 22 months, excluding non-English emails and the duplicate spam emails 
received on the same day. The other 618 legitimate emails were selected from 1182 
emails, which came from authors’ colleagues and friends. 
 
4.2 Evaluation Procedure and Criteria 
In the study, we assume that there exist only positive and unlabeled examples for training 
purpose. Thus, we used 40% of spam emails in each spam-filtering corpus as the positive 
training examples and another 40% of spam emails and 40% of legitimate emails as the 
unlabeled examples. The remaining 20% of spam emails and 60% of legitimate emails in 
the spam corpus were used for testing purpose.  
 
To minimize potential biases that may result from the randomized sampling process and 
to obtain more reliable performance estimates, we performed this validation process 
thirty times. The overall effectiveness of each single-class learning technique examined 
(including E2 and its benchmark techniques) was estimated by averaging the 
performance obtained from the 30 individual validation trials. We used three measures to 
evaluate the effectiveness of each technique under investigation, including precision (for 
spam), recall (for spam), and overall accuracy. 
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4.3 Parameter Tuning Results 
We first conducted parameter-tuning experiments to determine appropriate values for the 
parameters involved in each technique under examination. The rough classifier in the 
Mapping stage of PEBL as well as in the Mapping via Ensemble stage of E2 involves the 

parameters αPT (positive threshold for identifying “strong positive” features) and αUT 
(unlabeled threshold). In addition, PNB, our benchmark technique that is also used as a 

base classifier in the Mapping via Ensemble stage of E2, involves the parameter λ for 
smoothing the maximum likelihood estimate of word probability given a class. Finally, 

we also need to determine an appropriate value for λ that is required by the Naive Bayes 
classifier employed as a base classifier of the Convergence via Ensemble stage in E2. 
 

We investigated the range of values for αPT, ranging from 0.1 to 0.7 in increments of 0.1. 

Given a specific value for αPT, we also examined the range of values for αUT, ranging 

from 0.1 to the value for αPT in increments of 0.1. For both spam-filtering corpora, our 

tuning results suggested that when both αPT and αUT were set to 0.5, PEBL achieved the 
highest accuracy and recall rates while maintaining a satisfactorily high precision rate. 

Thus, we decided on 0.5 for αPT and αUT for subsequent experiments. 
 

When tuning the parameter λ for PNB, we set Pr
^

(Cp) as 0.5 and investigated different 

values for λ, ranging from 0.3 to 3.9 in increments of 0.3. Overall, trading off between 

precision and recall rates, we selected 2.7 and 2.1 for λ for the LingSpam and PU1 
corpora, respectively. Because the proposed E2 technique involves the Naïve Bayes 
classifier in the Convergence via Ensemble stage, we need to determine an appropriate 

value for λ. For the parameters involved in the Mapping via Ensemble stage, we adopted 

the values determined previously for αPT and αUT for the rough classifier (i.e., 0.5 and 0.5 

respectively) and λ for PNB (i.e., 2.7 for LingSpam and 2.1 for PU1). We investigated 

different values for λ (required by the Naïve Bayes classifier in the Convergence via 
Ensemble stage) ranging from 1.0 to 6.5 in increments of 0.5. Trading off between recall 

and precision rates, we decided on 3.0 and 1.0 for λ for the LingSpam and PU1 corpora 
respectively. Table 1 summarizes all parameter values determined for the three 
techniques examined across the two different spam-filtering corpora. 

Table 1: Summary of Tuning Results 

Parameters LingSpam PU1 

αPT (for PEBL and E2) 0.5 0.5 

αUT (for PEBL and E2) 0.5 0.5 

λ (for PNB and PNB in Mapping via Ensemble stage of E2) 2.7 2.1 

λ (for Naïve Bayes in Convergence via Ensemble stage of E2) 3.0 1.0 

 
4.4 Comparative Evaluation Results 
On the basis of the parameter values determined in the tuning experiments, we evaluated 
the performance of the proposed E2 technique and the benchmark PEBL and PNB for 

each spam-filtering corpus. We first set Pr
^

(Cp) as 0.5 for PNB and then examined the 
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effects of different values for Pr
^

(Cp) on the effectiveness of PNB and the proposed E2 
technique. As we illustrate in Table 2, for the LingSpam corpus, PNB (i.e., 99.47%) 
appeared to marginally outperform E2 (i.e., 99.29%) in accuracy and both techniques in 
effect outperformed PEBL (i.e., 97.24%). On the other hand, E2 achieved the highest 
precision rate (i.e., 97.83%), whereas the precision rate attained by PEBL (i.e., 84.42%) 
was far worse than that by E2 or PNB (i.e., 96.42%). Finally, the recall rate of E2 
recorded at 90.70% and that of PNB and PEBL was 95.19% and 68.51%, respectively. 
Thus, judged from recall rate, PEBL was the worst and PNB outperformed E2. Overall, 
for the LingSpam corpus, our proposed E2 technique outperformed PEBL in all 
performance metrics employed. As Table 2 shows, for the PU1 corpus, E2 achieved a 
higher accuracy (i.e., 95.59%) than PNB did (i.e., 93.95%). As with the LingSpam corpus, 
PEBL again attained the lowest accuracy (i.e., 93.00%). On the other hand, PEBL 
achieved the highest precision rate (i.e., 89.59%), which was higher than that attained by 
E2 (i.e., 84.15%) and PNB (i.e., 84.92%). However, the recall rate of E2 recorded at 
96.90%, which was far better than that recorded by PNB and PEBL (i.e., 86.49% and 
75.01%, respectively). 
 

Table 2: Comparative Evaluation Results 

 LingSpam  PU1 

 Accuracy Precision Recall  Accuracy Precision Recall 

E2 99.29% 97.83% 90.70%  95.59% 84.15% 96.96% 
PNB 99.47% 96.42% 95.19%  93.95% 84.92% 86.49% 

PEBL 97.24% 84.42% 68.51%  93.00% 89.59% 75.01% 

 
Overall, our proposed E2 technique outperformed PEBL across the two spam-filtering 
corpora. The effectiveness (as measured by recall, precision, and accuracy) attained by 
E2 was considered comparable to that achieved by PNB for the LingSpam corpus, but 
better than that achieved by PNB for the PU1 corpus.  
 

4.5 Sensitivity of E2 and PNB to Pr
^

(Cp) 

Because both E2 and PNB involve an estimate of Pr
^

(Cp), we further examine the effects 
of its accuracy on the classification effectiveness of PNB and E2, respectively. 

Specifically, we simulate various scenarios by setting different values for Pr
^

(Cp): close to 
the true piror probability (i.e., 0.2 for the LingSpam corpus and 0.4 for the PU1 corpus), 
neutral (i.e., 0.5 that represents a scenario in which PNB’s prior probability does not 
favor any class), and far from the true prior probability (i.e., 0.9 for both spam-filtering 
corpora). As Table 3 depicts, for the LingSpam, the accuracy of E2 was 99.23%, 99.29%, 

and 99.32% when Pr
^

(Cp) = 0.2, 0.5, and 0.9, respectively. On the other hand, for the 
same corpus, PNB recorded a classification accuracy at 99.02%, 99.47%, and 98.69% 

when Pr
^

(Cp) = 0.2, 0.5, and 0.9, correspondingly. These results suggested that different 

values for Pr
^

(Cp) appeared to have marginal effects on accuracy for both techniques, 

although E2 performed slightly better than PNB in accuracy when Pr
^

(Cp) = 0.2 and 0.9. 
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The precision rate of E2 was 97.74%, 97.83%, and 98.14% when Pr
^

(Cp) = 0.2, 0.5, 0.9, 
respectively. These results suggested that the proposed E2 technique was stable over the 

range of values of Pr
^

(Cp) examined. However, the precision rate of PNB decreased from 

98.97% when Pr
^

(Cp) = 0.2 to 86.50% when Pr
^

(Cp) = 0.9. Such a large precision gap 

suggested that PNB was susceptible to Pr
^

(Cp). Moreover, our empirical evaluations also 

suggested that the recall rate attained by PNB was susceptible to Pr
^

(Cp) and that achieved 
by E2 was less sensitive. Specifically, the recall rate of E2 was 89.70%, 90.70%, and 

90.73% when Pr
^

(Cp) = 0.2, 0.5, 0.9, respectively. In contrast, PNB recorded a recall rate 

of 85.21%, 95.19%, and 94.07% when Pr
^

(Cp) = 0.2, 0.5, and 0.9, respectively. 
 

Table 3: Sensitivity of E2 and PNB to Pr
^

(Cp) for LingSpam 

  Close to true Pr(Cp) 

(i.e., Pr
^

(Cp) = 0.2) 
Pr
^

(Cp) = 0.5 Far from true Pr(Cp) 

(i.e., Pr
^

(Cp) = 0.9) 

Accuracy 99.23% 99.29% 99.32% 

Precision 97.74% 97.83% 98.14% 

E2 

Recall 89.70% 90.70% 90.73% 

Accuracy 99.02% 99.47% 98.66% 

Precision 98.97% 96.42% 86.50% 

PNB 

Recall 85.21% 95.19% 94.07% 

 
Similar evaluation results were also observed with the PU1 corpus. As Table 4 shows, the 

accuracy of E2 was 95.65%, 95.59%, and 94.44% when Pr
^

(Cp) = 0.4, 0.5, and 0.9, 
respectively, while that of PNB was 94.40%, 93.95%, and 83.99%, correspondingly. E2 

outperformed PNB in accuracy across different Pr
^

(Cp) settings. Furthermore, different 

values for Pr
^

(Cp) appeared to have marginal effects on the accuracy of E2, but had 
remarkable effects on the accuracy of PNB. Similarly, the precision and recall rates 

achieved by E2 were stable over the range of values of Pr
^

(Cp) examined. However, the 

precision rate of PNB decreased from 88.73% when Pr
^

(Cp) = 0.4 to 57.54% when Pr
^

(Cp) 
= 0.9, and the recall rate of PNB varied from 83.72% and 94.28% between these two 
extreme scenarios.  
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Table 4: Sensitivity of E2 and PNB to Pr
^

(Cp) for PU1 

  Close to true Pr(Cp) 

(i.e., Pr
^

(Cp) = 0.4) 
Pr
^

(Cp) = 0.5 Far from true Pr(Cp) 

(i.e., Pr
^

(Cp) = 0.9) 

Accuracy 95.65% 95.59% 94.44% 

Precision 84.85% 84.15% 80.19% 

E2 

Recall 96.29% 96.96% 97.83% 

Accuracy 94.40% 93.95% 83.99% 

Precision 88.73% 84.92% 57.54% 

PNB 

Recall 83.72% 86.49% 94.28% 

 
In summary, judged from all performance metrics for both spam-filtering corpora, PNB 

appeared to be susceptible to Pr
^

(Cp) and E2 remained stable over the range of values of 

Pr
^

(Cp) examined. Furthermore, when Pr
^

(Cp) was close to or did not deviate too much 
from the true class probability of the positive class, the accuracy achieved by E2 was 

largely comparable to that reached by PNB. However, when Pr
^

(Cp) was far from the true 
class probability of the positive class (i.e., in the 0.9 scenario), E2 achieved a noticeably 
higher accuracy than PNB did. Overall, these evaluation results suggested the utility of 
the ensemble strategy employed by E2. 
 
4.6 Effects of Size of Positive Training Examples 
We further examined the sensitivity of different techniques to the size of positive training 
examples. As mentioned, in all of our previous experiments, we used 40% of spam 
emails in the spam corpus as the positive training examples, another 40% of spam emails 
and 40% of legitimate emails as the unlabeled examples for training. In this experiment, 
we fixed the size of unlabeled examples for training and varied the size of positive 
training examples ranging from 40% to 10% in decrements of 5%. Using the parameter 
values determined previously, the resulting evaluation results for LingSpam are shown in 
Figures 2(a), 2(b) and 2(c) and those for PU1 are shown in Figures 2(d), 2(e), and 2(f).  
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Figure 2: Effects of Size of Positive Training Examples 
 
For the LingSpam corpus, as Figure 2(a) depicts, the accuracy of E2 was largely 
comparable to that of PNB over the range of sizes of positive training examples examined. 
The accuracy of PEBL was generally inferior to that of E2, especially when the size of 
positive training examples was between 20% and 40% of the LingSpam corpus. E2 
remained very steady in precision rate and was superior to its benchmark techniques over 
the range of sizes of positive training examples examined, as Figure 2(b) shows. PNB 
also achieved stable precision rates. As with E2, the precision rate attained by PEBL 
appeared to be largely insensitive to the size of positive training examples. However, 
with any size of positive training examples investigated, the precision rate of PEBL was 
lower than that of E2. Finally, the recall of PEBL was generally inferior to that of E2 and 
PNB when the size of positive training examples was between 20% and 40% of the 
corpus, as Figure 2(c) shows 
 
For the PU1 corpus, as Figure 2(d) depicts, the accuracy of E2 was noticeably better than 
that of PNB over the range of sizes of positive training examples examined. As with the 
LingSpam corpus, the accuracy of PEBL was generally inferior to that of E2 over the 
range of sizes of positive training examples. With respect to precision (as Figure 2(e) 
shows), E2 was superior to its benchmark techniques when the size of positive training 
examples was lower than 25% and was comparable to its benchmark techniques when the 
size of positive training examples was higher than 30%. Finally, the trend of recall rate of 
each technique (as Figure 2(f) shows) was similar to that of accuracy rate. The recall rates 
of both PNB and PEBL were inferior to that of E2 over the range of sizes of positive 
training examples examined.  
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In summary, the evaluation results on both spam-filtering corpora showed that E2 
achieved better performance than PNB (measured by accuracy, precision rate, and recall 
rate) across most of sizes of positive training examples investigated. Furthermore, E2 
outperformed PEBL in precision rate and recall rate. Such evaluation results, again, 
suggested the utility of the ensemble strategy employed by the proposed E2 technique. 
 

5. Conclusion and Future Research Directions 
In many spam filtering scenarios, obtaining legitimate emails for training purpose is more 
difficult than collecting spam and unclassified emails. Hence, it would be more 
appropriate to construct a classification model for spam filtering from positive (i.e., spam 
emails) and unlabeled instances only. Several single-class learning techniques that 
include PNB and PEBL have been proposed in the literature. However, they incur 
fundamental limitations when applying to spam filtering. In this study, we propose and 
develop an ensemble approach, referred to as E2, to address the PNB’s sensitivity to the 

estimate Pr
^

(Cp) and the PEBL’s susceptibility to the accuracy of the initial set of “strong 
negative” examples. Specifically, we follow the two-stage framework of PEBL and 
extend each stage with an ensemble strategy. Our empirical evaluation results on two 
spam-filtering corpora suggest that the proposed E2 technique exhibits more stable and 
reliable performance than its benchmark techniques (i.e., PNB and PEBL). 
 
Some additional research works related to this study might include the followings. First, 

even though the proposed E2 technique is less insensitive to Pr
^

(Cp) (i.e., the estimate of 

the prior probability of the spam class), inaccurate estimates of Pr
^

(Cp), to some extent, 
have negative effects on the precision of E2. Because the percentage of spam emails is 

highly variable over time, development of a dynamic adjustment mechanism for Pr
^

(Cp) is 
essential to the proposed E2 technique. Second, the topic of spam emails is also changing 
over time. Thus, the adaptive learning ability of the single-class learning technique would 
be considered desirable in the spam filtering context. Third, our empirical evaluation 
results show that the performance of all techniques investigated is unsatisfactory when 
the size of positive training examples is very small. In the future research work, it would 
be important to enhance the effectiveness of the proposed E2 technique to address the 
learning from a small size of positive training examples. Fourth, in this study, we use 
only SVM, Naive Bayes, and C4.5 as the base classifiers in the Convergence via 
Ensemble stage of E2. Inclusion and empirical evaluation of different classifiers would 
represent an interesting future research direction. Finally, in this study, we only consider 
monolingual spam filtering problem. In the future, the proposed E2 technique should be 
extended to deal with multilingual spam filtering on the basis of positive and unlabeled 
training emails. 
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