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Abstract

For the detection of contaminations in urban water supply networks we introduce a continuous

optimal control model governed by partial differential equations. We derive a linear mixed-

integer model by discretization of the dynamics of the partial differential equations and by

approximations to the cost functional. Finally, we present numerical results for artificial and

real-world networks.

1 Introduction

Since the early days of Newton and Leibnitz, phenomena involving physical laws such as

growth and decay, transport of mass, or conservation of energy are described by differential

equations. In our days, continuous models based on partial differential equations (PDEs) are

used in various areas of applications, for example, in the simulation of production processes,

the understanding of traffic flow in street networks, or the simulation and control of the energy

transport from power plants to customers. PDEs provide the finest level of description for many
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physical and economical processes. In particular, for simulations of large quantities, only the

continuous formulations of the PDE models can provide an accurate description of the underly-

ing physical process. Usually, these models rely on quantities such as density (parts per length)

and flux (parts per time unit), where the involved parts are not considered individually, but as

a continuum. Moreover, we distinguish between simulation and optimization in the following

sense. The simulation of a physical process is given by a solution to the PDE model under some

fixed parameters, e.g., workload of machines, state of compressors in gas networks or demands

in water pipeline systems. Thus, simulation means just solving the PDE model, which in itself

can be difficult and time-consuming. On the other hand, the optimization of processes which are

described by a continuous PDE model tries to identify an optimal set of parameters or optimal

states in the system, with respect to an objective function or functional. There are now several

approaches to achieve this task. The perhaps most simple one is the so-called black-box ap-

proach, which is applicable to any simulation process. It consists in successively simulating the

PDE model and afterwards gradually changing the input parameters until an “optimal” solution

is found. Of course, this heuristic only leads to local optimal solutions without any solution

guarantee. Additionally, this approach can be very time consuming in practice.

The new aspect of our work is to introduce a relationship between continuous models and mixed

integer programming (MIP) models. The advantage of this MIP approach to PDE models is

twofold. First, in many cases MIPs can be solved even for large scale instances in reasonable

time by state-of-the-art numerical solvers. Second, the solutions come with a quality warranty,

that is, either optimality is proven or an estimation of the optimality gap for the best-known

solution is returned. Linear mixed-integer programming can be applied in many ways to contin-

uous PDE models. Below we present a case study related to water quality management. There,

we derive a simple PDE model including all major effects and achieve a linear mixed-integer

reformulation by a discretization of the PDE model.

The article is organized as follows. We introduce to water quality management in Section 2.

We present in Section 3 the continuous water contamination model and in Section 4 the corre-

sponding MIP model. Numerical results for the MIP model are given in Section 5. In Section 6

other areas of application are described. We end up with conclusions in Section 7.
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2 Water quality management

Water quality management has many facets. Here we consider the transport of a containment

in water networks. Water networks can be understood in a broad sense ranging from municipal

water networks supplying a major city up to networks of rivers. Since water is the source of life,

the control of water quality has always been a topic of interest. Possible threats to water qual-

ity are intentional or accidental contaminations by industry, farms or individual persons. We

discuss the problem of identifying sources of containments from given measurements. The net-

works under investigation are of large scale, which makes it impossible to prevent containments

by physical security. We also assume that the measure stations are expensive, such that only a

small number of sensors exists throughout the network, which provide information on possible

containments. Based on this information we want to identify the origin of the containment. A

fast and reliable determination of the sources allows to start activities to prevent further contain-

ment. To this end, we present a model for simulating the spreading of the containment within

the network, and extend it to an optimization problem for identifying the sources’ locations.

The literature on propagation of water and containments through pipes and networks is rich and

mathematical approaches for simulation can be found, for example, in [GuLe2003], [GLS2003],

[RBA1993], and the references therein. The first researchers who studied the inverse prob-

lem, i.e., finding the sources and transient inflow profiles that correspond to given mea-

surements, were Laird, Biegler, and van Bloemen Waanders (see [LBV2006a], [LBV2006b],

[LBVB2005]). They formulate the problem as a continuous optimization problem which is

similar to our approach. The main difference to the approach presented in the sequel is that

they solve the problem using non-linear optimization techniques. Since the resulting non-linear

programming problems are of enormous size, only small instances can be solved to optimality.

3 The Continuous PDE Model

Before we introduce the source detection problem, we provide a model for transport of contain-

ment inside the network, similar to the model presented in [LBVB2005].
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3.1 Simulation

We model the water network as a finite graph (V ,A) with node set V and arc set A. We cannot

consider each atom of the containment individually, since there are too many of them. Hence

it is natural to analyze the flux f j of the contamination on arc j. Flux means the amount

of containment per unit time. The flux depends on the density (or concentration) cj of the

containment, i.e., the amount of containment per unit length. We assume that the containment

is totally dissolved in water. If uj denotes the velocity (or speed) of water in arc j (in length per

time), then the flux of containment is given by uj · cj . Since the whole water network system

is dynamic, the density itself is not a constant, but depending on and changing with the time

t. It is also depending on the space, because the density of the containment can be different

in different parts of the network (it can even vary within one arc). If we model the arcs as

one-dimensional (i.e., the atoms of the containment cannot overtake each other), then a single

coordinate x ∈ [aj, bj] is sufficient to uniquely determine every location within the arc. Hence

we have cj = cj(x, t) and uj = uj(x, t), and thus

f j(cj(x, t)) = uj(x, t) · cj(x, t). (1)

cj(x, t) describes the concentration of the containment at position x at time t, and uj(x, t)

describes the velocity, also depending on the position and the time. Note that the signum of

uj(x, t) indicates the direction of the flow. For uj(x, t) > 0 the flow is in direction of the arc,

for uj(x, t) < 0 the water flows in the opposite direction. We assume that for every time step

t we either have uj(x, t) ≥ 0 or uj(x, t) ≤ 0, that means, the direction of the flow does not

change within the arc.

At time t the amount of containment in a section of some arc j between positions x1 and x2 is

given by ∫ x2

x1

cj(x, t) dx = amount of containment between x1 and x2 at time t. (2)

In the same way, we can express how many containment flows through position x during a time

interval from t1 to t2:∫ t2

t1

f j(cj(x, t)) dt = amount of containment passing position x during t1 and t2. (3)
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Now we have a mass balance, that is, the amount of containment on the arc between x1 and

x2 at time t2 equals the amount of containment in this section at time t1 plus the inflow at x1

minus the outflow at x2 during the time interval from t1 to t2. We assume that no water is lost

or produced during the transport. Expressed as an equation, the material balance can be stated

as

∫ x2

x1

cj(x, t2) dx =

∫ x2

x1

cj(x, t1) dx +

∫ t2

t1

f j(cj(x1, t)) dt −
∫ t2

t1

f j(cj(x2, t)) dt. (4)

From the fundamental theorem of calculus we obtain

cj(x, t2) − cj(x, t1) =

∫ t2

t1

∂

∂t
cj(x, t) dt, (5)

f j(cj(x1, t)) − f j(cj(x2, t)) = −
∫ x2

x1

∂

∂x
f j(cj(x, t)) dx, (6)

which implies

∫ x2

x1

cj(x, t2) dx −
∫ x2

x1

cj(x, t1) dx =

∫ x2

x1

∫ t2

t1

∂

∂t
cj(x, t) dt dx, (7)

∫ t2

t1

f j(cj(x1, t)) dt −
∫ t2

t1

f j(cj(x2, t)) dt = −
∫ t2

t1

∫ x2

x1

∂

∂x
f j(cj(x, t)) dx dt. (8)

Combining these results with the material balance equation (4) yields

∫ x2

x1

∫ t2

t1

∂

∂t
cj(x, t) dt dx +

∫ t2

t1

∫ x2

x1

∂

∂x
f j(cj(x, t)) dx dt = 0. (9)

If we assume that equality (9) holds for every segment x1, x2 in the processor and for each time

interval t1, t2, and if the function cj(x, t) and its partial derivatives of order one are continuous

functions, then from an elementary integration property of continuous functions we obtain that

∂

∂t
cj(x, t) +

∂

∂x
f j(cj(x, t)) = 0. (10)

Moreover, the containment can react with the surrounding according to some chemical laws

expressed for the sake of simplicity in an additional equation as

∂

∂t
cj(x, t) = Rj(cj(x, t)), (11)
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where Rj is a function depending only on the density of the containment and the arc (i.e.,

the size of the water pipe’s cross section). In the case under consideration we use a decay of

containment over time and, to be more precise, we assume that

∂

∂t
cj(x, t) = −rcj(x, t), (12)

for some constant r � 1.

It remains to prescribe the coupling of the network pipes at nodes v ∈ V . Denote by Aj the

cross section area of the water pipe. Denote by

δ+(v, t) := {(w, v) ∈ A : u(w,v)(x, t) > 0} ∪ {(v, w) ∈ A : u(v,w)(x, t) < 0} (13)

the set of incoming arcs to v, and by

δ−(v, t) := {(v, w) ∈ A : u(v,w)(x, t) > 0} ∪ {(w, v) ∈ A : u(w,v)(x, t) < 0} (14)

the set of outgoing arcs. By ej(t) we denote the coordinate of the arc’s outflow end, that is,

ej(t) := bj for uj(x, t) > 0 and ej(t) := aj for uj(x, t) < 0. The amount of water leaving

the arc is proportional to the cross section area and the velocity, that is, it is proportional to

Aj|uj(ej(t), t)|. We assume that at each node v the total incoming flux

∑
j∈δ+(v,t)

Aj|uj(ej(t), t)| (15)

is distributed proportional to the ratio of the outgoing fluxes

Ai|ui(ei(t), t)|∑
j∈δ−(v,t)

Aj|uj(ej(t), t)| , ∀ i ∈ δ−(v, t). (16)

That is, in the simplest possible case of water pipes of the same diameter and having the same

velocity, we would observe a distribution with the same flow on each outgoing pipe. Since the

containment is dissolved in the water, it is natural to assume that the concentration traveling

along with the water flow is distributed exactly as the water flow itself. At the node v ∈ V we

prescribe the inflow of the containment by functions qv(t). Hence, we obtain

ci(ei(t), t) =

qv(t) +
∑

j∈δ+(v,t)

Aj|uj(ej(t), t)|cj(ej(t), t)

∑
j∈δ−(v,t)

Aj|uj(ej(t), t)| , ∀ i ∈ δ−(v, t). (17)
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This setting guarantees conservation of the containment through nodes, because adding all in-

coming arcs i ∈ δ−(v, t) yields the flow conservation condition

qv(t) +
∑

j∈δ+(v,t)

Aj|uj(e
j(t), t)|cj(ej(t), t) =

∑
j∈δ−(v,t)

Aj|uj(ej(t), t)|cj(ej(t), t). (18)

Finally, we assume that initially at t = 0, no containment is present on the arcs of the network,

cj(x, 0) = 0. (19)

3.2 Optimization

For the presented model we formulate the source inversion problem. Given measurements of

containment c̄j(x, t) for j ∈ Ameas we try to identify sources qv for v ∈ V such that the time

evolved concentrations cj coincide with the measurements on arcs j ∈ Ameas. Moreover, we

identify the time-evolution of these sources, i.e., we are looking for functions t → qv(t).

We introduce an objective function measuring the distance between the predicted contamina-

tion and its measured value. There are several possible choices to define a measure for the

distance between predicted and measured contamination. For example, [LBV2006a] proposed

to measure the time and spaced averaged quantity

∑
j∈Ameas

∫ T

0

∫ bj

aj

(
cj(x, t) − c̄j(x, t)

)2
dx dt (20)

Therein, T denotes the total time horizon of the measurements. We assume that the mea-

surements c̄j are given for all points in space and time on pipe j ∈ Ameas. If we only have

information on a single point x̄j of this pipe, then a possible objective functional might also be

given by ∑
j∈Ameas

∫ T

0

(
cj(x̄j, t) − c̄j(x̄j, t)

)2
dt + ρ

∑
v∈V

∫ T

0

qv(t) dt (21)

for some ρ > 0. This penalize the number of sources and its intensity, see again [LBVB2005]

and the references therein.

In view of the latter mixed-integer approximation we propose the following objective functional

also measuring the difference between simulated and measured contamination and penalizing

the number of sources:
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∑
j∈Ameas

max
t∈(0,T )

(cj(x̄j, t) − c̄j(x̄j, t)) + ρ
∑
v∈V

max
t∈(0,T )

qv(t). (22)

4 A Linear Mixed-Integer Model

For a numerical solution of the continuous model in the case of large scale networks and in

near real-time, we reformulate this model as a linear mixed-integer program. We first transform

the partial differential equations for the transport (10) and the decay (12) into a set of linear

constraints. For the time derivative we use the forward difference approximation

∂

∂t
cj(x, t) ≈ cj(x, t + Δt) − cj(x, t)

Δt
, (23)

whereas for the spatial derivative we take the backward difference approximation

∂

∂x
cj(x, t) ≈ cj(x, t) − cj(x − Δx, t)

Δx
. (24)

We introduce a discretization for the time as tn := nΔt for n ∈ {0, 1, . . . , N}, where Δt is

a constant step size (see below), and N = 
T/Δt�. From now on, the time is not running

continuously, but in discrete time steps.

For each arc j of the water network we introduce three variables cj,in
t , cj,mid

t and cj,out
t , corre-

sponding to the containment concentration at three points inside the water pipe. The direction

of the flow plays an important role, so we make a distinction between the cases uj(x, t) ≥ 0

and uj(x, t) ≤ 0. In the first case, we take cj,in
n := cj(aj, tn), cj,mid

n := cj(aj+bj

2
, tn), and

cj,out
n := cj(b

j, tn), and in the second case we have cj,in
n := cj(bj, tn), cj,mid

n as before, and

cj,out
n := cj(a

j, tn). Accordingly, we use uj,in
n , uj,mid

n , uj,out
n as abbreviations for the function

values uj(x, t) at the corresponding coordinates. Note that by this settings, we implicitely in-

troduced a spatial discretization of (Δx)j := bj−aj

2
. Using these variables and the difference

approximations (23) and (24), the so-called upwind discretization of (10) reads

cj,mid
n+1 = cj,mid

n − Δt

(Δx)j
uj,mid

n

(
cj,mid
n − cj,in

n

)
, (25a)

cj,out
n+1 = cj,out

n − Δt

(Δx)j
uj,out

n

(
cj,out
n − cj,mid

n

)
. (25b)

508



To avoid numerical problems, that is, for the stability of the discretization, the CFL condition

Δt

(Δx)j
|uj(x, t)| ≤ 1 (26)

is required (named after Courant, Friedrichs, and Lewy). To fulfill the CFL condition we thus

set

Δt := min
j

⎛
⎝ (Δx)j

max
x,t

|uj(x, t)|

⎞
⎠ . (27)

Using (23) we obtain the following discretization for the decay equation (12):

cj(x, t + Δt) − cj(x, t)

Δt
= −rcj(x, t), (28)

or

cj(x, t + Δt) = (1 − rΔt)cj(x, t). (29)

Putting together (25) and (29), we arrive at

cj,mid
n+1 = (1 − rΔt)

(
cj,mid
n − Δt

(Δx)j
uj,mid

n

(
cj,mid
n − cj,in

n

))
, (30a)

cj,out
n+1 = (1 − rΔt)

(
cj,out
n − Δt

(Δx)j
uj,out

n

(
cj,out
n − cj,mid

n

))
. (30b)

We remark that the proposed upwind discretization of the transport equation is just one of

many possibilities of finite-difference approaches to this partial differential equation, see e.g.

[Leve1990], [SUP2002], [RBA1993], [RoBo1996]. In particular, [LBV2006a] propose a La-

grangian method as discretization of the transport equation. For this particularly simple advec-

tion equations both discretizations yield the same results. However, we used the upwind method

in order to incorporate the decay of the containment more easily.

The unknown possible sources qj(t) are discretized using the variables qj
n := qj(tn). The

discretization of the coupling (17) is straight-forward and obtained as

ci,in
n+1 =

qj
n +

∑
j∈δ+(v,tn)

Aj|ui,out
n |cj,out

n

∑
j∈δ−(v,tn)

Aj|uj,in
n | , ∀ i ∈ δ−(v, tn). (31)

Finally, the objective functional (22) needs to be discretized. To this end, we use the following

linear objective function:
∑

j∈Ameas

∑
n

|cj,mid
n − cj,mid

n |Δt + ρ
∑

v

θv. (32)
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Here θv ∈ {0, 1} is a binary decision variable indicating whether there is an inflow of contain-

ment at node v. This variable is coupled to the inflow via

qv
n ≤ Mθv, (33)

where M is a sufficiently large constant.

5 Computational Results for Water Quality Management

We present computational results on artificial test networks in Section 5.1 to computationally

evaluate the complexity of the involved mixed-integer programming problems. In Section 5.2

we show how to find the containment source within a real-world network using the presented

approach.

5.1 Simulation and Optimization of Test Networks

Consider the small test net shown in Figure 1. Within this network, the water is always circulat-

ing. Every arc has the same length and cross section. We assume that the velocity is a constant

function in space and time. As decay rate we select r such that 1 − rΔt = 0.98, that is, after

each time step 2% of the containment vanished. At time t = 0 we inject the containment at

the node marked with q of this network for the 5 next time steps. On the arc marked with m

we measure the containment flow and, based on this measured informations, try to estimate the

transient inflow profile. The time horizon for the simulation is T := 100 time steps. The results

are shown in Figure 2. The left picture shows the inflow profile q, the next four picture show

the cj,mid values on arcs 1, . . . , 4.

The next computational tests aim at a comparison of different algorithms for linear program-

ming. With a branch-and-bound approach for the solution of the MIP models, the integrality

condition on the variables is dropped at first. The integrality is then reintroduced via intera-

tively selecting some node v ∈ V , and creating two subproblems, one with θv = 0 and the other

with θv = 1. For the numerical solution of the resulting linear programs, several algorithms

are known. Here we test the primal and the dual simplex, the network simplex, and the barrier
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2

1

4

m

3

q

Figure 1: Test network with four arcs i = 1, 2, 3, 4.

Figure 2: Optimization results for q and arcs i = 1, 2, 3, 4 (from left to right).

method (an interior point algorithm), which can all be found within the ILOG Cplex 10 solver

suite. Moreover, we want to test the behaviour of these algorithms on instances of different sizes

with respect to the number of nodes and the number of time steps. The test networks are rectan-

gular compositions of the network shown in Figure 1 (which in this sense is a 2 × 2 network).

The computational results (solution times in seconds on a standard 2.4 GHz AMD4800X2 per-

sonal computer) for a single linear programming relaxation can be found in Table 1.

5.2 Case Study: The Macao Water Supply Network

As a real-world case study we consider the water supply backbone network of the Chinese town

Macao, which is inhabited by around half a million people. The network has today a length
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size T primal dual network barrier

5 × 5 50 0.1 0.1 0.1 0.1

5 × 5 100 0.2 0.2 0.2 0.2

5 × 5 250 0.4 0.4 0.4 0.4

10 × 10 50 0.7 0.7 0.6 3.7

10 × 10 100 1.0 0.9 1.0 4.0

10 × 10 250 2.1 1.8 1.9 5.1

15 × 15 50 4.1 4.4 6.7 33.5

15 × 15 100 6.9 6.6 9.8 57.6

15 × 15 250 9.2 8.9 12.1 59.8

20 × 20 50 4.3 5.3 8.0 24.5

20 × 20 100 23.3 37.9 58.4 506.2

20 × 20 250 27.4 41.6 62.3 401.5

Table 1: Results for various network sizes, time horizons, and LP algorithms.

of about 410 km (for further details see [MACW2006]). The entire backbone network of the

three neighbouring cities Macao, Taipa, and Coloane is modeled as a graph that consists of 377

nodes and 601 arcs (see Figure 5). The subnet belonging to Macao is reprensented by a graph

having 237 nodes and 407 arcs. The simulation of a contamination is solved on this graph.

We now induce a containment in the network at a certain arc, marked with a “q” in Figure 6.

On two other arcs, marked with an “m”, the containment is measured. The distribution of the

containment over the time within the network is shown in Figure 6, which is a magnification of

the rectangular region depicted in Figure 5. Each time step in the discrete simulation represents

5 minutes of real time.

We now demonstrate what happens within the branch-and-bound algorithm, when the decision

variable θv is set to 1 for some arc v. If the inflow originates in this node, then the measured

profiles and the resulting concentration profiles on j ∈ Ameas coincide (see middle and right

pictures in Figure 3). The inflow profile of the containment at this node is shown on the left

picture in Figure 3.
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Figure 3: Optimization results for the “right” inflow node

If on the other hand the wrong variable θv was selected for branching, then in general we have

a gap between the measured and the resulting concentrations (see middle and right picture in

Figure 4). This gap leads to a high objective function value, hence the search tree will be pruned

as soon as the right node (as above) was found. The inflow profile of the containment of the

selected node also has a “strange” appearence (see left picture in Figure 4).

Figure 4: Optimization results for the “wrong” inflow node

6 Other Areas of Application

The applicability of linear mixed-integer programming in continuous PDE optimization is by

far not limited to water quality management. In this section we briefly present two other appli-

cations where the linear mixed-integer approximation haven been successfully applied in order

to simulate and optimize processes on large networks.
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6.1 Traffic Flow

The first example is related to traffic flow control for road networks. We briefly summarize

the approach and findings of [FHKM2004]. Therein, the starting point has been a continuous

model based on partial differential equations for the evolution of traffic flow in networks. The

partial differential equation is nonlinear and differs from the one discussed above. Moreover,

at each traffic intersection derivation suggestions to drivers are modeled as controls. Then, the

detailed model is a coupled system of nonlinear partial differential equations with nonlinear

constraints at the road intersections. The task is now to utilize the traffic network in such

way, that all cars reach their final destination at the earliest possible time. This determines the

derivation suggestions at each single intersection. The difficulty stems from the fact that, due to

the partial differential equations which control the dynamics on each arc, a higher utilization of

the road yield a lower average traveling speed. Furthermore, for an optimization approach the

computational costs for solving the coupled system of equations are too expensive. Therefore,

several model reductions have been performed and a simplified dynamics on the roads and

at intersections was derived. These can be seen as a coarse-grid discretization of the partial

differential equation and an additional averaging for estimating the conditions at intersections.

In the next step, all nonlinearities have been approximated by linear equations and binary and

real variables. A qualitative comparison showed the applicability of the simplified models and

in particular in free flow traffic situations these models perform comparable with the models

based on partial differential equations. Moreover, these linear mixed-integer models allowed

for optimization of networks of realistic size. For further details we refer to [FHKM2004].

6.2 Production Planning

Production planning in supply chain management has been investigated in relation with contin-

uous and discrete models. In [ADR2006] a completely new access to production planning is

introduced. There, a linear partial differential equation for the conservation of goods is derived.

This equation is assumed to hold for each supplier. For the modelling of a whole supply network

buffering queues are introduced in front of each supplier. Thus, the supply network consists of
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several suppliers which all have the possibility to store goods. The coupled system of partial

and ordinary differential equations describing the supply network allows for simulating large

amounts of goods over a long time. In this regard, an optimal control problem is composed

of linear (PDE) and nonlinear (queues) constraints. The objective function is also linear and

given by maximizing the output and minimizing the amount of goods in all queues. Possible

controlling parameters are the distribution rates (used on each vertex where the flux of one sup-

plier is splitted into two new suppliers) or the processing velocities. Similar to the traffic flow

control problem we discretize the equations on a coarse grid and substitute the nonlinearity by

using binary variables. This leads to a linear mixed-integer programming model. In cases of

simple networks where only one supplier is linked to one supplier the continuous model and the

MIP model yield same results. A nice poperty of the MIP is the easy extensibility to additional

constraints such as the maintenance of suppliers or bounded queues. For further details we refer

to [GHK2005], [GHK2006].

7 Conclusions

In this work, we pointed out the relation between continuous models, governed by partial differ-

ential equations, and linear mixed-integer programming. This relation is beared on a coarse-grid

discretization of the partial differential equation. This technique guarantees the conservation of

the original dynamics and also allows for large scale network simulation and optimization.

Moreover, the presented way is different from other approaches by Laird, Biegler et al. where

non-linear optimization techniques and Lagrangian discretization are applied.

We gave several fields of application where this relation can be used to solve optimal control

problems with partial differential equations as constraints. An emphasis was put on the con-

tainment source determination in water quality management. In conclusion, we presented a

new approach using MIP models, linear programming, and branch-and-bound algorithms for

solving continuous optimal control problems.
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Figure 5: The water supply backbone network of Macao, Taipa, and Coloane.

Figure 6: Containment simulation for t = 9, 28, 47, 66 (from left to right).
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