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Order-driven planning in build-to-order scenarios 

Thomas Volling, Thomas Spengler 

Department of Production and Logistics Management  
Technical University Braunschweig 

38106 Braunschweig 
{t.volling, t.spengler}@tu-braunschweig.de 

Abstract  

The adoption of build-to-order order fulfillment processes gives rise to a paradigm shift in pro-

duction planning. Since all business is linked to customer orders, it is the order-driven planning 

activities that determine the success of operations. Therefore, a clear understanding of the asso-

ciated planning tasks order promising and master production scheduling as well as their dy-

namic interaction is essential. Based on an analysis of the decision situation we provide a hier-

archical framework comprising quantitative models for order promising and master production 

scheduling. The approach is evaluated using simulative analysis.  

1 Introduction 

The implementation of customer-oriented manufacturing strategies has frequently been associ-

ated with significant gains in profit and a competitive edge [GuNg05; ShLa05]. Yet, striving to 

serve high volume markets with individualized or customized products, new manufacturing 

concepts are needed. By switching to build-to-order (BTO) order fulfillment processes, compa-

nies seek to likewise benefit from characteristics like scale effects, standardized processes, and a 

high quality attributed to high volume make-to-stock strategies as well as from the high flexibil-

ity to adopt to diverse and changing market demand of make-to-order strategies [Pine99]. In 

doing so, mixed model assembly systems are the dominating production typology [BoFS06]. 

The constituting characteristic of this type is the coupling of assembly stations to flow-lines in a 

serial manner in accordance with the product structure. Mixed model assembly is thereby dis-

tinct from specialized flow-lines by the fact that a number of variants, or models respectively, is 

manufactured on the same production line. Facing heterogeneous production sequences, how-
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ever, technological and organizational set-up efforts between consecutive models need to be 

reduced drastically. As a consequence, orders can be produced in lot sizes of one piece without 

loss of profitability [Scho99, 7].1 Yet, considering the varying work content of different models 

at certain assembly stations, not every sequence is feasible given a line set-up. This problem of 

determining feasible production sequences is referred to as model-mix planning [WeKi64]. Se-

quence planning has attracted a lot of attention within the operations management community. 

The major implication of BTO, however, lies in the reduction of decoupling mechanisms 

against demand characteristics [GuNg05]. Production activities are thus subject to the induced 

variability and dynamics of the market. To be specific, these are characterized by the timing and 

characteristics of customer requests (i.e. the demand sequence), the resulting model-mix (de-

mand structure), and the aggregated demand per period (demand level). At the same time, real-

world production systems are characterized by a limited flexibility in terms of production and 

procurement capabilities. The synchronization of capacity with the volatility of the environment 

is therefore not viable. Instead, adequate control concepts are needed to match the supply of 

resources with the demand for products. These encompass policies for the determination of due 

dates in response to customer requests as well as for the consolidation of those promised orders 

into production plans. The associated planning tasks are referred to as order based planning.  

Commercial applications to support order based planning have been introduced by leading 

business software providers as integral part of advanced planning and scheduling systems 

(APS).2 Yet, to our knowledge, there is no analysis available boldfacing the performance of 

such systems in dynamic environments such as BTO scenarios. The answer to this question is in 

particular important, since the decision situation in real-world settings can be described by the 

complex interaction of planning functions, a high number of potentially influential parameters 

as well as an unknown dynamic performance of the decision support systems.  

Against this background, the aim of this paper is to provide a hierarchical framework for order 

based planning in BTO scenarios, to develop mathematical programs for that framework and to 

evaluate the approach using simulation. The remainder is organized as follows: In section 2 we 

will highlight the decision situation of order based planning in BTO scenarios and review prior 

work on the subject. Based on that, models will be presented in section 3 and analyzed using 

simulation in section 4. Some concluding remarks are given in section 5. 

                                                
1 To be more specific, mixed-model flow lines typically require for an - on average - levelled load of their consti-
tuting stations. This prohibits extended sequences with similar capacity demand and therefore batch production.   
2 e.g. Real Time Positioning [SAP05], Global Order Promising [Orac05] 
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2 Decision Situation 

Order based planning is distinct to its anticipative or push-based counterpart as to its reactive 

character (i.e. it regards orders placed instead of forecasted demand). The decision situation can 

thus be characterized as follows: In order to cope with the restricted capabilities to adjust ca-

pacities, the mid-term coordination on the basis of forecasts and orders at hand is essential. This 

results in aggregated production plans, which serve as cornerstones to synchronise further busi-

ness functions like purchasing and capacity planning. The realisation of market demand in 

terms of customer orders requires for an adequate reaction. This function is usually denomi-

nated as order promising (OP) and comprises decisions about whether to accept or deny an 

order and which due date to promise [FlMe04]. Discrepancies between forecasting and orders 

placed as well as the potentially limited level of detail of OP might require for further adjust-

ments to the plan. More specifically, promised due dates, instructions from the subordinate 

planning, characteristics of the production systems, and the ability to service new requests are to 

be taken into account. The resulting goal conflicts are to be resolved in the course of a second 

planning function called master production scheduling (MPS).  

The complexity of the decision situation requires for an adequate structuring approach. In the 

following we will therefore present a hierarchical framework for order based planning in BTO 

scenarios. This lays the basis to reflect prior work in section 2.2 and to develop and evaluate 

decision models in sections 3 and 4. 

2.1 Conceptual framework 

Architectures of hierarchical planning systems are subject of numerous studies (e.g. [FlMe03; 

VBWJ05, 8]). However, these general frameworks need to be adopted in order to adequately fit 

decision models. Figure 1 depicts a framework for order-based planning in BTO scenarios and 

its interfaces to further planning tasks. The integral components are modules for OP and MPS.  

Considering OP, requirements in terms of customer response time, the reliability and level of 

detail of the quoted offer as well as restrictions regarding the availability of resources have to be 

taken into account. Also, OP procedures usually have to cope with a high number of requests, 

which induce significant dynamics into planning. Finally, instructions from the subordinate 

demand planning (e.g. quotas regarding volumes dedicated to certain distribution channels) 

might need to be incorporated. The outcome is a pool of fully specified orders (in terms of 

product configuration and delivery date) which is transferred to MPS. More specifically, MPS 
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seeks to coordinate production, procurement, and sales on the short-run in order to facilitate 

efficient resource utilization [VBWJ05, 169; FlMe04]. Considering production and procure-

ment, a leveled demand, i.e. a stable utilization of the resources (including demand for compo-

nents) is to be achieved [EnZi98]. A specific objective could be to minimize deviations from 

specific levels of capacity utilization, which determine efficient operating points of the produc-

tion line [Bola03]. The same holds true for component demand. Usually minimal and maximal 

levels are agreed on by means of mid-term supply contracts. With respect to sales, the ability to 

service newly arriving orders is of great importance. That means that MPS ought to minimize 

bottlenecks. Planning objects are specified orders, which are to be assigned to production lines 

and periods. Capacities are usually treated as fixed, as provided by the master production plan-

ning [Scho99, 111]. Executing MPS results in aggregated plans that are passed on to sequencing 

and material requirements planning for further detailing. 

With an increasing number of orders becoming known as time progresses, the question of iden-

tifying adequate re-planning frequencies arises. A high frequency results in a high number of 

changes to the plan, which contradicts the aim of a stable coordination. A low frequency, on the 

contrary, potentially results in a delayed transfer of planning information. The integrated as-

sessment of OP and MPS therefore seems to be inappropriate.  
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Figure 1: Framework for order based planning in BTO scenarios 

 
Reconsidering the proposed framework, the decision situation can be interpreted as a hierarchi-

cal system composed of OP and MPS [SpVR06]. Referring to the work from [Schn03] this set-

ting is called tactical-operational. More specifically, OP determines due dates for newly arriving 

orders (the so called factual instruction) considering the information available at the times of its 

execution (e.g. at each order arrival). In a second frequency, but usually at a later point in time, 
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MPS is executed, given the prior instructions, i.e. all promised orders up to that point in time, 

with the aim to assign these to planning periods (the final instruction). The decision of MPS is 

thereby dependent on that of OP, such that it constitutes the operational level within the hori-

zontal hierarchy while OP demarks the tactical level. The final instruction, i.e. the aggregated 

production plan, depends on both decisions.  
 

2.2 Related work 

Approaches to order based planning in BTO scenarios are subject of two streams of research. 

These have on the one hand evolved from work on mixed-model assembly line balancing and 

sequencing and were on the other developed under the denomination available-to-promise 

(ATP) as part of work on hierarchical production planning and control systems (e.g. APS).  

Regarding the former, aspects of order based planning have been incorporated into sequencing, 

i.e. the determination of optimal production sequences by means of model-mix planning. These 

approaches are, however, based on the assumption, that orders are exogenously given [Scho99, 

107]. With respect to the framework introduced above, this means, that only the MPS-

functionality is being investigated. Also, considering planning horizons needed for the reason-

able leveling of production, the computational burden to solve the detailed sequencing problems 

is prohibitive.3 Therefore aggregated models have been presented in recent contributions.  

[Bola03] provides solution procedures for the problem to select orders to be produced in the 

upcoming period out of a pool of promised orders. The objective is to minimize delivery date 

dependent costs. Leveling aspects are incorporated in setting ranges for acceptable capacity 

utilization levels. Potential gains of a branch & bound procedure to solve the resulting multi-

dimensional knapsack problem are illustrated by a numerical analysis. In a recent publication 

[Boys05] presents a model that explicitly incorporates desired due dates into MPS for mixed-

model assembly. The objective is to minimize delivery dependent costs. Also extensions to line 

assignment and leveling are provided. Both approaches do not distinguish between OP and 

MPS. The requirements of order based planning are therefore only partly satisfied.  

ATP approaches, on the contrary, focus on decision support for OP. In analogy to the ap-

proaches discussed before, optimization based batch ATP aims at processing a pool of specified 

but not yet promised orders at hand (i.e. either rejecting or quoting each order). The objective is 

to maximize profit. Results include promised due dates and delivery conditions. Optimizing 
                                                
3 Even the sequencing problem for single stations is NP-hard [Tsai95]. 
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batch models have been discussed by [ChZB02] as well as [Pibe05]. These models seek to 

maximize contribution margin with respect to real (e.g. holding, production, and procurement 

costs) and ‘soft costs’ (e.g. costs for late delivery or for low capacity utilization). A central 

premise of those approaches is, that in the course of sequential approach, promised due dates 

and quantities are treated as fixed restrictions for subsequent planning cycles. Accordingly, 

good results have been numerically proven for rather large batching intervals. A reduction of 

the intervals, however, results in the significant deterioration of the planning performance. A 

similar model structure is introduced by [FlMe04]. To avoid the illustrated drawbacks of short 

batching intervals, the authors propose the coupling with MPS. They however do not elaborate 

on the consequences in terms of modeling and performance. Rule based batch ATP aims at 

defining decision rules for the acceptance of orders [KiSc05]. A hierarchical approach is pro-

vided by [JSJK02] for the case of LCD production. The authors differentiate between a rule-

based OP routine and a heuristic to determine the unused capacity based on a detailed schedule 

in a job-shop setting. The approach, however, does not incorporate the specific characteristics of 

BTO as described above. This in particular holds true for the requirements of high variance 

flow-shop production. A drawback of batch approaches is that they do not support the interac-

tion between customer and company. Rule-based real-time approaches in contrast build on an 

ad-hoc assessment of the ability to deliver at a certain point in time. A recent review is given by 

[MGGP04]. Various extensions incorporating sophisticated statistics as well as stochastic influ-

ences have been published (e.g. [WGHH04]). The aggregated assessment seems adequate for 

decoupled production systems. It in turn does not reflect aspects like leveling, which are special 

to BTO settings. Optimization based real-time approaches have to our knowledge only been 

presented for academic examples (e.g. [Kate94]). The objective is to quickly determine detailed 

schedules. Due to the complexity of the problem the scalability of the approach is limited.  

To sum up, knowledge on the performance of planning schemes, in particular regarding the 

interplay of OP and MPS, is limited. In the following we will therefore provide a mathematical 

program for order based planning in BTO scenarios. 

3 Modeling 

An adequate model to support order based planning in BTO scenarios has to cope with the di-

vergent requirements of the customer interaction on the one hand and resource related aspects 
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on the other. We therefore chose a hierarchical approach, comprising a real-time ATP model as 

well as a MPS model for mixed-model assembly planning on rolling horizons.  

3.1 The order acceptance problem 

Time is discretized in equidistance planning periods t=1,2,…,Tmax. Orders i (i=1,...,I) arrive 

randomly and are evaluated individually upon their arrival. Evaluation thereby refers to the de-

termination of a production period τ ( maxTt,...,τ = ), considering capacities available and start-

ing from the first disposable period t. Production coefficients air are used to transform each or-

der’s specific product configuration into capacity requirements for each resource r. They like-

wise reflect the demand for resource capacity of the production system (r∈Ω1) as well as those 

of component availability usually referred to as ATP (r∈Ω2). The cumulated index set of all 

resources will be referred to as Ω ( 21 Ω∪Ω=Ω ). We assume that all orders have been eco-

nomically evaluated by means of a subordinate demand management and have positive contri-

bution margins. Orders have been back scheduled with respect to their production and distribu-

tion lead times, such that the analyses can be restricted to the (planned) start of production. Al-

ternative production facilities are not considered. 

A bucketized model for the binary assignment of order i to planning period τ is therefore given 

by (1)-(4). In the course of OP, each order is being assigned to a period within the planning ho-

rizon [t, Tmax], such that the associated costs are minimized (1). Due to the real-time execution 

mode, each order is treated separately. This decision is modeled by the vector xi with the ele-

ments xiτ, which are set to 1 if the order is assigned to the particular period and 0 if otherwise. 

The relevant costs of an assignment ciτ reflect the customer preferences and are a function of the 

requested period and the promised period.4 Inequalities (2) incorporate resource constraints into 

the model. ctprτ thereby refers to the available capacity at the time of the order arrival and is 

updated with each order being processed. Equations (3) assure that the order is assigned to a 

period. The result of the OP procedure is a promised planning period, or the corresponding de-

livery date respectively, for a certain product configuration.  

  ∑
=

⋅=
max

)(
T

t
iii

OP xcCMinimize
τ

ττx  (1) 

  ττ riri ctpax ≤⋅  max,...,, Ttr =Ω∈∀ τ  (2) 

                                                
4 For an in-depth discussion of time dependent costs refer to [Bola03]. 
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  1
max

=∑
=

T

t
ix

τ
τ  (3) 

  }1,0{∈τix  max,...,Tt=∀τ  (4) 

3.2 The master production scheduling problem 

The decision to come to in the course of the MPS procedure is to determine final planning peri-

ods for the set of promised but not finalized orders Ψ. The MPS is executed on rolling horizons 

once every planning period with a planning horizon of T periods. Accordingly only the first 

planning period is put into practice, while the others are being updated with respect to the new 

information available (i.e. the newly promised orders). Since both, restrictions of the production 

system as well as those regarding component availability have to be incorporated into the deci-

sion making to assure feasibility, we use a differentiated definition of capacity: considering a 

flow-shop, the maximum capacity per period max
τcap  is given by the quotient of the overall 

production time τQ  and the cycle time τW . In addition to that, model-mix restrictions have to 

be incorporated into the calculus to adequately reflect the sequencing limitations of the prevail-

ing mixed-model production system. Therefore we reduce the overall capacity of the production 

system by means of a coefficient αr for each capacitated resource r∈Ω1.5 The maximum aggre-

gated capacity available per resource and period is hence given by max
τr cap⋅α . Further re-

source restrictions (r∈Ω2) regard maximum levels for the component availability in a planning 

period SM
rτcap . These do not depend on the subsequent sequencing and can consequently be 

assumed exogenously given (e.g. by the subordinate planning). Accordingly, the maximum ca-

pacity of resource r in period τ is given by: 

  






∈

∈⋅
=

.Ω rifcap

,Ω rifcap
cap

2SM
rτ

1max
τrmax

rτ
α

 (5) 

In order to reflect the divergent requirements discussed above we implemented two intervals for 

the objective function: the first interval ranges from t to k and the second one from k+1 to the 

end of the planning horizon, with 1-Ttkt +≤≤ . Let further −
rτctp  denote the standardized 

                                                
5 To determine αr so called Ho:No - rules have been used. The interpretation is, that no more than Ho units out of a 
sequence with length No may require an option o or a corresponding resource r respectively [DrKi01].  
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deviations to the target capacity consumption level min
rτcap and +

rτctp  the capacity available 

rτctp  standardized with respect to the maximum capacity level max
rτcap . We furthermore used 

the weighting functions (·)Pleveling
rτ  to assess deviations to the targeted capacity utilization of 

resource r in period τ (leveling aspects) and (·)Pservice
rτ  to assess the available capacity of re-

source r in period τ (measure of the ability to service new orders). Finally, iτc  denotes the cost 

of assigning order i to period τ.6 The program MPS is thus given as: 

( ) ( )∑ ∑ ∑∑∑ ∑
−+

++=

−+

= Ψ∈Ω∈

+
+

= Ω∈

− ⋅+−=
1

1

1
)(

Tt

kt

Tt

ti
ii

r
r

service
r

kt

tr
r

leveling
r

MPS xcctpPctpPCMinimize
τ τ

ττττ
τ

ττx (6) 

w.r.t. 

  −≤
−+

τ
τ

τττ
r

r

rrr ctp
cap

capctpcap
min

maxmin
 kttr +=Ω∈∀ ,...,;τ  (7) 

  +≥
τ

τ

τ
r

r

r ctp
cap
ctp

max 1,...,1; −+++=Ω∈∀ Ttktr τ  (8) 

  ττ rr
Ψi

iriτ ctpcapax −=⋅∑
∈

max  1,...,; −+=Ω∈∀ Tttr τ  (9) 

  1
1

=∑
−+

=

Tt

t
ix

τ
τ  Ψ∈∀i  (10) 

  0,, ≥+−
τττ rrr ctpctpctp  1,..., −+=∀ Tttτ  (11) 

  }1,0{∈τix  1,...,, −+=Ψ∈∀ Ttti τ  (12) 

The assignment is modeled by matrix x  with T-dimensional column vectors ix . Doing so, the 

binary vector elements iτx  are set to 1 if an order i is assigned to period τ in analogy to the OP 

procedure described above. The objective of the MIP (6)-(12) is then to minimize the relative 

deviations to the targeted utilization levels −
rτctp  weighted by (·)Pleveling

rτ  throughout the inter-

val [t, t+k] and to maximize the weighted capacity available +
rτctp  as given by (·)Pservice

rτ  

throughout the interval [t+k+1, t+T-1]. In addition to that, service objectives are to be incorpo-

rated by means of the cost of assigning order i to period τ. The figures for the first interval result 

from standardizing shortfalls on the targeted capacity utilization min
rcap τ  according to inequali-

                                                
6 These are in contrast to ciτ a measure of bringing forward or delaying an order given a specified promised delivery 
date and therefore reflect e.g. holding costs or penalties respectively. 
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ties (7) (figure 2). Those of the second interval are calculated as given by inequalities (8). Con-

straints (9) assure feasibility with respect to resource capacities, whereas ctprτ specifies the pre-

vailing slack. Set coverage constraints (10) assure that each order is assigned to one period 

while constraints (11)-(12) define non-negativity and binary coding for the variables. The two 

models are coordinated by means of the coupling conditions (9) (bottom-up) and the service 

costs iτc  (top-down), since they depend on the promised period.  

 

min
rcap τ

max
rcap τ

rτctp

min
rrτ capctp τ⋅−

0  
Figure 2. Determination of the standardized deviation to the targeted minimal capacity utilization 

 
To demonstrate the meaning of the segmented objective function, refer to the illustrative exam-

ple depicted in figure 3. The figure shows the distribution function and the expected number of 

customer orders placed y as a function of the period x within the planning horizon, given a de-

mand of 20 orders per planning period and normal distributed ordering lead times with a mean 

of 10 and a standard deviation of 3 periods (i.e. considering the 10th period of the planning hori-

zon, on average 50% of all customers demanding a product for that particular period will have 

placed their orders at the time of the MPS execution). Given a targeted level for the minimal 

capacity utilization of 80% (i.e. 16 orders per period) two intervals can be identified. For period 

1 to 7, the expected orders transcend the critical level, while the opposite is true for periods 8 to 

21. By segmenting the objective function, a stable resource utilization can be pursuit in the first 

interval for which (on average) most orders have been placed, while at the same time bottle-

necks can be avoided in the second one with a high (expected) inflow of new orders.  
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Figure 3: Illustrative order arrival pattern for y ~ N(10;3) 
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The implementation of the objective function requires to economically assess the particular 

terms. Monetary consequences of an unbalanced model-mix include costs for extra staff, over-

time, or a reduced productivity (e.g. due to slack) as well as additional procurement costs. 

Monetary consequences of a reduced responsiveness include lost revenues (i.e. opportunity 

costs) since newly arriving orders cannot be served (lost sales). The explicit determination of 

monetary consequences often raises difficulties in real-world settings, since data is not available 

in the sufficient quality or the computational complexity does not allow for an explicit determi-

nation. This essentially leads to a multi-criteria decision situation. For such settings, additive 

weighting functions have been used to identify compromise solutions [RoWa05]. 

The models introduced above are characterized by a high number of parameters influencing the 

static but in particular the dynamic performance, i.e the interplay of OP and MPS. For similar 

settings, simulation studies have been used successfully. In the remainder, we will evaluate the 

presented framework using discrete-event simulation. 

4 Simulation experiments 

The scope of the following evaluation is twofold: at first it is to be shown, that the structure of 

the MPS objective function controls the simulation response and, in doing so, to numerically 

proof the meaning of the two objective function intervals. A second objective is to analyze the 

performance of the presented approach. Therefore we will compare the performance of the pro-

posed framework to a policy restricted to OP (i.e. no MPS execution). The analysis is per-

formed in three steps. At first, a demand sequence is generated for each replication. More spe-

cifically, each sequence comprises a set of orders with a specific configuration, an order date, 

and a preferred delivery date. In a second step, this demand sequence is subject to the order 

based planning approach to be analyzed. Accordingly, each order is at first promised individu-

ally and secondly assigned to a production period in the course of a MPS procedure executed on 

rolling horizons. In a third step, the results are evaluated. For the implementation we used eM-

Plant as simulation tool and the commercial solver Lingo to solve the mathematical programs. 

4.1 Experimental Data and Performance Measures 

We considered an autoregressive moving-average demand process to derive the aggregated de-

mand level dτ of period τ according to τ1τ1ττ εε0.120)(d0.820d +⋅−−⋅+= −−  with 
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2)N(0;~εi . In a second step, we calculated normal distributed lead times with a mean of 10 

and a standard deviation of 3 periods and subtracted them from the designated production pe-

riod to achieve individual order arrival times.7 These arrival times were then used to synthesize 

the consolidated demand stream. Finally, capacity coefficients air were derived according to 

take-rates taker for each of the two resource r using a uniformly (0,1)-distributed random num-

ber rnd as suggested by [Boys05]:  

  


 ≤

=
else.0

, if1 r
ir

takernd
a  (13) 

For the analysis we assumed  0.7take1 = and 0.3take2 = . Each simulation run covered 40 

periods such that on average 800 orders were processed. MPS was executed once every period. 

In order to evaluate the effect of the capacity/demand ratio λ, we set the maximum capacity per 

resource and period to ]E[dtakeλcap τr
max
r ⋅⋅=τ . The minimal targeted capacity utilization 

min
rcap τ  was set to 80% of the maximal capacity. We assumed a linear cost function to deter-

mine ciτ: each period earlier than the requested added 1 unit to the costs while each period later 

than the requested added 5 units. iτc  was assumed to be the same as ciτ for earliness; lateness 

was not allowed for. Accordingly, the following term was added to the MPS model.  

  0)x-(
1

i ≤⋅∑
−+

=

Tt

t
ix

τ
τττ  Ψ∈∀i  (14) 

(Piecewise) linear terms were implemented to evaluate the effect of the first two terms of the 

MPS objective function using the coefficients p1 and p2 ((15) and (16)). The interval parameter 

k was set to 6. 
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We incorporated four objectives into the analysis. At fist, the total under-utilization and the 

standard deviation of the utilization were evaluated as measures for the compliance with re-

source-oriented objectives. In addition to that, we analyzed the customer-oriented performance 

                                                
7 The reason for the differentiated approach is that the order behavior might be explained with the central limit 
theorem, since it reflects the behavior of a large number of independent entities (i.e. the customers). The demand 
level, however, underlies various influences which might cause auto correlation (e.g. hockey stick effect, marketing 
campaigns). Ongoing research seeks to build a more thorough understanding of the arrival process. 
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be means of the average costs of the assignment in the course of OP and the standard deviation 

of this figure. Figures were computed as given in the appendix. 

4.2 Experimental Design 

A full factorial design was used to evaluate the structure of the MPS objective function. The 

aim was to deduce the importance of the two objective function intervals in terms of their main 

effects and interactions. Since the performance of order based planning was expected to depend 

on the capacity/demand ratio, we added it as another experimental factor. Using two levels for 

each factor (i.e. 2k-factor design) cumulated in 23=8 configurations (called scenarios in the fol-

lowing). 80 replications were run for each scenario. Since we expected all performance meas-

ures to strongly correlate with the demand scenario (i.e. number of orders, preferred lead time, 

and model-mix), we used a common random number approach. Table 1 summarizes the factors 

and levels used for the analysis.  
 

factor denomination levels degrees of freedom 
weighting of the leveling term  p1 10-10,000 1 
weighting of the service term p2 10-10,000 1 
capacity/demand ratio lambda 1.0-1.2 1 

 
Table 1: Factorial design 

4.3 Numerical Results 

The results of the analysis are shown in the subsequent profile plots (figure 4 and 5). Depicted 

are the estimated means for the particular scenarios as compared to the performance of the pol-

icy restricted to OP (baseline policy in the following).8 The slope can be interpreted as the 

(main) effect of changing p2 from its low level to its high level, while the offset is attributed to 

the level of p1. A change in the offset indicates interaction effects between the factors. Hence, 

the findings can be summarized as follows. p1 affects all performance measures positively. The 

effect is in particular relevant for the resource-oriented objectives and a high capacity/demand 

ratio. This finding seems intuitively clear, since the first interval explicitly seeks to minimize 

deviations to the minimal targeted capacity. p2 positively affects both the customer and the re-

source-oriented performance measures for tight capacity scenarios while the opposite is true for 

the customer-oriented figures and a high capacity/demand ratio, yet on a very low (absolute) 

                                                
8 Doing so, we standardized the difference between each scenario’s results and the baseline policy’s with respect 
to the baseline policy. Accordingly, higher values indicate a better performance.  
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level. There is no effect of p2 regarding the resource-oriented objectives for a high capac-

ity/demand ratio. The analysis does not show any major interaction effects.  
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Figure 4: Profile plots for capacity/demand ratio 1.0 (all figures are standardized with respect to the baseline policy) 
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Figure 5: Profile plots for capacity/demand ratio 1.2 (all figures are standardized with respect to the baseline policy) 
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Overall, the average absolute levels of the customer-oriented objectives for the low capac-

ity/demand ratio by far exceed those for the high capacity/demand ratio (18 times for the aver-

age costs and 6 times for the standard deviation) while the opposite is true for the resource-

oriented ones (10 times for the under-utilization and 2 times for the standard deviation). This 

indicates an increased relevance of customer-oriented objectives if capacity is tight and of re-

source-oriented for excess capacity settings vice versa. Considering the factor combinations 

with p1 and p2 likewise being on their low and high levels respectively, discrepancies in the per-

formance measures are caused by the relative importance as compared to the third term of the 

MPS objective function, i.e. the cost of the assignment.    

5 Conclusions 

Changing to BTO strategies, companies face an increased exposure to market dynamics. Since 

all business is linked to customer orders, it is the order-driven planning activities that determine 

the success of operations. Therefore, a clear understanding of the associated planning tasks OP 

and MPS as well as their dynamic interaction is essential. In this paper we provided an analysis 

of the decision situation of order based planning in BTO scenarios by means of a hierarchical 

framework, developed distinct models for OP and MPS and evaluated these using simulation.  

Following the analysis, the presented approach seems promising to improve order based plan-

ning in BTO scenarios. The performance in both, customer and resource-oriented objectives is 

significantly controlled by the interplay of MPS and OP as well as the structure of the MPS 

objective function. As compared to a policy restricted to OP, improvements of 7% regarding the 

average cost of assignment and 45% regarding the total under-utilization can be achieved. Also, 

by decomposing OP and MPS, customers benefit from an instantaneous response to their re-

quests and can thus evaluate different configurations with respect to their delivery date before 

placing their order. The production system on the contrary benefits from a stable coordination 

which is facilitated by MPS.  

The scope of this study was on rather general insights into the dynamic behavior of order based 

planning. Consequently, the models are thought to be just as specific as to reflect the general 

characteristics of BTO scenarios. More work is needed to improve the empirical basis of the 

approach and to deepen the understanding of the dynamic performance as to provide guidance 

for the configuration of the presented models for specific settings.  
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Appendix 

Table 2: Performance measures (Asteroids indicate the factual or final assignment (i.e. the promised period and the 
final date of production); T* denominates the simulation run length)  
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