
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2005 Wirtschaftsinformatik

February 2005

An Integrated Platform for Mobile, Context-Aware,
and Adaptive Enterprise Applications
Gerald Hübsch
Technische Universität Dresden

Thomas Springer
Technische Universität Dresden

Axel Spriestersbach
SAP AG, Global Research and Innovation

Thomas Ziegert
SAP AG, Global Research and Innovation

Follow this and additional works at: http://aisel.aisnet.org/wi2005

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2005 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Hübsch, Gerald; Springer, Thomas; Spriestersbach, Axel; and Ziegert, Thomas, "An Integrated Platform for Mobile, Context-Aware,
and Adaptive Enterprise Applications" (2005). Wirtschaftsinformatik Proceedings 2005. 58.
http://aisel.aisnet.org/wi2005/58

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301341533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2005%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005?utm_source=aisel.aisnet.org%2Fwi2005%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2005%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005?utm_source=aisel.aisnet.org%2Fwi2005%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005/58?utm_source=aisel.aisnet.org%2Fwi2005%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Ferstl, Otto K, u.a. (Hg) 2005. Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety;
7. Internationale Tagung Wirtschaftsinformatik 2005. Heidelberg: Physica-Verlag

ISBN: 3-7908-1574-8

© Physica-Verlag Heidelberg 2005

An Integrated Platform for Mobile, Context-
Aware, and Adaptive Enterprise Applications

Gerald Hübsch, Thomas Springer
Technische Universität Dresden

Axel Spriestersbach, Thomas Ziegert
SAP AG, Global Research and Innovation

Abstract: In this paper we present an approach for the device-independent author-
ing of mobile, context-aware and adaptive web applications. We present concepts
for the semantic and syntactic adaptation of web dialogs to heterogeneous devices
based on the Dialog Description Language. We describe advanced concepts for
the integration of dynamic content and user interaction handling in device-
independent application engineering. Furthermore, the software architecture of
the Transcoding Framework, a runtime environment for dialog adaptation, is in-
troduced. Finally, we present an adaptive sample application and give an outlook
to future research topics.

Keywords: Adaptation, Context-Awareness, Dynamic Content, Mobile Devices,
Multimodality, MVC, Pagination, Single Source Authoring, Transcoding, XML

1 Introduction

According to a study conducted by IDC Research, the number of nomadic workers
spending at least 20 percent of their working hours away from home, their main
place of work, or both in Europe will increase to over 28.8 million by 2005. There
is a large target group of subscribers for Mobile Intranet/Extranet access [IDC].
This development is set in motion through the rapidly increasing availability of
multiple wireless infrastructures such as public WLAN hotspots, GPRS, HSCSD,
CONNEXION [Co04] and UMTS services. Another major driver for this devel-
opment is the omnipresence of connected mobile devices like notebook com-
puters, PDAs, and data-capable mobile phones in today’s companies. However,
the heterogeneity of these devices can be seen as the one of the main obstacles for
their pervasive deployment in enterprise scenarios. Mobile devices differ in a wide
spectrum of parameters. These include various input methods such as keyboard,
stylus, numeric keypad and combinations thereof, display size and resolution,
supported bearer types, processor speed, power consumption, attached peripherals,

1106 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

browser type, and supported media formats. This set of parameters together with
application- and user-specific parameters forms the context of use for a mobile
application. Web-applications development is still mainly focused on desktop-
style target platforms with fully-fledged browsers and neglects the additional re-
quirements and limitations imposed by the context of use. Automated adaptation
to the context of use represents a promising solution to overcome the increasing
differences in mobile device technology while reducing the overall costs and de-
velopment efforts for multi-device support. Vital requirements for web application
authoring languages are concepts for dynamic content generation and user intera-
tion handling. Dynamic content support provides means to include backend data
into the content delivered to the client. User interaction handling provides means
to monitor and evaluate user interaction events by triggering event-specific calls to
application logic. Both concepts require a dedicated runtime platform support. In
the following we present an integrated adaptation platform for device independent
authoring and provisioning of context-aware mobile applications based on the sin-
gle-source authoring approach. Furthermore, novel language and platform con-
cepts for dynamic content generation and user interaction handling in device-
independent application engineering are presented.

2 Related Work on Adaptive Web Applications

Web Applications can be adapted on several levels. The lowest level is the content
level which comprises text, images and further multimedia content as well as con-
trol elements of user interfaces (i.e. forms). These elements can be adapted inde-
pendently at this level. For instance a form control for text input can be replaced
with a list of given choices, a long text can be replaced by a shorter one
[Buyu+01], images can be compressed or only partially displayed [Fox+98]. At
the structure level the relationships between the separate elements are considered.
Examples are the restructuring of text and tables [Bick97], the creation of content
pages [Bick97, Buyu+01], the change of the whole layout or navigation of a page
[Schi+01] and the pagination of a page into smaller pages [SpGö02, Mand+02].
At application level the functions and complexity of the application’s web inter-
face can be adjusted [Heu+04].

Various approaches have been proposed to address the challenges of adapting web
applications to heterogeneous devices. The process of re-engineering a web-
application for every target platform is referred to as manual adaptation or multi
source approach. While the developer separately implements dedicated versions
for each target device in a specific markup language this approach yields high
quality results but induces high development and maintenance costs due to the
large number of different versions of a single application. Supporting a new de-
vice always obliges a new version of the application. The opposite approach is fol-

A Platform for Mobile and Adaptive Enterprise Applications 1107

lowed by projects like Digestor [Bick97] and M-Links [Schi+01]. Both projects
follow a single source approach and transcode HTML sources automatically to
device specific versions. Therefore, transcoding proxies are placed between the
mobile device and the content source. The main problem is the mix of content and
presentation as well as misused structure information (e. g. table for layout). So
structure information has to be extracted from the document using heuristics. The
utilization of heuristics and the lack of meta-information about the adapted source
make these approaches too error-prone for the adaptation of complex web applica-
tions.

This identifies structure and further meta information as an important resource for
adaptation of web applications. Meta information can be added externally as de-
scribed in [Ho+00] or integrated within the source document. Although external
approach enables the expression of fine-grained meta-information such as the im-
portance and role of arbitrary elements in HTML source documents, it bears con-
sistency issues if the described source is dynamically generated or changed with-
out notice. An advantage of the separation of meta information is the extensibility
of meta information independent from the application description. Consequently, a
device independent language with explicit but internal structure and adaptation
information promises the best transformation results. This leads to a combined ap-
proach of manual and automated adaptation. The application developer generates
a single application description and manually adds meta information. The trans-
formation software system automatically generates device specific application de-
scriptions but is now controlled by the meta information to get better results. As a
consequence of giving up HTML as source language, web applications have to be
ported or newly developed from scratch. Porting is supported by the approaches
based on HTML and heuristics, enabling the change of the source format without
loosing the existing application base within the Internet.

This raises the question of the most appropriate language. UIML [AbHe00] and
WebML [Ce+00] allow an abstract description of user interfaces separating con-
tent, structure and style but allow only for purely syntactic mappings and do not
support meta information. In Wit [Wat94], web documents are described by linked
hyperobjects reflecting the hierarchical structure of documents. The links between
the hyperobjects can be annotated by meta information. While this is a generic ap-
proach, Wit focuses on the communication aspects using meta information for
compressing, prefetching, caching and data reduction. XDNL [ItMa00] enables an
explicit description of the document structure as hierarchical trees and navigation
paths through this trees. Therefore, XDNL addresses only the certain aspects of
structure description and navigation. XForms [XFORMS03], as a successor of
HTML forms, separates the data model and form structure from the representation
of the form controls. XForms is not a standalone language and focuses on the de-
scription and presentation of forms and form controls. XHTML [XHTML02], and
HDML [HDML97] are XML-based languages for describing web documents.
While being rather generic they lack of concepts for adaptation like the inclusion

1108 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

of meta information and content selection and therefore need to be extended to be-
come really device independent.

As a conclusion, most of the approaches address certain aspects of device inde-
pendent document description but do not cover all relevant aspects of document
adaptation for the web. The dialog description language (DDL) [GBSZ01,
GBSZ02] addresses this issue. Starting in 2001, DDL was developed as a generic
language with adaptation support. While UIML and XForms where in early stages
in 2001, DDL was developed from scratch but adopts several concepts from both
languages. DDL is no standard language, which is a mayor drawback of DDL. But
as the outcome of a subsequent project shows, most of the concepts developed
with DDL can be integrated into standard languages.

3 Concepts for Dialog Adaptation

In the following, the concepts of semantic and syntactic dialog adaptation based
on the Single Source Authoring approach are introduced. Semantic adaptation pre-
cedes syntactic adaptation. Alongside, our approach for a device-independent dia-
log description language realizing these concepts is presented by introducing the
Dialog Description Language (DDL) [Göbe+01, Göbe+02, SpGö02, Hübs+03].

3.1 Single Source Authoring

Single Source Authoring uses a single, generic content description that abstracts
from the content presentation in a specific target markup. Dedicated adaptation
algorithms are applied to generate device-specific representations (cf. 1). These
algorithms are parameterized by context information. Additionally, semantic
meta-information about the processed content is evaluated by these algorithms.
The adaptation algorithms can be deployed directly on the content server or a
proxy server.

A Platform for Mobile and Adaptive Enterprise Applications 1109

asdfdsafdsaf
sdaf
ds

fdsa

dsa
sakdksakdcncmnc

dadksadlasdlsajlkdjalkd
sjlksadsadkl

Development
Generic Application Description

+
Meta Information

Adaptation Engine
Runtime

Context
Information

Device Specific
 Application
Description

asdfdsafdsaf
sdaf
ds

dsa
sakdksakdcncmnc

dadksadlasdlsajlkdjalkd
sjlksadsadkl

asdfdsafdsaf
sdaf
ds

dsa
sakdksakdcncmnc

dadksadlasdlsajlkdjalkd
sjlksadsadkl

asdfdsafdsaf
sdaf
ds
dsa

sakdksakdcncmnc
dadksadlasdlsajlkdjalkd

sjlksadsadkl

Figure 1: Combined approach of manual and automated adaptation

3.2 The Dialog Description Language (DDL)

We have developed the Dialog Description Language (DDL) for our Single
Source Authoring approach. The DDL is a single-source authoring language that
enables the separation of structure, presentation, and content of web application
dialogs and supports meta-data concepts for semantic adaptation. The DDL is
based on a simple XML meta-language model consisting of four basic elements:
<ddl>, <dialog>, <part> and <property>. The <ddl> element is the document
root element of any DDL dialog, <dialog> encloses the content section of a DDL
document. The <part> element represents an arbitrary dialog element. It is utilized
to generically describe element types (e.g. input fields, frames, tables etc.), i.e. the
element semantics, using a set of properties. It can be nested to allow for ancestor-
child relationship modelling. Properties are assigned to parts using the <property>
element. A type property defines the type of each part (cf. 2). All other properties
are type-specific, e.g. for describing the URL of a hyperlink element or the caption
of a text input field. Part properties are distinguished by a name attribute.

We have defined semantics, i.e. property sets, for the part types listed in Table 1.
Note that there is no target markup mapping defined yet. Additionally, DDL sup-
ports the concept of inheritance. DDL inheritance allows for the definition of part
configurations, i.e. for property element value presets. Syntactically, this concept
is implemented by the DDL <class> element. It is uniquely identified by its name
attribute. Its children are <property> elements containing preset property values.
Parts inherit these properties through a class attribute that references the class by
name. The inheriting part is assigned all property definitions within the respective
class. DDL class definitions can be externalized in library documents and thus be
imported and reused in multiple dialogs.

1110 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

Part types Semantics

frameset, frame frameset and frame description

container description of element groups

table, head, row, data
table elements for describing tables, table headers, table rows
and table cells

label text and text style description

image inline image description (image source URL etc.)

form form description (action URL etc.)

submit form submit element description

radiogroup, radiobutton radiogroup menu description

textinput form input field for text

select, option select menu description

checkbox checkbox item description

Table 1: DDL part type semantics

Figure 2 depicts a simple DDL dialog containing a form to retrieve stock quotes
by entering the stock symbol. The form part uses inline definitions for all its prop-
erties. In contrast, the <class> elements ‘stockLabel’, ‘stockSymInp’ and ‘quote-
Button’ exemplify the inheritance concept. Type assignments to parts are high-
lighted in bold face.

A Platform for Mobile and Adaptive Enterprise Applications 1111

<ddl>
 <dialog>
 <property name="title">Stock quote</property>
 <part>

<property name="type">form</property>
 <property name="method">GET</property>
 <property name="action">getQuote.ddl</property>
 <part class="stockLabel" name="symbol">
 <property name="content">Symbol:</property>
 </part>
 <part class="stockSymInp" name="stockSymbol"/>
 <part class="quoteButton"/>
 </part>
 </dialog>
 <class name="stockLabel">

<property name="type">label</property>

 </class>
 <class name="stockSymInp">

<property name="type">textinput</property>
 </class>
 <class name="quoteButton">

<property name="type">submit</property>
 <property name="default">Get Quote!</property>
 </class>
</ddl>

Figure 2: Type assigments in DDL

3.3 Semantic Adaptation

Semantic adaptation utilizes semantic meta-information about the adapted content.
Information about dialog semantics is manually added at authoring time. Thus, the
programmer has full control over the semantic adaptation. In DDL, it controls dia-
log adaptation with respect to the concepts of selective content and dialog pagina-
tion. Selective content eliminates or selects alternative content, e.g. to avoid the
delivery of long explanatory texts to a small screen device. Dialog pagination is
the process of splitting complex dialog structures into less complex substructures
(fragments) and their sequential delivery to the client while maintaining the logi-

1112 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

cal structure of the dialog. Dialog pagination is required to meet display size, pro-
tocol and usability constraints of mobile devices. As opposed to the delivery of
large, complex pages, pagination reduces the need for extensive scrolling and re-
duces transfer and rendering times for the single fragments. Additionally, we util-
ize pagination to generate specific target-markup constructs for presentation con-
trol, e.g. for content distribution over several WML Cards in a single WML Deck.
From a technical point of view, fragmentation is indispensable to meet packet size
constraints imposed by the WAP 1.x protocol [WAP00].

<part test="/client/display='graphical'">
 <property name="type">image</property>

 <property name="src">logo.jpg</property>

</part>

<part test="not(/client/display='graphical')">
 <property name="type">label</property>

 <property name="content">ACME Corp.</property>

</part>

Figure 3: Selective content in DDL

In DDL, the concept of selective content is implemented by context queries over
context profiles. Context queries are formulated in XPath [XPATH] that can be
attached to part and property elements through a test attribute. If the query condi-
tion is fulfilled, the respective element is left in the dialog, otherwise it is re-
moved. Figure 3 shows a sample DDL dialog snippet with context queries. The
logo image is shown on graphics-capable clients, a short text is displayed on other
clients.

To control dialog fragmentation, DDL provides means to define logical dialog
units (atoms) that must not be split up by fragmentation. Arbitrary DDL parts can
be marked as atoms by adding the DDL ‘atom’ property. Some part types such as
radiogroups or parts without descendants are atoms by default. Logical dialog
units are utilized to group dialog elements that have a semantic relationship. An
adaptation algorithm is responsible for the dialog pagination at runtime. In our ap-
proach, the algorithm determines the weight (i.e. size in transfer encoding, display
space required on the client device) for every atom in the dialog. These atoms are
assembled to fragments of maximum size w.r.t. the client constraints and inter-
linked to allow for user navigation. The runtime environment (see sect. 5) is re-
sponsible for delivering the requested fragments and for the collection of user in-
put from forms spanning several fragments.

A Platform for Mobile and Adaptive Enterprise Applications 1113

<part>

 <property name="type">container</property>

 <property name="atom">true</property>
 <part>

 <property name="type">label</property>

 <property name="content">Symbol:</property>

 </part>

 <part name=="stockSymbol">

 <property name="type">textinput</property>

 </part>

</part>

Figure 4: Logical dialog unit in DDL

Figure 4 depicts a DDL code snippet that groups a text input field with its caption
using an atomic DDL container to prevent their separation by dialog pagination.

3.4 Syntactic Adaptation

After semantic adaptation, the DDL dialog must be transformed into a target
markup language supported by the target platform. This process is called syntactic
adaptation. We use XSLT [XSLT] for this task. Stylesheets have been imple-
mented for transformations from DDL into XHTML, HTML and WML 1.x. Our
approach is extensible towards the support for new target markup languages by
simply adding a new stylesheet.

4 Dynamic Content and Application Logic
Interaction

To facilitate the implementation of adaptive web applications in DDL using the
MVC pattern, we have identified four major infrastructure components: (1) re-
sources implementing server side application logic and backend access, (2) dy-
namic content elements for retrieval and rendering of dynamic data, (3) eventing
to trigger application logic through user interaction, (4) a server-side data model
to maintain application-specific state information. In the following, the implemen-
tation of these concepts in DDL is described.

1114 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

4.1 DDL Resources

DDL Resources implement application logic and backend access. DDL Resources
are implemented by Java classes. To model the class properties and method signa-
tures used for event handling and backend access, we have introduced the ele-
ments <resource>, <method>, <param> and <field> in DDL.

The <resource> element represents a Java class. Its name attribute contains a
unique name to reference this resource within the dialog containing the resource’s
definition. Its class attribute specifies the fully qualified name of the implementing
class (cf. 5).

The <method> element is a child element of resource. Every method element de-
scribes the signature of a method implemented by its ancestor. Additionally,
method results can be written to the data model (see sect. 4.4) using an optional
reference attribute. Fig. 5 shows two method definitions for validateLogin and
getStockQuote. The name parameter corresponds to the name of the implementing
method.

The <param> element is a child element of method. Every param element models
a single method parameter. Parameter values may either be read from HTTP re-
quest parameters or from the data model. A parameter value is identified by
matching its name attribute against all request parameter names. If no matching
request parameter is found, the parameter value is read from the data model using
the element’s reference attribute. In case of a successful match, the data model is
updated with the request parameter value. For example, the validateLogin method
defined in fig. 5 expects a mandatory ‘passwd’ request parameter to be present
upon its invocation. If the ‘user’ parameter is not present, it is read from the data
model.

A Platform for Mobile and Adaptive Enterprise Applications 1115

<resource name="AppLog" class="app.StockQuote">
 <method name="validateLogin"
 reference="/model[@id='stock']/authenticated">
 <param name="user"
 reference="/model[@id='stock']/name"/>

 <param name="passwd"/>

 </method>

 <method name="getStockQuote">

 <param name="symbol"

reference="/model[@id='stock']/symbol"/>

 <field name="__stockName"/>
 <field name="__price"/>

 </method>

</resource>

Figure 5: DDL resource definition

The <field> element (cf. 5) is a child element of method. Every field element
models a single data item returned by a method utilized for backend access, i.e. it
represents a cell within a database table. In dynamic data sections (see sect. 4.2),
placeholders matching the field’s name attribute value are replaced with the corre-
sponding data item value.

4.2 Dynamic DDL Content

To support dynamic content, we have extended the DDL with the <dynamic>
element (cf. 6). The dynamic element has two attributes. The resource attribute
references the DDL resource that implements the backend access method identi-
fied by the method attribute.

1116 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

<part>

 <property name="type">table</property>

 ...

 <dynamic resource="AppLog" method="getStockQuote">
<part>

 <property name="type">row</property>

 <part>

 <property name="type">data</property>

 <property name="content">__stockName</property>
 </part>

 <part>

 <property name="type">data</property>

 <property name="content">__price</property>
 </part>

 </part>

 </dynamic>
</part>

Figure 6: DDL dynamic element

We refer to DDL dialogs containing dynamic elements as DDL Templates. The
access method is invoked during dialog processing (cf. 10). For every data set re-
turned by the access method, the content enclosed by the dynamic element is re-
peated and the contained field references are replaced with backend data. Finally,
the dynamic element is eliminated from the dialog.

4.3 DDL Eventing

Means to monitor and evaluate user interaction on the client are indispensable for
web application development. A common strategy for reacting to user interaction
is to specify UI event listeners and event handlers. Missing or reduced client-side
support for UI event generation and event handling on mobile platforms must also
be addressed. Therefore, we have supplemented the DDL with concepts for device
independent event description and event handling. Our concept is independent
from the structure and the order of UI elements in the dialog.

A Platform for Mobile and Adaptive Enterprise Applications 1117

<part name="loginButton">

 <property name="type">submit</property>

 <property name="default">Login</property>

 <listener event="submission"
handler="AppLog.validateLogin" priority="1"/>

</part>

Figure 7: DDL listener element

We have introduced the <listener> element (cf. 7) to associate interaction events
with DDL form controls. Its event attribute describes the event type that deter-
mines its processing on the server. The handler attribute contains a reference to
the DDL Resource and the handler method’s name. The priority attribute controls
the processing order if several events are received simultaneously by the server.
For event propagation to the server, the listener element containing the event’s
type, priority and handler is marshalled into HTTP request parameters during the
syntactic adaptation of the dialog. Whenever the user issues a request (e.g. selects
‘Login’ in fig. 7) the related event is triggered on the application server by invok-
ing the associated DDL Resource method.

4.4 DDL Data Model

The DDL data model provides means to maintain the application state between
consecutive client requests. A DDL data model is represented as a well-formed
XML structure enclosed by a model element with a unique id attribute (cf. 8). It is
defined by the application programmer according to application’s requirements.
Although DDL Resource instances themselves are stateful, the data model pro-
vides means to share state information among instances of different DDL Re-
sources through common model references.

<model id="stock">
 <authenticated>true</authenticated>

 <name>John Doe</name>

 <symbol>ACME</symbol>

</model>

Figure 8: Sample DDL data model

1118 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

The data model can also be utilized for dialog content control based on the model
state. Therefore, we have introduced a reference attribute for DDL parts (cf. 9).
This attribute holds an XPath expression over the data model that is evaluated to a
Boolean value. Parts with unfulfilled conditions are removed from the dialog.

<part reference="/model[@id='stock']/
 authenticated[./text()='true']">
 <property name="type">label</property>

 <property name="content">Logged In</property>

</part>

<part reference="/model[@id='stock']/

 authenticated[./text()='false']">

 <property name="type">label</property>

 <property name="content">Not Logged In</property>

</part>

Figure 9: Model state based dialog content control

Our concept is similar to the XForms data model approach [XFORMS03], but is
extended towards a closer integration with application logic to support the above-
named objectives.

4.5 Runtime Integration

Fig. 10 depicts the three major steps of request processing within the Adaptation
Framework: Event Processing, Resource Processing and Dialog Adaptation.

At first, the Client Identification step adds context information to the client re-
quest.

Based on the event-driven MVC design, request handling starts with analyzing the
request for marshaled events and the invocation of event handlers (see sect. 4.3).
The Event Processor is the controller component of our architecture. It selects the
requested event-handler resource instance and utilizes the DDL Resource descrip-
tion (see sect. 4.1) to interact with resources. Event handling resources select the
next view by choosing the appropriate DDL Template.

The Template Loader retrieves Dialog Templates from a repository.

A Platform for Mobile and Adaptive Enterprise Applications 1119

Figure 10: Resource Processing and Dialog Adaptation

The Resource Processing step is responsible for DDL Dialog Template processing
(see sect. 4.2).

The Resource Initialization component parses resource definitions in the Dialog
Template. One resource instance is created for every resource definition found.
Furthermore, the instance is bound to its DDL-Resource description and added to
the resource instance set. Resource instances are managed as HTTP session ob-
jects. Thus, they are client specific and maintain their state among several HTTP
requests. The Dynamic Content Inclusion component invokes resources for
backend access referenced by the template’s dynamic elements and replaces the
enclosed field references in the template with backend data. Furthermore, this
component handles the model state-based dialog content control described in sect.
4.4. At this point, all template sections have been processed.

Finally, the Document Processing step transforms the device independent repre-
sentation into a target markup language through semantic and syntactic adaptation
described in sect. 3.

5 Adaptation Framework

The Adaptation Framework (cf. 11) is the runtime environment of our adaptation
system. The software design based on the “Chain of Responsibilities” [Ga+96]
design pattern, thus enabling easy extension, implementation reuse and flexible
reconfiguration even based on runtime conditions. Client requests are passed
through a chain of filter components. The filter chain is executed in a Java Servlet.

The implemented filters support our concepts for device independent event proc-
essing, resource processing and dialog adaptation. The system may be extended by

DDL Data Model

1120 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

implementing additional filters. The following section gives a brief overview of
the filters and their functionality.

Adaptation Framework

ClientRecognizer

 Template Getter

XMLParser

XSLTProzessor

WMLCompiler

DDLPreprozessor

HTTP
Request

Fragment Measuring

Template
Storage

WML
smallHTML,

HTML

DOM

DOM

Fragmentation

DOM

XSLT-
Stylesheets

Business Logic

EventDispatcher

DynamicLoader

DOM

Model Inclusion

DOM

Context
Profile

Repository

Backend

HTTP
Response

Figure 11: Filter chain of the adaptation framework

The ClientRecognizer filter maps the HTTP User Agent header received by the
browser to a CC/PP [Nils+00] device profile.

The EventDispatcher filter filters the events encoded in HTTP request and invokes
the appropriate event handler resources (see sect. 4.3) utilizing a prioritized event
queue to handle simultaneous occurrences of events.

The TemplateGetter filter retrieves DDL template according to the requested URI
from the Template Storage.

The XMLParser filter parses the DDL document and transforms it into the DOM
representation. The PreprocessorFilter preprocesses DDL dialogs. It is responsi-
ble for processing selective content exclusion and resolving inheritance hierar-
chies (see sect. 3).

A Platform for Mobile and Adaptive Enterprise Applications 1121

The DynamicLoader filter implements the dynamic content processing described
in sect 4.2. It is furthermore responsible for the interpretation of DDL resource de-
scriptions and resource instantiation. Resource instances are bound to the HTTP-
session between the client and the framework implementation.

The filters Fragmentation and FragmentMeasuring collaborate to perform the dia-
log fragmentation algorithm described in sect. 3.3. Fragmentation divides the dia-
log into atoms and reassembles the dialog according to the parameters determined
for each atom by FragmentMeasuring. These parameters include memory size on
the target platform, size in transfer encoding and screen area occupation.

The ModelInclusion filter performs the model-state dependent content control de-
scribed in sect. 4.4.

The XSLTProcessor filter transforms DDL into a device specific mark-up through
XSL Transformations.

The WMLCompiler compiles WML into the binary WMLC (WAP 1.x transfer en-
coding). Although this is a typical task of a WAP-Gateway, the WMLC code is
required to probe the amount of space required by the dialog fragment within a
WSP-Service Data Unit.

6 Sample Application

In order to evaluate the concepts presented in this paper, we have implemented the
context-aware and adaptive Rent-A-Bike application shown in fig. 12. The appli-
cation allows users to create, view, update, and delete reservations on desktop
computers, PDAs and WAP mobile phones. All reservations and application-
specific user profiles are stored in a relational database backend. The application
logic and backend access is implemented by DDL Resources. User interaction is
monitored by DDL events. Dynamic content, for example the ‘Your current reser-
vations’ pull down menu list (cf. 12(1) & 12(3)), is generated utilizing dynamic
DDL. All versions of the application are generated from a single source DDL de-
scription. The HTML desktop version (cf. 12(1)) is fully featured. It allows full
access to the application’s functionality and has the most complex user interface.
The PDA version (HTML, cf. 12(3)) has a reduced set of functions. It does not
support reservation modifications. The user interface is less complex than on the
desktop. In the PDA version, no icons are shown. The mobile phone version
(WML, cf. 12(2)) is even further reduced in terms of user interface complexity
and application functionality. No headers, footers, and images are shown. There is
no possibility to edit the user profile, i.e. the ‘Profile’ menu item is dropped. In
contrast to the desktop version, reservations can be viewed, confirmed, and can-
celled. There is no quick view option.

1122 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

Figure 12: Rent-A-Bike Application

7 Results and Future Work

We have found our approach, the combination of single source authoring with
manually added meta-information and automated on-the-fly adaptation at runtime,
to be a promising solution for the design and implementation of adaptive and con-
text-aware web applications. While the strength of our the adaptation platform
clearly lays in its ability to provide mobile clients with a central access point to
enterprise applications, a drawback for its deployment is the low performance of
the adaptation engine that is mainly attributable to complex and time-consuming
XML-DOM operations as well as sluggish XSLT processor performance. Fur-
thermore it must be mentioned that application complexity in terms of user inter-
face design and application logic behaviour dramatically increases with the num-
ber of supported devices. This fact sometimes yields to a high amount of device-
class specific DDL code, partly opposing the approach of highly device-
independent dialog authoring. To overcome this deficiency, we are currently de-
veloping advanced concepts for structure-level and application-level adaptation.
Structure-level adaptation attempts to describe different navigation structures, dia-
log compositions and dialog flows. The dialogs necessary for this approach are
assembled from semantic dialog units authored in DDL. Every semantic dialog
unit describes a well-defined step or transaction within the application. Applica-
tion-level adaptation aims at extending the description and definition of adaptive
application behaviour into the software-engineering process from requirements

A Platform for Mobile and Adaptive Enterprise Applications 1123

engineering over application design to implementation, test and deployment. Fur-
thermore, performance analysis and enhancement will be subject to future work.

References

[AbHe00] Abrams, M.; Helms, J.: User Interface Markup Language (UIML) v3.0 draft
specification. Harmonia Inc, 2000.

[Bick97] Bickmore , T.W.: Digestor: Device-Independent Access to the World-Wide Web.
Proceedings of the 6th International WWW Conference, 1997.

[Buyu+01] Buyukkokten, O.; Garcia-Molina; H., Paepcke, A.: Seeing the Whole in Parts:
Text Summarization for Web Browsing on Handheld Devices. Proc. of 10th Int. World
Wide Web Conference. Hong Kong, 2001, pp. 652-662..

[Ce+00] Ceri, S.; Frternali, P.; Bongio, A.: Web Modeling Language (WebML): a model-
ling language for designing Web sites, Proc. Of 9th International WWW Conference,
2000.

[Co04] Connexion by Boeing. http://www.connexionbyboeing.com

[Fox +98] Fox, A., Gribble; S. D.; Chawathe, Y.; Brewer, E. A.: Adapting to Network and
Client Variation Using Active Proxies: Lessons and Perspectives. IEEE Personal
Communications, August 1998, pp. 10–19.

[Ga+96] Gamma, E.; Helm, R.; Johnson R.; Vlissides, J.: Design Patterns. ISBN: 0-201-
63361-2, Addison-Wesley, 1996.

[Göbe+01] Göbel, S.; Buchholz, S.; Ziegert, T., Schill, A.: Device Independent Representa-
tion of Web-based Dialogs and Contents. Proc. of the IEEE Youth Forum in Computer
Science and Engineering (YUFORIC ´01), Valencia, Spain, Nov 2001.

[Göbe+02] Göbel, S.; Buchholz, S.; Ziegert, T.; Schill, A.: Software Architecture for the
Adaptation of Dialogs and Contents to Different Devices. Proc. of the 16th Int"l Con-
ference on Information Networking (ICOIN-16), Cheju Island, Korea, Jan-Feb 2002.

[HDML97] Handheld Device Markup Language Specification,
http://www.w3.org/TR/NOTE-Submission-HDML-spec.html, 1997.

[Heu+04] Heuser L.; Lauff M.; Ziegert T.: Device Independent Web Applications - the Au-
thor Once - Display Everywhere Approach. Proceedings of the International Confer-
ence on Web Engineering (ICWE), Munic, July 2004.

[Ho+00] Hori, M.; Kondoh, G.; Ono, K.; Hirose, S.; Singhal S.: Annotation-Based Web
Content Transcoding. 9th International World Wide Web Conference (WWW9), Am-
sterdam, Niederlande, May 2000.

[Hübs+03] Hübsch, G.; Springer; T., Schill; A, Spriestersbach, A.: Ziegert, T.: Systemlö-
sungen für die Entwicklung adaptiver Anwendungen für mobile und ubiquitäre Infra-
strukturen. HMD - Praxis der Wirtschaftsinformatik, Schwerpunktthema: Ubiquitous
Computing. Hrsg.: Sauerburger, H., No. 229, February 2003, pp.42-55..

1124 G. Hübsch, A. Spriestersbach, T. Springer, T. Ziegert

[IDC] IDC Research: Western European Teleworking: Mobile Workers and Telecommut-
ers. 2000-2005

[ItMa00] Ito, N.; Manabe, K.,: XML Document Navigation Language. W3C Note by NEC
Corporation. 2000.

[Mand+02] Mandyam, S.; Vedati, K.; Kuo, C.; Wang, W.: User Interface Adaptations: In-
dispensable for Single Authoring, W3C Workshop on Device Independent Authoring
Techniques. SAP University, St. Leon-Rot, Deutschland, September 2002.

[Nils+00] Nilsson, M.; Hjelm, J.; Ohto, H.: Composite Capabilities/Preference Profiles:
Requirements and Architecture. W3C Working Draft 21 July 2000.
http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/

[Schi+01] Schilit, B.N.; Trevor, J; Hilbert, D.; Koh, T.K.: m-Links: An Infrastructure for
Very Small Internet Devices. Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking, Rome, Italy, 2001: pp. 122-131.

[SpGö02] Springer, T.; Göbel, S.: A Modular Adaptation Framework for Single Source
Publishing. In: Pedro Isaías (Ed.), Proc. of the IADIS International Conference
WWW/Internet 2002, ISBN: 972-9027-53-6, IADIS Press, Lissabon, Portugal, 2002, ,
pp. 11-19.

[WAP00] Wireless Session Protocol Specification, Approved Version 5-July-2001, Wire-
less Application Protcol Forum Ltd.
http://www.openmobilealliance.org/tech/affiliates/wap/wap-230-wsp-20010705-a.pdf

[Wat94] Watson, T.: Application Design for Wireless Computing. Proceedings of the 1st
IEEE Workshop on Mobile Computing Systems and Applications (MCSA '94), Santa
Cruz, California. 1994: pp. 91-94.

[WML01] WAPForum: Wireless Markup Language, Version 2.0. Version 11-Sep-2001,
http://www.openmobilealliance.org/.

[XFORMS03] XForms 1.0, W3C Recommendation, 14 October 2003,
http://www.w3.org/TR/xforms/.

[XHTML02] XHTML 1.0: The Extensible HyperText Markup Language (Second Edition),
A Reformulation of HTML 4 in XML 1.0. W3C Recommendation 26 January 2000, re-
vised 1 August 2002. http://www.w3.org/TR/xhtml/.

[XPATH] W3C: XML Path Language (XPath) Version 1.0. http://www.w3c.org/TR/xpath

[XSLT] W3C: XSL Transformations (XSLT) Version 1.0. http://www.w3.org/TR/xslt

	Association for Information Systems
	AIS Electronic Library (AISeL)
	February 2005

	An Integrated Platform for Mobile, Context-Aware, and Adaptive Enterprise Applications
	Gerald Hübsch
	Thomas Springer
	Axel Spriestersbach
	Thomas Ziegert
	Recommended Citation

	Microsoft Word - WI05-Beitrag8.doc

