
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2005 Wirtschaftsinformatik

February 2005

A Concept for Modelling and Validation of Web
Based Presentation Templates
Daniel Fötsch
Friedrich-Schiller-Universität Jena

Andreas Speck
Friedrich-Schiller-Universität Jena

Wilhelm R. Rossak
Friedrich-Schiller-Universität Jena

Jörg Krumbiegel
Intershop Communications AG

Follow this and additional works at: http://aisel.aisnet.org/wi2005

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2005 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Fötsch, Daniel; Speck, Andreas; Rossak, Wilhelm R.; and Krumbiegel, Jörg, "A Concept for Modelling and Validation of Web Based
Presentation Templates" (2005). Wirtschaftsinformatik Proceedings 2005. 21.
http://aisel.aisnet.org/wi2005/21

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2005%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005?utm_source=aisel.aisnet.org%2Fwi2005%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2005%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005?utm_source=aisel.aisnet.org%2Fwi2005%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2005/21?utm_source=aisel.aisnet.org%2Fwi2005%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Ferstl, Otto K, u.a. (Hg) 2005. Wirtschaftsinformatik 2005: eEconomy, eGovernment, eSociety;
7. Internationale Tagung Wirtschaftsinformatik 2005. Heidelberg: Physica-Verlag

ISBN: 3-7908-1574-8

© Physica-Verlag Heidelberg 2005

A Concept for Modelling and Validation of Web
Based Presentation Templates

Daniel Fötsch, Andreas Speck, Wilhelm R. Rossak
Friedrich-Schiller-Universität Jena

Jörg Krumbiegel
Intershop Communications AG

Abstract: The assurance of quality and reliability is essential for success in the e-
business. However, missing validation mechanisms are a serious problem in web
page development. Most web based programming languages do not support vali-
dation and other security features. Furthermore, the usage of different languages
increases the complexity. We present an approach to integrating different pro-
gramming languages in one homogeneous language and further in a formal
model, which may be transferred to the specific model used by verification tools.
Our concept enables the single analysis and validation of heterogeneous web
based languages as well as in combination and interaction.

Keywords: Modelling, Validation, Model Checker, Template

1 Introduction

In the early days of the Internet web designers used HTML to create static web
pages composed of text and images. However, static web pages must be manually
created and maintained. Naturally, this is practical only for comparative small web
sites containing just a few pages of information, which only need to be changed
from time to time.

In contrast to a simple, often non-commercial web site, an online shop possibly
contains thousands of different pages making it impractical to create and maintain
all the storefront pages manually. In the Intershop’s e-commerce system Enfinity
MultiSite a specific concept has been introduced to handle the large numbers of
web pages: the template concept. Without such a template concept, storefronts re-
quire that every page be hard-coded in standard HTML.

In general, templates contain information about how to format or present data.
This skeleton may be developed in the form of a rule or mould with one or more
shapes used to apply different looks and feels to specific documents and web sites.

392 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

Furthermore, templates may include instructions to replace placeholder variables
with current values or content from another source. The technique of templates
supports the following significant benefits:

• A template can be used to display variations, e.g. thousands of products.

• Calculations or other processing flows are not possible in standard HTML.

• Information, which are subject to regular changes, such as product prices, may
be stored and maintained in a database.

• A storefront page may display user-defined pieces of information, for example
a list of products matching a customer’s search criterion.

Comprising with templates, it is possible to generate storefront pages dynamically
each time a user requests a page. This dynamic procedure increases the complex-
ity considerably. Ensuring the high stability and quality of a web presence, an
automatic verification concept and technique is essential.

Admittedly, templates have some oppressive characteristics for an automatic veri-
fication. The fundamental problems to resolve are:

• Generally, templates are developed with heterogeneous web based program-
ming languages, e.g. HTML, JavaScript, and other different server-side script-
ing languages.

• Web based scripting languages are supported by interpreters, but they cannot
be used for an overall analysis.

• The examination of linked web pages is very difficult and currently not enough
supported.

• Especially, no concept exists for the verification of the mutual interaction from
pipelines and templates in Enfinity MultiSite.

We develop a concept of a multi-level transformation process from templates im-
plemented with different programming languages in a formal model. The formal
model is the basis for the further conversion in a specific model of verification
tools [Föts04].

In this paper we concentrate on the technique of model checking. Model checking
is an automatic approach to formal verification. This verification is performed by
software tools, which are capable of deciding whether or not a formal specifica-
tion is satisfied by a given model. In this context the model is a state-transition
system and the specification is formalised with temporal logic formulas, which
pinpoint desired behaviour over paths and states in the model [Cla+01].

In the following of the paper we apply our developed transformation process to
the template concept of Intershop’s e-commerce system Enfinity MultiSite.
Hence, we introduce in section 2 the programming layers of Enfinity MultiSite
and demonstrate a use case model of an HTTP request. Based on this background

A Concept of Modelling and Validation of Web Based Presentation Templates 393

information, the detailed steps of the transformation process are discussed in sec-
tion 3. At the beginning of this section our formal model to be checked is defined.
In the following subsections we explain the physical description of the defined
model and depict an example from the e-commerce domain. In section 4 we elabo-
rate the problem of validating. We pick up again our example for describing the
conversion from the defined model into a specific model of a model checker. Fi-
nally, we consider related works, conclude this work, and provide an insight into
our future work.

2 Enfinity MultiSite

Enfinity MultiSite is a large e-commerce system implemented by Intershop. En-
finity MultiSite distinguishes four different programming layers (cf. Figure 1).
Each programming layer has a distinct function, contains distinct objects, and is
programmed in dedicated development tools [Schw03].

Figure 1: The programming layers of Enfinity MultiSite [Schw03, p. 3].

1. Pipeline Layer: The highest level of the layered Enfinity MultiSite model real-
ises the concept of a pipeline. A pipeline is a graphical model of a particular
business process and combines a number of business tasks using a determined
syntax to delineate the business process. Every request to Enfinity MultiSite
triggers the execution of a pipeline. The requested URL always identifies,
which pipeline is to be invoked to serve the request. A pipeline may include
different types of nodes: pipelet node (implements the reusable specific busi-
ness function), control node (defines the flow of a pipeline) and interaction
node (generates a response). Pipelines are created, managed, and manipulated
within the Visual Pipeline Manager.

394 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

2. Presentation Layer: The presentation layer is responsible for converting the
results of a business process into a response. Typically, this results in a gener-
ated HTML page being displayed in the end user web browser. In this context
the templates define the skeleton of this web page: the page structure, the style
used on the page, and static as well as dynamic content elements. The dynamic
content is based on information stored in the pipeline dictionary and added to
the page at the time the response is actually generated. The inclusion of vari-
able elements and expressions for dynamic content in templates allows to de-
rive a large number of pages from each template.

3. Pipelet Layer: Based on functionality offered by the business object layer,
pipelets handle a specific business function, such as connecting to the database
and retrieving information. Pipelets are small, reusable units of Java classes,
which can be used in different pipelines. Pipelets exchange data with other
pipelets via the pipeline dictionary of the pipeline.

4. Business Object Layer: The primary building blocks of the business object
layer are the business objects and manager classes. Typically, business objects
are data containers modelling data persistently stored in the database. Each
business object is connected to a manager class. Manager classes provide ser-
vices for controlling the lifecycle of persistent data object contained in the
business objects. Business objects and managers are implemented with EJB
technology.

The concept of Enfinity MultiSite’s programming layers has two significant bene-
fits:

• The business logic is managed outside the code. The pipelets implementing the
logical business function are combined to perform a pipeline representing the
logical business flow.

• The business logic is separated from the design of presentation. Although pipe-
lines and templates work together, the tasks of modelling business logic can be
performed separately from developing the design of the storefront.

Figure 2 depicts an overview of how an HTTP request is processed in Enfinity
MultiSite and illustrates the interaction of the key concepts mentioned above.

A Concept of Modelling and Validation of Web Based Presentation Templates 395

Figure 2: Simplified Enfinity MultiSite request model (according to [Mül+02, p. 69])

At first, the web server receives the HTTP request of the client. The web server
augmenting with a web adapter adds supplemental information, such as session id,
to the incoming request and redirects the enhanced request to the core application
server of Enfinity MultiSite.

The application server consists of a request handler, a pipeline and a template
processor, as well as further components. The request handler is responsible for
the encapsulation of incoming and outgoing requests in appropriate request, re-
sponse, and session objects. After some data are examined, e.g. specific currency
and language supported by the online shop, the request handler invokes the pipe-
line processor, which tries to load the pipeline encoded in the requested URL.
Moreover, the pipeline processor initiates the pipeline dictionary and manages the
flow of the pipeline elements through the pipeline. At the end of a pipeline the
pipeline processor invokes an interaction node for producing a response. The in-
teraction node with the referenced template triggers the template processor. Using
the data stored in the pipeline dictionary, the template processor generates an
HTML page, which displays the results of the pipeline [Mül+02].

3 Modelling of Presentation Layer

The basis of the process of transformation is a common generic language. Each
heterogeneous template implementing with different languages is transformed in a

396 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

homogeneous template. We use XML for representing the homogeneous template.
XML is a standardised extensible markup language [Bra+], which is a subset of
SGML (standard generalized markup language [Inte86]). XML allows easy speci-
fication of user-defined markup tags adapted to the document [Ahm+01].

In the next step of the transformation process the homogeneous XML template is
transformed in a formal model. This model (called presentation model) provides a
basis for converting in the specific model of model checker or other verification
tools.

3.1 Definition of the Presentation Model

We will now define the formal definition of the presentation model. The formal
model for the presentation layer is an 8-tupel M = (S, E, C, L, S0, SE, δ, λ), where

• S is a finite set of states,

• E is a finite set of events,

• C is a finite set of conditions,

• L is a finite set of labels,

• S0 ⊆ S is a distinguished set of initial states,

• SE
 ⊆ S is a distinguished set of final states,

• δ is a transition function from S × E × C into S,

• λ is a label function from S into L.

The states of the finite automaton represent computations and statements in the
templates, which are performed in dependency of the transitions in a specific se-
quence. The execution of the transitions can be influenced themselves with condi-
tions and events. Events, e.g. press a link, are responsible for triggering a transi-
tion. Conditions specify if the transition is performed or not. Each automaton rep-
resenting a template begins with an initial state and ends with a final state. In addi-
tion, states can be occupied with a label, which contains more information about
the state (for example the name of a variable element).

The presentation model will be described as graphical notation in the further paper
(cf. Figure 3). The UML state charts diagram notation is extended to an optional
label in the states, a grey area for optional states, and macro states. Thereby, a
macro state is the shortened notation for various non-macro states. The labels are
marked as little rectangle in the corresponding state and the grey area in the back-
ground of the states signs that either all or no states can be omitted.

A Concept of Modelling and Validation of Web Based Presentation Templates 397

Figure 3: The graphical notation of the presentation model.

3.2 Physical Description of the Presentation Model

The physical description of the presentation model is realised in XML. XML sup-
ports several helpful features for validating a presentation model. For instance, an
XML document is valid if it is well formed, the document must simply conform to
numerous syntactical rules, and adheres to its specified document type definition
(DTD). A document type definition is a formal description of a grammar to de-
fine the legal building blocks of an XML document. A DTD can be declared inline
in the XML document, or as an external reference. On this note, a presentation
model of a template is valid if and only if it fulfils following DTD:

<!ELEMENT presentation-model (states, transitions)>

<!ELEMENT states (state+)>

<!ELEMENT state EMPTY>

<!ATTLIST state

 kind CDATA #REQUIRED

 label CDATA #IMPLIED

 id ID #REQUIRED

 idref IDREF #IMPLIED>

<!ELEMENT transitions (transition*)>

<!ELEMENT transition (from, to, event?, condition?)>

<!ATTLIST transition>

398 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

<!ELEMENT from EMPTY>

<!ATTLIST from

 idref IDREF #REQUIRED>

<!ELEMENT to EMPTY>

<!ATTLIST to

 idref IDREF #REQUIRED>

<!ELEMENT event EMPTY>

<!ATTLIST event

 kind CDATA #REQUIRED>

<!ELEMENT condition EMPTY>

<!ATTLIST condition

 value (true|false) #REQUIRED>

According to above DTD, there are nine element types. The main presenta-
tion-model element must contain exactly one states followed by exactly
one transitions element. The states element represents the states in the
presentation model. Therefore, the states element is a non-empty set of state
elements. Each state is specified with a specific kind attribute (e.g. comment),
an id attribute, an optional label attribute (e.g. do something), and if necessary
an idref attribute. The id is required to assign the states to the correct transi-
tions. In distinctive cases (e.g. a variable assignment) states are in relationship
with other states. This can be specified with the optional idref attribute.

The transitions element maps the set of transitions to the presentation model.
Thus, the transition must contain one from and one to element. The from
element comprises a reference to the starting state and the to element to the end-
ing state of the transition. In addition, a transition element can be possessed
an event as well as a condition element. These elements represent the events
and conditions in the transitions of the presentation model. Note that the order of
the elements must be as specified.

3.3 Example of Modelling

In this section we demonstrate an example transformation from the original tem-
plate in the graphical notation of the presentation model.

A Concept of Modelling and Validation of Web Based Presentation Templates 399

Figure 4: The Welcome web page from Enfinity's eProcurement solution.

Our example web page (cf. Figure 4) is generated from the template Applica-
tionFrame. All templates in Enfinity are stored in ISML (Intershop markup lan-
guage). ISML is an extended markup language based on Java Server Pages tech-
nology, which is primarily used to add dynamic content to a page. ISML allows to
retrieve and display data from the pipeline dictionary, to initiate the execution of
additional pipelines, and to embed templates inside other templates [Inte02].

The example ApplicationFrame template, which generates the web page in
Figure 4, consists of four templates, the GlobalNavigationBar, the
SiteNavigationBar, the Footer and the #Working Template#. More-
over, the ApplicationFrame template includes a GlobalJava Script
file and a stylesheet file.

In the first step of the transformation all heterogeneous files of the Applica-
tion Frame template are transferred in a common generic XML file. In the
next step this XML file is transformed in an automaton of the presentation model.
Figure 5 shows a fragment of this XML file in graphical notation. The file of the
presentation model is the basis for the following transformation in the specific
model of model checker or other verification tools.

400 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

Figure 5: A fragment of the graphical presentation model of the example web page.

The example in Figure 5 outlines the most important characteristics of the trans-
formation. On one side each for the validation interested file (e.g. Applica-
tionFrame and JavaGlobalScript) is separately integrated in the presenta-
tion model. For that reason, each file can be single validated. On the other side,
according to the relation of the files, they will be connected. For example the Ap-
plicationFrame includes the GlobalJavaScript file in the presentation
model. Therefore, the complete template can be validated in interaction and com-
bination. Note, in the case that no GlobalJavaScript file exists in the presen-
tation model, a transition is generated between <include> and </include>
state inside the automaton of the ApplicationFrame.

In this way the whole presentation layer can be transformed in the presentation
model and, finally, validated with a verification tool. In the next section one vali-
dation technique is applied on the presentation model.

A Concept of Modelling and Validation of Web Based Presentation Templates 401

4 Validation of Presentation Layer

In the further process of transformation the presentation model has to be converted
in the specific model of a verification tool.

4.1 Validation with Model Checker

We apply model checkers, such as SPIN [Holz97] or SMV (Symbolic Model
Validation [McMi92]), in order to validate the templates. These checking tools
need a model of the issue to be validated (the possible behaviour of the system)
usually described as finite state machine. The specification (the desired behaviour
of the system), which the model is checked against, is formulised in temporal
logic formulas. If an error is recognized the model checker provides a counter-
example consisting of a scenario in which the model behaves in an undesired way.
Figure 6 depicts the verification methodology of model checking.

Figure 6: The concept of model checking [Kato99, p. 32].

For the objective of specification several temporal logics with different power ex-
ist, e.g. the LTL (Linear Time Logic [Pnue77]) or the CTL (Computation Tree
Logic [ClDr89]). These logics enhance common predicate logics by defining addi-
tional operators. For LTL the temporal operators X (next time), F (eventually), G
(globally) specify that a property holds at the second/some/each state on a path.
Additionally, CTL defines the path quantifiers A (for all computation paths) and E
(some computation paths). Furthermore, the binary operator U (until) can be de-

402 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

fined for both LTL and CTL. A comparison between linear and branching time
logic is introduced in [EmHa86] or [ClDr89].

4.2 Example of Validation

The example presented in Figure 5 of section 3.3 is a comparative small fragment
of the complete template as recently as the whole presentation layer. However, it
demonstrates some of the problems, which may occur when a template has to be
examined.

The transformation from the presentation model to the finite state machine of a
model checker, such as SMV, is straightforward. Each state and each transition of
the presentation model is wrapped in a state as well as a transition in the SMV
automaton. The conditions and the events influencing the transition can be inher-
ited from the automaton as additional guards. Merely, the information of labels in
the presentation model is currently not supported by the model of the model
checker. They get lost. But these information are not crucial for the dynamic be-
haviour of the template.

The description of the requirement specification to be checked against the model
of SMV is formalised in CTL. Examples for concrete rules to be checked may
look like:

• On a page (represented by the state start1) may be displayed a specific text
(label of the state print1). In CTL: AG(start1 -> EF(print1))

• In the case the user has a specific permission (condition of if1 is true) a spe-
cific text (print2) must be displayed. In CTL: AG(if1 &
(if1_condition=true) -> AF(print2)).

• Validate, if a linked template (represented by the URL address in the label of
the state include1) is included in the presentation model. In CTL:
AG(include1 -> !EX(endinclude1))

The procedure of template validation is depicted in Figure 7. Here the template is
transformed into the corresponded finite state machine. The specification is ex-
pressed in CTL (the last specification example above). Both are given to the
model checker (actually they are copied into one file, which is then processed by
SMV).

A Concept of Modelling and Validation of Web Based Presentation Templates 403

Figure 7: Model checking of templates.

The result produced by the model checker is presented at the bottom of Figure 7;
the positive validation that no next state endinclude1 of the state include1
exists. In other words, this means that the included template is integrated in the
presentation model of the example.

5 Related Work

The concept of applying XML to store information is very convenient in e-
commerce systems (e.g. like Intershop’s Enfinity MultiSite). It may also be used
for representing programming languages.

JavaML realises such an approach representing the elements of the programming
language Java in XML [Badr00]. Thereby, the diversity of XML tools may be
used for analysing and processing of Java code.

In our work we combined both the representation of static web sites and the repre-
sentation of a programming language in one concept: applying XML to store the
dynamic elements of web presentations (modelled as automatons) in XML.

In order to validate the XML automatons we apply model checking. This is an ap-
proach, which is well established in hardware-related domains. Model checking is
widespread and has already industrial relevance since several years [ClKu96]. The
usage of this formal method in the domain of software products, however, is still
in its very beginnings (the first steps may be found in [LaGr98]). This is due to the
state explosion problem as well as the model construction problem. Both are even
more difficult to deal with software as compared to hardware systems [Cor+00].

404 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

The transformation from state charts to the model checking language SMV is sys-
tematically investigated in [ClHe]. Despite the fact that state charts are usually
quite close to the code, this approach deals with similar problems (building finite
automaton from dynamic models).

The validation of the behaviour of components is also related to this work since it
meets the problems of large presentations. In [StWa01] an approach called PACC
is presented. It allows component certification. The approach considers to enforce
predefined and designed interaction patterns and is therefore based on comparable
software analysis and documentation techniques. The focus in their work is on
certification and documentation. Another approach to model and validate the dy-
namic activities of components may be found in [Spe+022]. In this approach
model checking is explicitly applied in order to validate the behaviour of the com-
ponents and composites.

6 Conclusion and Future Work

This paper proposes an approach to model and validate web based presentation
templates. The modelling and validation is realised by applying a multi-level
transformation process. The basis of the process is the transformation of the het-
erogeneous languages in a common generic XML language. Then the generic lan-
guage is mapped in a formal presentation model. This model provides the funda-
ment for the conversion in the specific model of model checkers or other verifica-
tion tools.

Our approach has been used to develop web presentation templates for the e-
commerce system Enfinity MultiSite and to validate their correctness. However,
the concept presented in this paper may be also applied for other web systems,
which use dynamic mechanisms, such as templates, for generating web pages. We
expect it to also support the validation of dynamic web pages created by e.g. PHP
or other scripting languages without any major adjustments.

From the viewpoint of the Enfinity MultiSite’s programming layers the paper pre-
sents only a limited solution for the validation of the presentation layer. However,
further validation techniques have to be found to include the pipeline and pipelet
layer for assuring their consistency. Our current steps towards this issue are the
investigations of formal modelling pipelines and pipelets, the integration of this
model in the presentation model, as well as the development of an e-commerce
specific specification language allowing to express the standard requests in the e-
commerce domain. The latter work implies that the temporal specification lan-
guages have to be considered and a mapping from these languages to the standard
classes of problems have to be built.

A Concept of Modelling and Validation of Web Based Presentation Templates 405

References

[Ahm+01] Ahmed, K.; Ancha, S.; Cioroianu, A.; Cousins, J.; Crosbie, J.; Davies, J.; Gab-
hart, K.; Gould, S.; Laddad, R.; Li, S.; Macmillan, B.; Rivers-Moore, D.; Skubal, J.;
Watson, K.; Williams, S.; Hart, J.: Professional Java XML. Wrox Press Ltd.: Birming-
ham, 2001.

[Badr00] Badros, G. J.: JavaML: A Markup Language for Java Source Code.
http://www.cs.washington.edu/research/constraints/web/badros-javaml-www9.pdf,
2000, Download 2004-10-01.

[Bra+04] Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.; Yergeau, F.: Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation.
http://www.w3.org/TR/REC-xml, 2004, Download 2004-10-01.

[ClDr89] Clarke, E. M.; Draghicescu, I. A.: Expressibility results for linear-time and
branching-time logics. In Proceedings of the Workshop on Linear Time, Branching
Time, and Partial Order in Logics and Models for Concurrency, School/Workshop.
Lecture Notes in Computer Science, Springer: London, 1989, pp. 428-437.

[Cla+01] Clarke, E. M.; Grumberg, O.; Peled, D. A.: Model Checking. The MIT Press:
Cambrige, Massachusetts, 2001.

[ClHe00] Clarke, E. M.; Heinle, W.: Modular translation of statecharts to SMV. Technical
Report CMU-CS-00-XXX, School of Computer Science, Carnegie Mellon University,
Pittsburgh, 2000.

[ClKu96] Clarke, E. M.; Kurshan, R. P.: Computer-aided Verification. IEEE Spectrum
33(6), 1996, pp. 151-178.

[Cor+00] Corbett, J. C.; Dwyer, M. B.; Hatcliff, J.; Laubach, S.; Pasareanu, C. S.; Robby;
Zheng, H.: Bandera: Extracting Finite-state Models from Java Source Code. In Pro-
ceedings of the 22nd International Conference on Software Engineering (ICSE’00),
2000, pp. 439-448.

[EmHa86] Emerson, E. A.; Halpern, J. Y.: “Sometimes” and “not never” revisited: on
branching versus linear time temporal logic. Journal of the ACM 33(1), 1986, pp. 151-
178.

[Föts04] Fötsch, D.: Modellierung und Validierung von web-basierten Sprachen. Diploma
thesis, Computer Science Department, Friedrich Schiller University of Jena and Inter-
shop Research, Jena, 2004.

[Holz97] Holzman, G. J.: The Model Checker SPIN. IEEE Transaction on Software Engi-
neering 23(5), 1997, pp. 279-295.

[Inte86] International Organization for Standardization (ISO). Standard Generalized
Markup Language (SGML). ISO 8879:1986. http://www.iso.ch/cate/d16387.html,
1986, Download 2004-10-01.

 [Inte02] Intershop Communications AG: Enfinity Content Management. Technical White
Paper. http://www.intershop.de/pdf/products/ECM_WhitePaperT_020523.pdf, 2002,
Download 2004-10-01.

406 D. Fötsch, A.Speck, W.R.Rossak, J.Krumbiegel

 [Kato99] Katoen, J.-P.: Concepts, Algorithms, and Tools for Model Checking. Lecture
Notes of the Course “Mechanised Validation of Parallel Systems”, Course number
10359. Department of Computer Science, Friedrich Alexander University of Erlangen-
Nürnberg, 1999.

 [LaGr98] Laster, K.; Grumberg, O.: Modular Model Checking of Software. In Proceedings
of the 4th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’98). Lecture Notes of Computer Science, Springer: Lon-
don, 1998, pp. 20-35.

[McMi92] McMillan, K. L.: Symbolic Model Checking: An approach to state explosion
problem. PhD thesis CMU-CS-92-131, School of Computer Science, Carnegie Mellon
University, 1992.

[Mül+02] Müller, I.; Braun, P.; Rossak, W. R.: Integrating Mobile Agent Technology into
an e-Marketplace Solution, the InterMarket Solution. Technical Report No. 2002-06,
Computer Science Department, Friedrich Schiller University of Jena, 2002.

[Pnue77] Pnueli, A.: The temporal Logic of Programs. In Proceedings of the 18th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’77), Providence, Rhode
Island. IEEE Computer Society Press: 1977, pp. 46-57.

[Schw03] Schwedler, N.: Prüfung dynamischer Ablaufketten. Diploma thesis, Computer
Science Department, Friedrich Schiller University of Jena and Intershop Research, Je-
na, 2003.

[Spe+02] Speck, A.; Pulvermüller, E.; Jerger, M.; Francyk, B.: Component Composition
Validation. International Journal of Applied Mathmatics and Computer Science 12(4).
University of Zielona Gora Press: 2002, pp. 581-589.

[StWa01] Stafford, J.; Wallnau, K.: Predicting Feature Interactions in Component-Based
Systems. In Proceedings of the Workshop on Feature Interaction in Composed Systems,
in Association with the 15th European Conference on Object-Oriented Programming
(ECOOP'01). Technical Report No. 2001-14, University of Karlsruhe, 2001, pp. 35-41.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	February 2005

	A Concept for Modelling and Validation of Web Based Presentation Templates
	Daniel Fötsch
	Andreas Speck
	Wilhelm R. Rossak
	Jörg Krumbiegel
	Recommended Citation

	Microsoft Word - WI05-Beitrag217.doc

