
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2001 Wirtschaftsinformatik

September 2001

Exchanging Semantics with RDF
Wolfram Conen
XONAR GmbH, conen@gmx.de

Reinhold Klapsing
University of Essen, reinhold.klapsing@uni-essen.de

Follow this and additional works at: http://aisel.aisnet.org/wi2001

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2001 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Conen, Wolfram and Klapsing, Reinhold, "Exchanging Semantics with RDF" (2001). Wirtschaftsinformatik Proceedings 2001. 35.
http://aisel.aisnet.org/wi2001/35

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2001%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2001?utm_source=aisel.aisnet.org%2Fwi2001%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2001%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2001?utm_source=aisel.aisnet.org%2Fwi2001%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2001/35?utm_source=aisel.aisnet.org%2Fwi2001%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Buhl, Hans Ulrich, u.a. (Hg.) 2001. Information Age Economy; 5. Internationale Tagung
Wirtschaftsinformatik 2001. Heidelberg: Physica-Verlag

ISBN: 3-7908-1427-X

© Physica-Verlag Heidelberg 2001

Exchanging Semantics with RDF

Wolfram Conen
XONAR GmbH

Reinhold Klapsing
University of Essen

Abstract: E-Commerce applications require the exchange of data in an interoper-
able manner. XML enables syntactic interoperability but more sophisticated E-
Commerce applications require semantic interoperability as well. RDF is an ap-
plication of XML intended to exchange semantics between Web applications. RDF
schemata can be used to describe the concepts and constraints of a specific appli-
cation domain at a semantic level. However there is no formal mechanism to state
sophisticated semantics beyond the static set of concepts and constraints provided
by RDF. This paper presents an approach extending RDF in a standard manner
and utilizing a host formalism for formally defining semantics of new RDF sche-
mata. An elaborated example applies the approach to security management. A
tool, the RDF Schema Explorer, is available on-line, allowing to process, validate
and query a first-order-logic interpretation of(extended) RDF Schemata.

Keywords: Semantic Interoperability, Semantic Extensibility, RDF, Semantic Web

1 Exchange of Semantics in a Business Context

Open E-commerce applications require a flow of data along the value-adding
chain of actors (e.g. between suppliers, distributors, retailers and end users).
Metadata (data about data) is essential for e-commerce, as it provides standard
data items to allow parties to communicate about their products, terms, conditions
and organizations. The eXtensible Markup Language [XML00] is applied to many
E-Commerce/E-Business applications. The main benefit of XML is that it pro-
vides a widely accepted and standardized exchange format. XML is designed to
enable the exchange of data even across the boundaries of heterogenous systems.
The flexibility of XML allows (business) communities to define data formats suit-
able for a certain domain area. XML focuses on syntactic interoperability not on
semantic interoperability. Semantic interoperability is a key issue for new emerg-
ing E-Bussiness applications which require that machines are able to understand
the intended meaning of the exchanged data. The least recent vision of the World
Wide Web Consortium (W3C), the Semantic Web [SemWeb], fosters this aspect.

474 W. Conen, R. Klapsing

The Resource Description Framework (RDF) [RDF99; RDFS00] may develop
into one of the foundations of the Semantic Web by enabling semantic interopera-
bility. RDF is designed for data sharing and processing by automated tools as well
as by people. For the Web to scale, independently designed programs must be able
to exchange and process (meta-) data. Ideally, the programs should be able to
process the meaning of (meta-) data indepent from specific application areas. Se-
mantic interoperability can be achieved only if different users (agents, tools, etc.)
interpret an RDF data description in the same way. Important aspects of the RDF
model are, however, expressed in prose which may lead to misunderstandings. To
avoid this, capturing the intended semantics of RDF in a formal manner is unre-
missible. In [CoKl00], the concepts and constraints of the RDF model have been
expressed in first order logic (FOL), a well-studied expression mechanism with a
commonly agreed-upon interpretation. This is utilized in the RDF Schema Ex-
plorer, a Prolog-based tool developed on top of Jan Wielemaker's RDF parser
[SWI]. A Web-based version of the RDF Schema Explorer is accessible on-line
[SE].

Figure 1: Defining more sophisticated semantics with a host formalism.

It allows to query RDF descriptions not only on the statement level but with
respect to the facts and rules that capture the semantic concepts and constraints of

Exchanging Semantics with RDF 475

RDF. For this purpose, a number of pre-defined logic predicates is available. This
allows to validate RDF descriptions against the RDF rule set. The concepts and
constraints defined by the RDF specifications can be used to create new
application-specific schemata which are also processible by generic RDF tools.
However, problems arise if an application domain area requires semantics which
are not expressible with the basic, static concepts and constraints provided by
RDF (being mainly subclassing, typing and domain/range constraints). RDF lacks
a formal approach for defining more sophisticated semantics beyond simple
labeling (that is defining attribute/value pairs). As a consequence, the intended
semantics of the properties provided by new RDF schemata can not be assessed
generically. We think that this poses the risk for the emerging Semantic Web to
develop into a babylonic jumble of semantics, as it entails the development of
“specific purpose” RDF tools with built-in interpretation of application-specific
RDF schemata/descriptions. This hard-coding of semantics of RDF properties
hampers the further evolution and universal re-use of schemata. In addition, such
tools will only be able to construe other RDF schemata/descriptions at the labeling
niveau. A generic mechanism is needed to extend the expressibility of RDF
schemata in a formal and interoperable manner (compare Fig. 1). Our mechanism
achieves this by delegating the interpretation of RDF descriptions to a host
formalism. RDF schemata are tied to the host formalism by two elementary
devices: (1) an additional RDF property isDefindAs that allows to formulate
semantic definitions with the host formalism, and (2) an elementary mapping of
the RDF primitive Triple (i.e, [s,p,o]) to a corresponding primitive of the host
formalism (the instantiation statement(s,p,o) of the predicate statement
in our case).

To summarize: This paper presents a generic approach which equips RDF with a
mechanism to formally and interoperably express sophisticated semantics in RDF
schemata. We present a tool, the RDF Schema Explorer, that allows to parse, vali-
date, query and extend RDF Schemata. The concepts and benefits of the approach
are demonstrated along the presentation of an RDF schema that allows to capture
security-relevant access constraints in a rule-based access control contexts. The
vocabulary of the schema with its prolog-based semantics can be used to augment
other RDF schemata with access control features. We view this application as
prototypically demonstrating the benefits of precisely and interoperably specified
semantics in collaboration-driven application domains.

The remainder of this paper is structured as follows. In Section 2 the extension
mechanisms is presented. First, we describe how the RDF Schema Explorer oper-
ates and which basic predicates are provided to query an RDF description. In Sub-
section 2.1, the extension mechanism, used to formally define more sophisticated
semantics in RDF schemata, is explained. An example, taken from an access con-
trol context, is presented in Subsection 2.2 to demonstrate the extension mecha-
nism and the related RDF syntax. In Section 3 the paper is concluded with a brief
discussion of the presented approach.

476 W. Conen, R. Klapsing

2 Specifying Extensible Semantics in RDF

Below, the RDF Schema Explorer [SE] is presented that allows to query RDF
models not only on a statement level but also with respect to the facts and rules
that capture the semantic concepts and constraints of RDFS. For this purpose, a
number of pre-defined predicates is available. This allows to validate the models
against this RDFS rule set. In addition, it is possible to define the semantics of
newly introduced predicates from within RDF and to query/check/validate these
extended models. The tool works as follows. First, some RDF-File will be fed into
the SWI-Prolog-based RDF parser. This file will be parsed and a relation will be
created that contains the triples (relation statement(S,P,O)). The slightly
modified parser tries to normalize the URIs-no matter, if a resource is given in
subject, predicate, or object position, the parser tries to transform it into the format
namespace:resource_name . This makes querying much easier. Further-
more, some form of normalization is necessary to be able to discover that
xxx:yyy and URI_of_xxx#yyy are (or better: “represent”) indeed the same
resource. Now, this simple triple database could already be queried. The tool of-
fers a query field allowing to ask the Prolog engine things like state-
ment(S,rdf:type,O) or setof(O,statement (S,P,O),Z) . While it
is certainly useful to know a little bit about prolog, it is not necessary, because the
tool offers a choice of predefined queries from a pre-selection list. However, this
would not be completely satisfying. As one will normaly use concepts/constructs
from RDFS, the fact and rule base that has been outlined in [CoKl00] is provided.
Thus the knowledge level predicates that are briefly explained in Table 1 can be
used to check and query a model with respect to the RDF schema constraints. In
addition, we have defined a number of additional convenience predicates. Most of
them can be chosen from the pre-selection menu on the query form.

Predicate Purpose
statement(S,P,O) Contains the basic facts of the knowledge base.
res(R) Gives the resources.
lit(O) Gives the literals.
reifies(R,S,P,O) R reifies the (not necessarily present) triple

[S,P,O].
reifyingStatement(R) R fulfills reifies/4 for some S,P,O.
reifies_fact(R) R fulfills reifies/4 for some S,P,O and the

triple. [S,P,O] is indeed in the knowledge
base (so, reifies may model a belief or a reifica-
tion of a fact.).

subClassOf(C,D) Transitive predicate that captures the relation
that is expressed with the subClassOf prop-
erty.

instanceOf(R,C) Transitive predicate that captures the relation

Exchanging Semantics with RDF 477

that is expressed with the type/subClassOf

properties.
subClass_cycle_
 violation(C)

This is true if the knowledge base allows to infer
subClassOf(C,C).

subPropertyOf(X,Y) A transitive predicate that capture the relation
that is expressed with the subPropertyOf
property.

subProperty_cycle_
 violation(P)

This is true if the knowledge base allows to infer
subPropertyOf(P,P).

domain_constrained_
 property(P)

At least one statement that specifies a domain
constraints is present for property P.

Domain(X,P) X is an instance of one of the classes that are in
the domain of P.

Domain_violation(S,P,O) This is true if a statement [S,P,O] is in the
knowledge base, and P is domain-constrained
and S is not in the domain of P.

is_range(C,P) C is (one of) the range restriction(s) for P.
range_cardinality_
 violation(P)

There are (at least) two different range restric-
tions for P.

has_range(P) P is range-constrained.
range(X,P) X is an instance of (one of) the class(es) to

which the range of P is constrained to.
range_violation(S,P,O) P is range-constrained, the statement [S,P,O]

is in the knowledge base and O is not in the
range of P.

violation(T,S,P,O) A convenience predicate that collects the above
violations. T will show the type of the violation
and S,P,O will be the violating triple.

Table 1: A collection of the predicates that axiomatize RDF Schema.

An example is show_statements(S,P,O) where a value for any of the vari-
ables S, P, or O can be substituted in and a list of the triples containing the substi-
tuted value at the corresponding position will be generated. While this all makes it
rather easy to explore the effects of RDF schema concepts and constraints, one
will soon discover that the semantics implied by RDFS are rather general. We
therefore allow to introduce semantics on top of the basic facts and rules which
makes it possible to specify more precisely what a modeler intends with her predi-
cates. This can be done in two ways:

 1. Either, some Prolog rules may be directly keyed into the query field, for exam-
ple

assert(trans_rel(S,O):- statement(S,path,O)).
assert(trans_rel(S,O):- statement(S,path,Z), trans_ rel(Z,O)).

478 W. Conen, R. Klapsing

which defines the predicate trans_rel to represent a transitive property path .
This would allow to inquire if two resource are transitively related, or

 2. the RDF-level mechanism that we provide to define the semantics of predicates
within RDF documents is used. This mechanism will be discussed in some detail
in the following subsections.

The Extension Mechanism

The mechanism to be described allows to provide the semantics of properties
within RDF schema declarations. A special predicate rdfs:isDefinedAs is
available to extend the basic rule set with additional semantics for newly defined
properties (the basic rule set can also be defined this way). The interpretation of
the schemata will rely on a suitably chosen host formalism. For the current im-
plementation, the Prolog-flavor of first-order logic has been selected.

The example below, defining the transitive property path , can be fed directly
into the RDF Schema Explorer.

<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax -ns#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax- ns#"
xmlns:rdfs="http://.../TR/2000/CR-rdf-schema-200003 27#">

<rdf:Property rdf:ID="path">

<rdfs:isDefinedAs rdf:parseType="Literal">
path(S,O) :- statement(S,path,O).
path(X,Z) :- statement(X,path,Y), path(Y,Z).

</rdfs:isDefinedAs>
</rdf:Property></RDF>

In the current version, only Prolog code may be provided (to be read by SWI-
Prolog in the sequence that is implied by the XML serialization--unfortunately, in
standard SLD-resolution-based Prolog, sequence does matter. This matches, natu-
rally with XML--and not quite so naturally with RDF, which does not use se-
quence information with the notable exception of Seq-type containers). In future
versions, other languages may be allowed as well (and an additional statement will
then denote which language is used in a document. A similar approach is proposed
in [SEMD00]). Note the use of statement above, which is meaningful because
all predicates that are defined in the basic rule set are usable.

Sharing Security Schemata - An Example

Below, an example of extending the semantics of RDF schema constructs is de-
scribed. In particular, a more expressive version of the range constraint is pre-
sented. In RDFS, the applicability and expressiveness of the range constraint is

Exchanging Semantics with RDF 479

rather limited. To see this, first a brief review of the intended semantics of the
range constraint in the current version of RDFS is given.

• At most one range constraint is allowed.

• Only two distinguished sets of entities, namely Resources and Literals exist.

• The semantics of subclassing can be captured with the rule

• instanceOf(x,B) :- instanceOf(x,A), subClassOf(A,B)

With an open-world assumption, not much could be deduced from a range con-
straint1, because knowing that the range of a property p is constrained to the set X
⊂ Resources and knowing that a resource r is an element of a set Y ⊂ Re-
sources does not allow to conclude that attaching a value r to p would violate
the range constraint. This would only be reasonable if it would be known that X
and Y are disjoint. However, this information is only available for Literals and
Resources and is not expressible in RDF for the relation between two (or more)
arbitrary subsets of Resources. Assuming that the world is closed and complete,
one could argue that two subclasses X,Y of a class R are disjoint if no entity is
known that is an instance of both classes. Nevertheless, two problems remain:
schemata are mostly used to guide the design/evolution of models, ie. not all in-
stances will be known at schema design time--and introducing further information
may reender earlier decisions invalid (because adding a type information to a re-
source may show that two classes are in fact not distinct but overlapping etc.) --
considering a world as complete is dangerous with respect to inter-temporal valid-
ity. In addition,only a richer set of constraints (including union, difference and
disjunction) would allow to specify all constraints that seem reasonable if the

1 We do not infer types from range constraints. Rationales: Two possible

interpretations of the range constraint have been discussed (see RDF-IG, Rdf-logic),
(a) the constraint and the (b) axiom interpretation. Roughly, (a) says that a property p
may (only) be applied to instances of classes that are in the range of p while (b) states
that, from using a resource r as a value of a range-constrained property p, it can be
infered that r has the type of the range of p. Formally, both interpretation can be
formulated as instanceOf(O,C) ← statement(S,P,O), range(P,C) ,
with the difference that, with the constraint interpretation, we have to ask if this is a
(logical) consequence of the known statements (facts) and rules (axioms) while, with
the axiom interpretation, this will be treated as one of the rules/axioms that allows us
to infer type information (and no validation will be possible). We adopt the practice of
the examples in (Sec. 3.1, Sec. 7.1 of [2]), where types are assigned to resources with
the rdf:type/rdfs:subClassOf properties, and the range-constraint is used to “state that
a ... property only ´makes sense' when it has a value which is an instance of the class
...”, allowing for validation. This conforms to interpretation (a) above. Please note
that now, no types of resources will nor should be infered, instead it is possible to
check (with the range constraint) if properties are applied to resources of the correct
type (with rdf:type, rdfs:subClassOf or subproperties of these properties as the
available devices to provide typing information).

480 W. Conen, R. Klapsing

range of a property should be restricted. To see this consider the following: The
are two classes, C1 and C2, and a property p. With “reasonable” we mean the
following range constraints: for [x,p,y] , range(p,Exp) may constrain y to
be an element of Exp defined as

Exp := C1 ∪ C2 (y in C1 OR y in C2)

Exp := C1 ∩ C2 (y in C1 AND y in C2)

Exp := C1 \ C2 (y in C1 AND y NOT in C2)

Exp := C2 \ C1 (y in C2 AND y NOT in C1)

Exp := (C1 \ C2) ∪ (C2 \ C1) (y in C1 XOR y in C2)

Exp := !(C1) (y not in C1)

An often suggested extension of RDFS is to allow multiple range constraints and
to interpret these constraints as binding the allowed range to the disjunction of the
classes. However, this would restrict the interpretation of multiple range con-
straints to one (limited) case of the cases given above. Below, we will suggest a
solution that not only conforms to RDF but also offers a flexible and general way
to specify range constraints. The required interpretation can be encoded on schema
level, making it possible to specify and enforce different types of range constraints
in different application domains. Below, only one range constraint will be al-
lowed. This is sufficient if classes (or class expressions) can be constructed from
other classes (or class expressions). In this case, each range constraint will point to
exactly one class and the construction of the class directly expresses the con-
straint. Above, the Exp term represents the constructed class and the right hand
side gives the construction expression. An example for applying a range constraint
using a constructed class is:

[C1,rdf:type,rdfs:Class]
[C2,rdf:type,rdfs:Class]
[A,rdf:type,ConstructedClass]
[A,isConstructedFrom,"C2 \ C1"]

[P, rdfs:range, A]

With [X, rdf:type, C1] , X would violate the intended range constraint if it
would be chosen as a value for P.

If it is assumed that the Exp “C2\C1 ” is modeled as a literal, the above solution
can be formulated as well-formed RDF easily. However, to interpret it, an appli-
cation-level check of the class construction semantics would be required. To us,
range constraints seem to be too important to leave their semantics to “proprie-
tary” vocabularies and interpretations, but this might be a matter of taste. With re-

Exchanging Semantics with RDF 481

spect to the intended interoperability based on RDF schemata, making the seman-
tics of the constructs expressible within RDF seems to offer a more interoperable
solution. In fact, the property isConstructedFrom denotes a multi-ary rela-
tion between classes. This can be transformed (generally) into a sequence of (3-
ary) “atomic” set-algebraic operations (expressed below as nested tuples), as in the
following example that expresses A = (C1 ∩ C2)\C3 .

[A1, intersection, [C1,C2]]
[A, difference, [A1, C3]]

In RDF, this is expressible using reification and a suitable interpretation of the rei-
fied statements:

[A1, rdf:type, rdf:Statement]
[A1, rdf:subject, C1]
[A1, rdf:predicate, rdfsets:intersection]
[A1, rdf:object, C2]

[A, rdf:type, rdf:Statement]
[A, rdf:subject, A1]
[A, rdf:predicate, rdfsets:difference]
[A, rdf:object, C3]

Suitably interpreted, this allows to express a set-algebraic range constraint like:

[P, rdfs:range, A]

The semantics, building upon the basic rules given in [CoKl00] could than be:

/* C is a constructed class */
constructed_class(C) :- instanceOf(C,'ConstructedCl ass').

/* instanceOfSet collects all instances of
a constructed class */

instanceOfSet(X,A) :- constructed_class(A),
reifies(A,S,P,O), in(X,S,P,O).

/* ... and all instances of „Standard“ classes */
instanceOfSet(X,A) :- instanceOf(X,A).

/* Range is extended to include ranges over
constructed classes (the rule is added to
standard interpretation of range) */

range(X,P) :- is_range(C,P), instanceOfSet(X,C).

/* Difference */
in(X,S,P,O) :-
 P = difference, instanceOfSet(X,S), not(instanceOf Set(X,O)).

/* Union */
in(X,S,P,O) :- P = union, instanceOfSet(X,S).
in(X,S,P,O) :- P = union, instanceOfSet(X,O).

/* Intersection */
in(X,S,P,O) :-
 P = intersection, instanceOfSet(X,S), instanceOfSe t(X,O).

482 W. Conen, R. Klapsing

We will now demonstrate how this new (meta) schema constructs can be defined
in an RDF-conform manner by applying the above introduced extensions mecha-
nism to the domain of role-based access control. In the example below (the source
is accessible at [SE]), the task is to decide if access to certain documents should be
granted to certain users. The decision depends on the membership of users in
certain groups. Figure 2 depicts the specific situation.

Figure 2: Access shall only be granted to users in the white section of the above venn dia-
gramm, i.e., bad guys like user 1 should not get access.

Three new predicates are introduced, namely union, difference and intersection.
These predicates can be used to construct classes from other classes with the help
of binary relations and reification, both being completely valid RDF constructs.
This will be utilized to construct classes from set-algebraic expressions over other
(constructed) classes. The extension is based on the already introduced semantic
primitive isDefinedAs (to ease the demonstration, we assume that the property is
in the rdfs namespace). To make it possible to mix meta-schema, schema and
instance expressions in the example below, we adopted the following convention:
if a namespace this# is introduced, the namespace abbreviation will be omitted
during the parsing process. This makes it possible to use the namespace within
the document while still being able to normalize the resource names to make them
easily useable for querying the model.

First, a subclass of rdfs:Class , ConstructedClass is introduced. The
rules described above are used to define the semantics of the newly introduced
predicates. Additionally, the semantics of both the type and the range property
are (monotonically) extended to be able to cope with constructed classes.

<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax -ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax -ns#"
 xmlns:rdfs="http://.../TR/2000/CR-rdf-schema-20000 327#"
 xmlns:rdfsets="this#">

 <!-- Meta Schema definitions -->
 <rdfs:Class rdf:ID="ConstructedClass">

<rdfs:subClassOf rdf:resource= "http://..schema..#C lass"/>
 </rdfs:Class>

Exchanging Semantics with RDF 483

 <Description about="http://.../22-rdf-syntax-ns#ty pe">
<rdfs:isDefinedAs rdf:parseType="Literal">
 constructed_class(C) :- instanceOf(C,'ConstructedC lass').
</rdfs:isDefinedAs> </Description>

 <Property rdf:ID="union">
<rdfs:isDefinedAs rdf:parseType="Literal">

in(X,S,P,O) :- P = union, instanceOfSet(X,S).
in(X,S,P,O) :- P = union, instanceOfSet(X,O).

</rdfs:isDefinedAs> </Property>

 <Property rdf:ID="difference">
<rdfs:isDefinedAs rdf:parseType="Literal">

in(X,S,P,O) :- P = difference,
instanceOfSet(X,S), not(instanceOfSet(X,O)).

</rdfs:isDefinedAs> </Property>

 <Property rdf:ID="intersection">
<rdfs:isDefinedAs rdf:parseType="Literal">

in(X,S,P,O) :- P = intersection,
instanceOfSet(X,S), instanceOfSet(X,O).

</rdfs:isDefinedAs> </Property>

 <Description about="http://..schema...#range">
<rdfs:isDefinedAs rdf:parseType="Literal">

instanceOfSet(X,A) :- constructed_class(A),
reifies(A,S,P,O), in(X,S,P,O).

instanceOfSet(X,A) :- instanceOf(X,A).
range(X,P) :- is_range(C,P), instanceOfSet(X,C).

</rdfs:isDefinedAs> </Description>

Now the schema definitions follow, expressing that Internal_Users, Ex-
ternal_Users , and Bad_Guys are plain classes and that All_Users and
Trusted_Users are constructed classes, with All_Users} = Inter-
nal_Users ∪ External_Users} and Trusted_Users =
All_Users \ Bad_Guys .

 <rdfs:Class rdf:ID="Internal_Users"/>
 <rdfs:Class rdf:ID="External_Users"/>
 <rdfs:Class rdf:ID="Bad_Guys"/>

 <rdfsets:ConstructedClass rdf:ID="All_Users">
<subject rdf:resource="#Internal_Users"/>
<predicate rdf:resource="#union"/>
<object rdf:resource="#External_Users"/>
<type rdf:resource="http://...rdf-syntax-ns#Stateme nt"/>

 </rdfsets:ConstructedClass>

 <rdfsets:ConstructedClass rdf:ID="Trusted_Users">
<subject rdf:resource="#All_Users"/>
<predicate rdf:resource="#difference"/>
<object rdf:resource="#Bad_Guys"/>
<type rdf:resource="http://...rdf-syntax-ns#Stateme nt"/>

 </rdfsets:ConstructedClass>

484 W. Conen, R. Klapsing

Access will be granted according to a closed security policy, that is, all accesses
are to be allowed. This will be expressed by attaching a property AccessAl-
lowedFor to resources that is constrained to the range Trusted_Users .

 <Property rdf:ID="AccessAllowedFor">
<rdfs:range rdf:resource="#Trusted_Users"/>

 </Property>

The following instance definitions will entail a range constraint violation.

 <Description rdf:ID="user_1">
<type rdf:resource="#Internal_Users"/> </Descriptio n>

 <Description rdf:ID="user_1">
<type rdf:resource="#Bad_Guys"/> </Description>

 <Description rdf:ID="user_2">
<type resource="#External_Users"/> </Description>

 <!-- Objects to restrict access to: -->
 <rdfs:Class rdf:ID="Important_Documents"/>

 <rdfsets:Important_Documents rdf:ID="Weak_Secret_1 ">
<rdfsets:AccessAllowedFor rdf:resource="#user_1"/>
<rdfsets:AccessAllowedFor rdf:resource="#user_2"/>

 </rdfsets:Important_Documents> </RDF>

Here, user_1 is known as a bad guy. The rules given above allow to derive that
user_1 is not a member of the constructedclass Trusted_Users and, thus,
the range constraint on AccessAllowedFor is violated.

To summarize: together with a Prolog engine, the above mechanism provides a
pretty powerful instrument to define/extend semantics, to validate documents
against RDFS and user-provided constraints, and to query a model on the knowl-
edge level, i.e. one can leave the simplistic triple structure behind and start to pre-
cisely capture what the intentions behind the model are. Furthermore, application
domain specific vocabularies can be developed that build upon the formalized
RDF/RDFS constraints. These vocabularies can be re-used in schema definitions
in other domains as well. The RDF Schema Explorer will support this with dy-
namic loading and interpretation of schema defintions (via HTTP).

Discussion

The approach outlined above allows to define RDF (meta-)schemata that precisely
capture the semantic intentions if interpreted within a suitable host formalism. The
approach represents the intended semantics of RDF schemata explicitly, making it
possible to treat the definition as first-class resources within RDF. This allows to
apply the RDF concepts to describe/relate the semantic definitions as well. For ex-

Exchanging Semantics with RDF 485

ample, new properties expressing containment, semantic dependencies, abstraction
etc. can be defined and used, which may ease to maintain and re-use the (meta-)
schemata. The approach is paradigm-independent, as it allows to select different
host formalisms for specific purposes.

The specific Prolog-based instantiation of the approach is expressive as it allows
to utilize the available expressiveness of Prolog. Furthermore, production-quality
implementations of Prolog are widely available. A closely related approach has
been presented by Staab et al. [SEMD00]. Here, a similar mechanism to embed
axioms explicitly in RDF Schema documents, is proposed (while we implemented
the RDF Schema Explorer without knowledge of this approach, we nevertheless
very much agree with their rationales for making axioms available “as objects that
are describable in RDF(S)”). Its usefulness is demonstrated for the domain of
modeling ontologies. The main difference between the approaches is that our ap-
proach is tighly coupled to an (explicitly available FOL) interpretation of the RDF
schema concepts and constraints. This interpretation is used for validation in the
host formalism itself, making it possible to jointly validate (extended) schemata
against RDFS core constraints and extension constraints from within one instru-
ment, without the necessity to delegate the validation of RDFS conformance to an
external validator. Also, as the example above demonstrates for the range con-
straint, explicit extensions of RDFS constraints may require access to the explicit
interpretation of the constraints.

We presented a detailed example that demonstrates the use of the involved tech-
niques in an access control context. The Prolog-based RDF Schema Explorer that
we developed allows to validate and query such extended models. Both, the tool
and a workable version of the example are accessible on-line. Besides being able
to interpret (extended) RDF schemata, the tool is suitable to support the prototyp-
ing of domain-specific schemata, as the semantics of the defined properties can be
changed on the fly and the consequences can be inspected utilizing the conven-
ience predicates.

We expect that the interoperable definition of meta schemata will develop into a
necessity, once the formulation of complex semantic constraints in various
emerging application domains such as cooperative security management, auto-
mated business contract negotiation etc., all involving a number of autonomous
partners, is identified as a key requirement for the success of the underlying col-
laborations.

References

[XML00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible
Markup Language (XML) 1.0 (Second Edition). Recommendation, W3C, October
2000. http://www.w3.org/TR/2000/REC-xml-20001006.

486 W. Conen, R. Klapsing

[RDFS00] Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0. Candidate Recommendation, W3C, March 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327.

[CoKl00] Wolfram Conen and Reinhold Klapsing. A Logical Interpretation of RDF.
Linköping Electronic Articles in Computer and Information Science, ISSN 1401-9841,
5(13), December 2000. http://www.ep.liu.se/ea/cis/2000/013/.

[RDF99] Ora Lassila and Ralph R. Swick.Resource Description Framework (RDF)
Model and Syntax Specification. Recommendation, W3C, February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

[SE] Web-based RDF Schema Explorer. http://wonkituck.wi-inf.uni-essen.de/rdfs.html.

[SEMD00] Steffen Staab, Michael Erdmann, Alexander Mädche, and Stefan Decker. An
extensible approach for Modeling Ontologies in RDF(S). In Proceedings of ECDL-
2000. Workshop "Semantic Web: Models, Architectures and Management, September
2000. http://www.aifb.uni-karlsruhe.de/ sst/Research/Publications/onto-rdfs.pdf.

[SWI] SWI-Prolog. http://www.swi.psy.uva.nl/projects/SWI-Prolog/.

[SemWeb] W3C. Semantic Web Activity. http://www.w3.org/2001/sw/, February 2001.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	September 2001

	Exchanging Semantics with RDF
	Wolfram Conen
	Reinhold Klapsing
	Recommended Citation

	41_wi-13-211_e1

