
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2007 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2007

From Rich User Requirements to System
Requirements
Michael Przybilski
University of Helsinki, Michael.przybilski@cs.helsinki.fi

Tuure Tuunanen
University of Auckland, tuure@tuunanen.fi

Follow this and additional works at: http://aisel.aisnet.org/pacis2007

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Przybilski, Michael and Tuunanen, Tuure, "From Rich User Requirements to System Requirements" (2007). PACIS 2007 Proceedings.
34.
http://aisel.aisnet.org/pacis2007/34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301341404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2007%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007?utm_source=aisel.aisnet.org%2Fpacis2007%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2007%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2007%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007?utm_source=aisel.aisnet.org%2Fpacis2007%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007/34?utm_source=aisel.aisnet.org%2Fpacis2007%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


11th Pacific-Asia Conference on Information Systems

561

42. From Rich User Requirements to System Requirements

Abstract

In recent years the usage of information systems has changed dramatically. Today many
information systems are developed for non-organizational users. These wide-area end-users
are often socially, as well as geographically very widely dispersed, which makes it for
organizations that develop information systems extremely difficult to know who their users

are, or what they expect. Previous research has claimed that rich user requirements
information is necessary, in order to understand how to serve this audience right. However,
at the same time current requirements engineering methods, capable of providing this rich
information, do not serve the needs of designers and developers, who actually implement the

services and who need precise knowledge of system requirements. It appears that there is a
severe gap in the communication of requirements between end-user, analyst, and designer.
We have the design science research agenda to develop a method for extending one advanced
requirements engineering method, WARE, to provide support for the full spectrum of

communication. Our study presents results of ongoing research program, studying the
innovation possibilities of Mobile Presence technology. Our method enables analysts to make

the transition from rich user requirements to system requirements, which designers and
developers can use in their implementation work.

Keywords: Requirements Engineering, Rich User Requirements, System Requirements,
Wide Audience End-Users, Design Science Research

Introduction

We live in a time when we no longer use information systems (IS) primarily for work related
tasks, but more often these systems are used by a new type of end-user, consumers.
This changes how we see the end-user of these systems, as previously most information
systems and software have been developed for organizational users. Instead, we are now
facing an era of wide-audience end-users (Tuunanen 2003), who are often more consumers of
IS services. This change from organizational needs to consuming IS services is affecting how
the requirements engineering (RE) work needs to be done. It is necessary to give even greater
emphasis to communicating the needs of wide audience end-users to analysts and, more
importantly, to the designers and developers, who implement these IS services. The need to
understand user requirements has been a driving force behind a very extensive culture of
requirements engineering method development (Nuseibeh et al. 2000). Practitioners and
academics alike have been trying to find ways to elicit analyze and model requirements in
order to find most efficient ways.

Michael Przybilski
Helsinki Institute for Information

Technology (HIIT), Basic Research Unit
Department of Computer Science,

University of Helsinki
Michael.przybilski@cs.helsinki.fi

Tuure Tuunanen
Department of Information Systems &

Information Management,
University of Auckland
tuure@tuunanen.fi



11th Pacific-Asia Conference on Information Systems

562

Lately, researchers have presented that by using rich requirements information, it is possible
to efficiently discover the user requirements (Peffers et al. 2005), and communicate them
from the end-users to analysts. Peffers and Tuunanen (2005) have applied media richness to
user requirements. This refers to the capability of the media to carry complex,
multidimensional information and cues that help message recipients to better understand the
intended message (Daft et al. 1986). Rich user requirements, in turn, thus help stakeholders to
overcome equivocality of user requirement as it provides sufficient multidimensional clues to
help them understand the intended meaning of complex and ambiguous messages (Peffers et
al. 2005). Tuunanen et al. (2006; 2004a) have reported a priori results of success with the
Wide Audience Requirements Engineering method that applies the concept of rich user
requirements via the use of laddering interview techniques and theme clustering of
requirements, which enables the provision of a meaningful link between end-users and
analysts.

However, present literature does not provide suggestions on how to strengthen the analyst-
designer link. Several studies have shown successful ways of using rich requirements
information to convey the needs of end-users to analysts (Browne et al. 2002; Browne et al.
2001; den Hengst et al. 2004; Tuunanen et al. 2006), but the current literature offers no
straightforward solutions on how to extend the communication to designers and developers,
when using advanced requirements engineering methods, like WARE (Tuunanen et al.
2004a). Moreover, the current, more designer-oriented requirement engineering methods,
such as scenarios (Haumer et al. 1998), often start with a different agenda for requirements
elicitation. Instead of trying to discover requirements they frequently rely on contextual
factors of a use-situation (Holtzblatt et al. 1993), or a scenario of the probable use-situation.
Similarly, another well-used method, prototyping, usually assumes that it is already possible
to present something to the potential users, such as a mock-up, or a prototype of the
application.

Our study aims to provide a feasible approach to the described problem: How can we

transform rich user requirements to system requirements that designers and developers

can better understand and use?We see that one feasible approach in a stronger integration
of existing modeling techniques, such as the unified approach, using the Unified Modeling
Language (Bjorkander et al. 2003) and the well established data modeling approach, using
entity-relationship diagrams (Chen 1976). This way we consider it possible to bridge from
advanced RE methods to current design practices, and to provide a stronger link between the
analyst and the designer, without limiting the possibilities of developing radical, innovative
solutions. This way it is also possible to retain the already gained link between end-users and
analysts, and to integrate designers and developers, with their knowledge of the target
domain, and their expertise and experience, into the information cycle.
Our study is a part of an on-going mobile presence research program (Tuunanen et al. 2006),
which uses the collected wide-audience end-user requirements of 80 interviewees from
Helsinki, Hong Kong and Las Vegas, to understand the innovation possibilities of presence, a
new emerging mobile technology.

In following, we provide a brief review of current requirements engineering methods from
the perspective of requirements elicitation and the connection of information for end-users,
analysts and designers. Then we take a look at current modeling practices and their demands
with regard to their integration with advanced RE methods. After, we present the
methodology of the study, our mobile presence case and the design research effort to develop
a method. Finally, we evaluate the developed method and conclude.



11th Pacific-Asia Conference on Information Systems

563

Requirements Engineering Methods

The literature offers many methods for handling the problems associated with requirements
elicitation. Textbooks primarily refer to interviews, use-cases, soft systems methods, scenario
analysis, observation and social analysis, ethnographic analysis, requirements reuse and
prototyping. A well-cited recent review by Nuseibeh and Easterbrook (Nuseibeh et al. 2000)
provides one way of classification: Methods are divided into six meta-groups: 1) traditional
methods, 2) prototyping, 3) group elicitation, 4) contextual methods, 5) cognitive methods,
and 6) model-driven methods. In following we review these meta-groups from the
perspective of the end-user-analyst-designer-link, and their integration of techniques that are
used to gather requirements. This analysis is summarized in Table 1.

Traditional Methods: Nuseibeh and Easterbrook (Nuseibeh et al. 2000) list as traditional
methods a broad range of generic data-gathering methods, such as questionnaires and
surveys, interviews etc.. The linking emphasis of traditional methods can be characterized as
being between end-user and analyst. The analyst’s role is to collect the requirements either
from end-users or from existing documentation. Therefore, the documentation is usually
requirement-content-driven and modeling is not emphasized, but can be supported via entity-
relationship diagrams or other modeling techniques.

Prototyping has been referred to by many researchers as a good way of getting feedback
from end-users (Mathiassen et al. 1995). Davis (1982) has promoted using prototyping when
end-users are not able to express their requirements and when they need help in visualizing
the new possibilities of a system. Therefore, prototyping can provide throughout two-way
linking possibilities from end-user to analyst, and finally to designer and developer
(Tuunanen 2003). The limiting factor in prototyping is in its main strength: it is necessary to
have a (visual) prototype, or mock-up, to demonstrate the features to end-users. Modeling
support for prototyping has so far been very limited. However, the recent Model-Driven
Engineering (MDE) developments from the Object Management Group (OMG) are
promising. Namely, domain specific modeling is seen as a promising way to capture the best
sides of connecting stakeholder groups and still retain strong modeling support (Atkinson et
al. 2004; Selic 2003).

Table 1: Categories of RE methods, end-user, analyst, designer links, and their innovation capabilities

Technique Category Linking Emphasis Modeling Support

1.Traditional methods End-User and Analyst Limited
2.Prototyping End-User, Analyst and Designer Good
3.Group elicitation methods End-User and Analyst Limited
4.Contextual methods End-User, Analyst and Designer Good
5.Cognitive methods End-User and Analyst Limited
6.Model-driven methods Analyst-Designer Good

Group elicitation methods contain a wide range of methods, the purpose of all of which is to
elicit requirements from groups of end-users. Group elicitation practices aim to foster
stakeholder agreement and buy-in, while exploiting team dynamics to bring out a better
understanding of the needs. Group procedures include, for example, brainstorming and focus
groups, or group support system (GSS) workshops. Group Support Systems can provide a
very rich set of user requirements and are thus efficient in linking end-users and analysts
(Bragge et al. 2005a; Bragge et al. 2005b). However, so far GSS systems have been designed
to provide reports, based on the information modeling needs of analysts and managers. The
modeling information, needed by designers and developers has been mostly lacking.



11th Pacific-Asia Conference on Information Systems

564

Contextual methods include the use of ethnographic methods, and ethnomethodology and
conversation analysis, both of which apply fine-grained analysis to identify patterns in
conversation and interaction. Contextual design (Holtzblatt et al. 1993) includes strong
modeling and elicitation components, to provide the needed link between end-users, analysts
and designers. Contextual design is considered to offer best of both sides from the selected
perspectives. The only limitation the method is its reliance on contextual input of visual
prototypes.

Cognitive methods have been originally developed for knowledge acquisition purposes
(Shaw et al. 1996). These include protocol analysis (in which an expert thinks aloud while
performing a task to provide the observer with insights into the cognitive processes used to
perform the task), laddering (using probes to elicit the structure and content of stakeholder
knowledge), card sorting (asking stakeholders to sort cards into groups, each of which has a
name of some domain entity etc. Browne et al. (Browne et al. 2002; Browne et al. 2001) have
stated that by using laddering, analysts are enabled to produce a richer set of requirements
compared to other methods. Our experiences with WARE method concur with this
observation (Tuunanen et al. 2006; Tuunanen et al. 2004a) and have provided good a priori
evidence of an efficient connection between end-users and analyst, supporting the
understanding and discovery of requirements. However, cognitive methods do usually not
provide linkage between analysts and designers through a strong modeling component as is
the case also with the WARE method. The methods can also provide very in-depth
information about the end-users needs and wants (Browne et al. 2002; Browne et al. 2001).

Model-driven methods usually provide a specific model of the type of information to be
gathered, and use this model to drive the elicitation process. Examples of Model-driven
approaches are goal-based methods (van Lamsweerde et al. 1998; van Lamsweerde et al.
2000), scenario-based methods (Haumer et al. 1998; Sutcliffe et al. 1998). Problematic is also
the fact that these methods usually require a thorough knowledge of the system domain area
and a high level of knowledge of related work practices. Users without basic skills in
modeling languages, like E-R diagrams, or UML, find it difficult to grasp the meaning of the
diagrams and the requirements information behind them. Furthermore, these methods rely on
visualizing probable use situations of existing work practices or services. However, these
methods naturally provide very strong modeling support for the designers and analysts.
Above we have analyzed requirements engineering methods at a categorical level in order to
recognize their capabilities to support end-user-analyst-designer communication linkage
(Tuunanen 2003). Furthermore, we have analyzed the method categories, to understand
whether they support information modeling integrating the requirements knowledge with
design. Our analysis reveals that even though both, end-user-analyst and analyst-designer
linkage are supported, only two of the method categories at the moment provide means for
enabling cross-stakeholder communication: contextual methods and prototyping. While this
is an encouraging result, the two method categories, cognitive and group elicitation methods,
which potentially can provide an in-depth understanding of end-users’ requirements (Bragge
et al. 2005a; Bragge et al. 2005b; Browne et al. 2002; Browne et al. 2001; den Hengst et al.
2004), lack the strong modeling capabilities that would link analysts and designer.

In the following section, we review what requirements modeling needs today’s designers and
developers face, in order to understand how requirements engineering methods should be
extended, in order to facilitate the full spectrum of communication, i.e., enabling end-users,
analysts, designers and developers to share requirements information.



11th Pacific-Asia Conference on Information Systems

565

Requirements Modeling Needs

One of the biggest problems in software development is still to find the correct level of
abstraction for a particular problem domain (Mylopoulos et al. 1999). Programming
languages have evolved from assembly language, to first attempts in structured programming
in the late 1960’s. Then came the advent of object-oriented programming and more recently
component-based software development. New developments always attempted to provide a
higher level of abstraction, in order to enable humans to develop increasingly complex
applications and foster the re-use of software artifacts. Current developments try further, to
find even higher levels of abstraction, in the form of aspect-oriented programming, model-
driven development, and the like. At the same time, special languages were developed, for
specific purposes, such as mathematic descriptions, or logical expression.
This evolution was accompanied by an evolution in the field of software systems. While
initially systems were build in a monolithic way, in order to adhere to the limited hardware
resources available, they evolved, together with the programming languages, into object-
oriented systems and from there further, into component-based software systems, with a clear
organization of large-grained functionality and advantages, such as an increased level of re-
use, more flexibility, and so forth.

Design methodologies have developed at the same time, in a similar way. The initial,
functional analysis, used to combine groups of functionalities, was replaced by object-
oriented analysis, grouping functionalities and data-types. Component-based modeling goes
further beyond, describing the distribution of services over components, their
interconnections, quality attributes, and so on.

Software Engineering has provided many techniques, and tools, to assist software developers,
as well as designers and help the derivation of system requirements, and the optimal
integration of their results in the further development process. Amongst those are structured
language specifications, form-based specifications, and graphical models. Perhaps one of the
best known and most widely used approaches is the unified approach, which relies heavily on
the Unified Modeling Language (UML).

UML depicts a modeling language that enables the specification, visualization, construction
and documentation of artifacts of system-intensive processes (Bjorkander et al. 2003). UML
defines nine different types of diagrams, class diagrams, object diagrams, use case diagrams,
sequence (chart) diagrams, collaboration diagrams, state chart diagrams, activity diagrams,
component diagrams and deployment diagrams, used to describe different aspects of the
system under development. UML specifies further extensions, used in the software design
process, such us the Object Constraint Language (OCL), thus providing the means for
functional constraint specification (Richters et al. 2000).

Current developments extend the language for other, often very specific purposes, such as the
description of real-time criteria (Selic 2003) and agent technologies. An alternative can be
found in the Catalysis process (Brown 2000; Jürjens 2002), which takes into account aspects
of the component-based development. It uses a business- or domain model, to describe the
client’s world, separately from any notion of the target software. System requirements are
elicited from the client’s needs and thorough the specification of system functionality. The
process does however suggest several iterations of elicitation of customer needs and
requirements revision. In further steps, these are reflected in the system architecture, the
component design, which provides a high level description of the major building blocks
(components) of the system and their collaborations, the implementation and object design,



11th Pacific-Asia Conference on Information Systems

566

which describe how major building blocks are implemented, and the platform description,
which specifies how components interact with each other, how they work together and how
to build and assemble interoperable components.
The requirements in either of these processes are however different from those provided by
the WARE method. Sommerville (2001) defines two essential types of requirements:

• User requirements: Statements in natural language plus diagrams of the services, which
the system provides and its operational constraints.System requirements: A structured
document, setting out detailed descriptions of the system’s functions, services and
operational constraints.

In contrast to user requirements, which are the result of RE methods, such as WARE, and
which focus on the services that the customer requires from the system, system requirements,
also take into account constraints under which the system operates and is developed.

System requirements can be divided further into functional, non-functional, and domain
requirements. Functional requirements are hereby statements of services the system should
provide, how the system should react to particular inputs, and how the system should behave
in particular situations. Non-functional requirements specify constraints on these services or
functions offered by the system such as timing constraints, constraints on the development
process, standards, etc. Domain requirements eventually come from the application domain
of the system and reflect characteristics of the domain itself.

Designers and developers are working primarily with these lower-level system requirements,
which must be obtained from the high-level user-requirements, and be modeled accordingly.
For this it is necessary to be familiar with the target domain area, as it will have a major
impact on those requirements, as well as the technologies and techniques that will be used in
the development process.

Domain knowledge reflects what kind of constraints have to be observed, but also which kind
of readily usable components can be reused, or which legacy components need to be
integrated. The term components here refers not necessarily only to the software components
in the sense of Component-based Software (CBD), but in a more general way to existing
software assets that can be reused. Examples for such assets can be software libraries,
frameworks, or middleware mechanisms. Constraints that need to be taken into account are
on the other issues such as the targeted hardware, the operating system, or legacy software
that needs to be used or integrated.

The modeling of the system requirements requires must take into account the high-level user
requirements, the target domain, available, or legacy components that can be used, or should
be integrated, and, as well as any further restrictions that will influence the system design, the
further implementation, the system deployment, or potentially even its later maintenance. We
found some RE methods, which do support creating rich end-user requirements information
and therefore providing the basis for also creating radical innovations. However, as we have
seen these methods do usually not support very well designers’ everyday needs today. For
example, with WARE (Tuunanen et al. 2006; Tuunanen et al. 2004a) this gap has been
handled by offering roadmap documents (Lehtola et al. 2005). Some efforts has been done in
order to link the method to modern design practices with Meta modeling approach (Tuunanen
et al. 2003; Tuunanen et al. 2004b). The results have been promising. But still we have been
faced with the dilemma of understanding how end-user requirements could be easily



11th Pacific-Asia Conference on Information Systems

567

transformed to usable system requirements, and finally to functional requirements of the
system.

In following we present a case study we were develop a way to infer system requirements
from user requirements, thus bridging the gap between analysts and designers, with the help
of a domain expert (Grudin 1991).

Design Science Research Study: Mobile Presence Services Case

We use the design science research agenda (Hevner et al. 2004) as philosophical basis for
conducting the study. Design research is said to be yet another "lens" or set of analytical
techniques and perspectives for performing IS research. Moreover, the researchers claim that
design research addresses important unsolved problems (Hevner et al. 2004). When
compared to traditional ways of conducting research, design research can be considered to
complement the positivist and interpretive perspectives. It involves analyzing the use and
performance of designed artifacts, in order to understand, to explain, and very frequently to
improve the behavior of the various IS aspects (Orlikowski et al. 2001). Five general outputs
have been proposed for design research: constructs, models, methods, instantiations, and
better theories (March et al. 1995; Purao 2002; Rossi et al. 2003).

Our research objective is to develop a method for integrating an advanced requirements
engineering method with the modeling needs of designers. We used the rich user
requirements derived from a case study conducted within DiVia project commissioned by
LTT research, Inc. In total 13 researchers participated to the whole research effort (Tuunanen
et al. 2006). A total of 80 interviews were done in Helsinki, Hong Kong and Las Vegas
during summer 2004 to discover rich user requirements. For requirements elicitation and
analysis we used the previously developed WARE method (Tuunanen et al. 2006; Tuunanen
et al. 2004a). This study uses the analysis results of the second phase of mobile presence
study as basis. The gathered requirements have been analyzed with theme clustering
(Tuunanen et al. 2006; Tuunanen et al. 2004a). Via this process we have generated a general
roadmap for mobile presence services (Tuunanen et al. 2006). These roadmap features are the
basis for the presented study.

The context area of our study is a novel mobile service: presence. Presence is a powerful tool
for bonding mobile users together and empowering all types of communities. Presence is said
to be a mass-market service with a high growth potential targeting all mobile users, because it
enables easier, richer, and more discreet communication1. It can be an enabler of new
services as well as enriching existing ones, which leads to a richer communication
experience. A basic presence service could allow users to publish their information and share
it with others in order to make mobile communication and services more sensitive and
personal. This information may include the availability of the subscriber, the preferred means
of communication, the subscriber's whereabouts, as well as visual content for self expression
of one's emotion, in order to guide other users' communication decisions while controlling
their own information. In following section we present the proposed method.

Designing a Method: From User Requirements to System Requirements

In the following, we describe how the WARE method (Tuunanen et al. 2006; Tuunanen et al.
2004a) was extended, to improve the communication between end-users and developers with

1 http://www.3g.co.uk



11th Pacific-Asia Conference on Information Systems

568

the help of the analyst who posses the domain knowledge, a high level of expertise in the
according area. For this study we had the aid of a principal investigator of the mobile
presence study, to provide an understanding of the used data gathering and analysis method.
As analyst we had a practitioner who was domain expert of the mobile technology field and
nowadays pursues a doctoral degree in computer science. The objective was to transform a
very rich set of end-user requirements (Tuunanen et al. 2006) into an ordered set of system
requirements. The initial starting point were more than 2500 individual requirements,
gathered with laddering interviewing technique and clustered by using theme clustering
(Tuunanen et al. 2006; Tuunanen et al. 2004a). The requirements engineering process
provided us with the data structures for the end-user requirements that are described in the
top part of Figure 1. In the following, we focus on the designer’s perspective of the analysis
process and the different analysis stages. This process is summarized in Table 1.

The WARE method provides us with a set of user requirements, on a rather high level of
abstraction. They are derived from interviews with potential users of the system-to-be, as
well as “lead users” and typically consist of a mixture of functional requirements, related to
the services provided, as well as non-functional requirements, related to the qualitative
attributes of the system, such as timeliness, security, and the like, and sometimes also abstract
ideas that the potential user might have of the system. These user requirements are contained
in a structure, identifying different chains and sub-chains, the idea contained in the chain, an
application cluster, a ranking, attributes, consequences, and most importantly, the ladders,
describing the actual requirement.

Figure 1: Information Flow and participating Entities in the proposed Process

For a designer, or even more so for a developer, it is still very difficult to find all necessary
requirements, and guidelines towards their design and implementation. In order to implement
these high-level user requirements, it is necessary to infer low-level, system requirements,
which take into account knowledge of the actual domain, as well as experience in the
implementation of such systems. How we extended this process, as well as the involved sets
of information is depicted in Figure 1.



11th Pacific-Asia Conference on Information Systems

569

In a first step, the ladders in the different chains of the user requirements are analyzed for
required functionalities, which are noted separately. They describe the basic system
requirements and the resulting functionality. At the same time it is necessary to maintain the
connection to the related details, and notes, resulting in the data-structure depicted in
Figure 1.

In this step it is furthermore important to try to keep an overview of the functionalities, as
similar functionalities should be grouped together. With an increasing number of chains, this
problem however increases exponentially. Often it is so that more than one functionality can
be derived per chain, which means that additional data has to be added to that chain. It is thus
also necessary to maintain several references to the same chains, in order to enable a later
clustering of the derived functionalities.

In the following, second step it is possible to order the derived system functionalities and
infer furthermore, which user-requirements result in the same, or very similar system
requirements. For this process, very specific knowledge of the target system is necessary, in
order to know which functionalities will be implemented in which way, or which components
can be used to provide a specific functionality or a set thereof.

In the third step, the found functionality clusters are analyzed, and based on the information
contained in the linked user requirements, the system requirements are obtained. For this, the
initial functionalities are replaced with system requirements, which are annotated by
according details and notes. These details and notes can serve as additional sorting criteria
later on. As in the previous step, it is still necessary to maintain a link to the chains from
which these system requirements originate, which often results in several references to the
same ladder.

In a fourth step it is now possible to prioritize the derived system requirements. For this the
values (inverted ranks) of the originating ladders, which result in the same system
requirement, are summed up. The value initially indicated how important a particular user
requirement was to the end-user. By summing up the values of those user-requirements that
result in the same system requirement, we can achieve a prioritization of the system
requirements, according the importance, assigned by the end-user. It needs to be observed
that occasionally the values of some of these functionalities may be zero. While it may be
possible to neglect those functionalities entirely, as they do not appear to be relevant, it might
still be useful to keep this information, as it will in any case not have any negative influence
on the resulting set of functionalities. In future reiterations of the development process, they
may however be re-evaluated, and may thus receive a higher importance.

Alternatively, it is possible to offset all values by one, thus assigning all functionalities a non-
zero value, which would also not have a negative influence on the sorting process.

The result of the process so far is a prioritized set of system requirements, which reflect the
user requirements that have been provided through the initial WARE method. At the same
time they take into account in which domain, e.g., on which hardware, in which environment,
and for what kinds of users, the system will be developed. The system requirements can also
contain alternatives, which have been obtained during the process. These can be the results of
varying interpretations of the user requirements, or different options in the implementation.
The level of detail provided in these system requirements enables the designers of the system
and the developers to implement the system for the specified environment, the chosen



11th Pacific-Asia Conference on Information Systems

570

language, using existing components and taking into account any further requirements that
come from the deployment domain itself.

In a fifth step we can now modify the priorities of the derived user requirements, according to
other goals, such as a company’s strategic agenda, or the availability of other system
components. Thus other factors are able to influence in which order system functionalities are
developed, or which alternative in the development process will be taken. This provides
additional flexibility and can make the resulting product considerably easier to maintain, or to
extend and develop further. At the same time, the system functionalities can be implemented
in the form of components that can be easily re-used for future products.
Finally, in the sixth step the list of system requirements is combined with additional
information and references, into a final report.

Table 2: The process of transforming rich end-user requirements to functional system requirements

Process Step Description

0. Familiarization with
the requirements data
and the WARE method

Learning basic components of the WARE method; laddering
interviewing principles and how theme clustering is conducted.
Understanding what each Meta feature set (idea, application
cluster, ladders, etc.) includes.

1. Analyzing the data
and initial separation of
functionalities

Creating a list of technical functionalities, together with details and
notes and with references to their originating chain.

2. Clustering of
functionalities

The found functionalities are clustered together. For this it is
necessary to keep an overview of previously discovered
functionalities. Additional details and notes are made.

3. Grouping into
system requirements

Similar functionalities are grouped together. More general system
requirements are derived based on domain knowledge and
technical expertise. Minor differences in the originating
functionalities are kept as details and notes.

4. Ranking The values of the chains from which each system requirement
originates are summed up. The ranking information is used as a
priority of the importance of a particular system requirement.

5. Integration of other
factors

Further factor that influence the prioritization or the choice of
alternatives are integrated and the ranking is modified accordingly.

6. Report The resulting prioritized list is refined, and complemented with
additional information that might be necessary, as well as
references to further details for the implementation.

Evaluation

We were successful in extending the WARE method and our preliminary findings indicate
that we might have been able to resolve one of the conceptual difficulties faced by advanced
requirements engineering methods. The method process description shows that with a
reasonable effort a very rich set of end-user requirements can be further distilled to usable
information for designers. Furthermore, the needed extension will not require any changes to
the original WARE method, but instead the current data structure of the laddering interviews
(Tuunanen et al. 2006; Tuunanen et al. 2004a) can be kept as is. This can be considered as a
breakthrough since changing the data structure would definitely question the current way of
using theme clustering for analyzing the laddering interview data. In addition, in cases where
it is not necessary to actually proceed to design phase this means that the analyst is not



11th Pacific-Asia Conference on Information Systems

571

burdened with an additional modeling effort. Instead, if a decision to continue is given, the
proposed method can be seen as the next step in the workflow.

Although, our findings show a high potential for the developed method we can also see some
limitations. Our analyst was successful in deriving the system requirements from the selected
set of end-user requirements. However, we found that the cognitive limitations of human
brain gives limitations to the size used data sets. The largest of the chosen data sets consisted
of 128 ladder chains each consisting of 4-8 data points. The data structures included all the
items needed for data collections, such as notes on the idea that was used as stimuli for the
particular interview part, the actual requirements data (ladder chains of interviews and their
IDs (Tuunanen et al. 2004b). This was found to be difficult to handle by one person. Without
further assistance, we believe that this may be close to the maximum number of chains that
can efficiently be handled, without the risk of major mistakes, or loss of information

Furthermore, by incorporating domain knowledge to establish functionalities, such as
categories of functional system requirements, the analyst was provided with the possibility of
using further, more complex modeling languages to support design work, such as UML
(Bjorkander et al. 2003), which in turn provided the means for using modern component
based development (Brown 2000)

Finally, when considering the field of requirements engineering methods research in more
general sense, we can see anecdotal evidence that support our literature review and design
research science study findings. First of all, it appears plausible that cognitive requirements
engineering methods, like WARE, can be extended so that end-user, analyst and designer
communication linkage is not disrupted.

Conclusions

In this paper we examined how end-user requirements can be turned into functional system
requirements. This is an especially demanding task when we are facing a new set of end-
users, wide audience end-users (Tuunanen 2003), who are usually outside of the developing
organization and they do not have strong ties with it. This makes enabling the essential
communication linkage between end-user, analyst and designer more difficult. We cannot no
longer assume that our stakeholders in the project are culturally similar like previously. What
is more, the importance of domain knowledge becomes even more central (Mylopoulos et al.
1999). Furthermore, the analyst’s role as a catalyst between the end-user and the designer
becomes more critical (Grudin 1991). Finally, we face the old problem of end-users not
knowing what they actually want (Peffers et al. 2005). Instead of harvesting the requirements
from the organization, we actually need to discover them by using advanced requirements
engineering methods, such as WARE (Tuunanen et al. 2006; Tuunanen et al. 2004a).

Secondly, we see that the nature of information systems use is rapidly changing. We are in
fact starting to be consumers of information systems. Wide audience end-users consume and
seek gaining pleasure from information systems in stead of just getting the work done. The
used requirements engineering methods development should reflect to this change. How we
can support innovation work that is not related to the customs and ways of work
environment? In our literature review we concluded that two of the reviewed requirements
engineering method categories can support this, namely cognitive and group methods. We
used the design science research agenda (Hevner et al. 2004), to conduct a study, which
aimed at examining the possibility of using cognitive RE methods (Nuseibeh et al. 2000), and



11th Pacific-Asia Conference on Information Systems

572

more specifically the WARE method (Tuunanen et al. 2006; Tuunanen et al. 2004a), to
enable a requirements communication linkage between end-users, analysts and designers. We
used the data of 80 interviews conducted earlier in the mobile presence study (Tuunanen et al.
2006) which consists of a very rich set of end-users requirements and resulted in a data set of
more than 2500 individual end-user requirements.

Our study contributes by developing a method for transforming end-user requirements to
functional system requirements. Our method extends a current cognitive requirements
engineering method, WARE (Tuunanen et al. 2006; Tuunanen et al. 2004a). The previous
work within the field (Tuunanen 2003; Tuunanen et al. 2006; Tuunanen et al. 2004a) has told
us that the link between end-users and analysts can be handled by available means. However,
the two RE method categories supporting the development of wide audience end-user
targeted information systems do not at present provide ways to extend the information
linkage to the essential character in the projects, designers and developers, who actually need
to architect and implement the services. As a solution we have presented that these methods
should provide a stronger connection to modeling mechanisms (Tuunanen et al. 2004b), such
as UML (Bjorkander et al. 2003), in order to serve the needs of modern design practices.

Our conceptual method of extending the WARE method is a feasible beginning of enabling
the requirements information linkage between end-users, analysts, designers and developers.
Our straightforward six step method gives both practitioners and academics the knowledge of
how to transform a rich set of end-user requirements into functional systems requirements
that analysts and designers can use as basis for applying more advanced modeling languages,
like UML, or Meta modeling (Tuunanen et al. 2004b). Additionally, we found that the
WARE method supported this transformation as is. We did not need to change any of the
underlying data structures etc. Instead it was entirely possible to extend the current process.
This is a positive argumentation for the use of laddering, interviewing and theme-based
clustering analysis techniques in practical requirements engineering work.

Naturally, our research is not without limitations. First of all, the conducted study was limited
in the size of used data set. So far we only used few of the Meta feature sets to conduct the
study. However, we feel that using a limited data set gave us the opportunity to seek first if
proof of concept level evaluation could be gained, and which was concluded successfully.
Secondly, it should be noted that we have not yet used the obtained functional systems
requirements specification to either model the system with UML or with Meta modeling.
Therefore, our findings remain at theoretical level for the moment, even though the anecdotal
evidence is there for support of the modeling effort. Furthermore, our previous good
experiences with the WARE data structure and Meta modeling (Tuunanen et al. 2004b)
provides us with optimism.

In future research, we see important that we, first of all, use the obtained functional systems
requirements specification document to model the proposed mobile presence service system.
We initially consider using Meta modeling (Tuunanen et al. 2004b) for the task, but on the
other hand we find it appealing also to extend this view. Why don’t we try also to use the de
facto modeling language, UML, for this purpose? This might lead to interesting research
findings between the efficiency of using Meta modeling and UML in this field of research.
Finally, we intend to use the gained models to create working prototypes of the mobile
presence services. The design work itself will evaluate the usefulness of the obtained
information and give indications if more research should be done in the area.



11th Pacific-Asia Conference on Information Systems

573

References

Atkinson, C., and Kuhne, T. "Model-driven development: a metamodeling
foundation," IEEE Software (20:5), September-October 2004, pp 36-41.
Bjorkander, M., and Kobryn, C. "Architecting Systems with UML 2.0," IEEE Software

(20:4), July-August 2003, pp 57-61.
Bragge, J., Marttiin, P., and Tuunanen, T. "Developing Innovative Information Systems

Services Together with Wide Audience End-Users," Hawaii International Conference
on System Sciences HICSS38, IEEE, Big Island, Hawaii, 2005a.

Bragge, J., Merisalo-Rantanen, H., and Hallikainen, P. "Gathering innovative end-user
feedback for continuous development of information systems: a repeatable and
transferable e-collaboration process," IEEE Transactions on Professional
Communication (48:1), June 2005b, pp 55-67.

Brown, A.W. Large-Scale Component-Based Development Prentice-Hall, 2000, p. 300.
Browne, G.J., and Ramesh, V. "Improving information requirements determination: a

cognitive perspective," Information & Management (39:8), Sep 2002, pp 625-645.
Browne, G.J., and Rogich, M.B. "An empirical investigation of user requirements elicitation:

Comparing the effectiveness of prompting techniques," Journal of Management
Information Systems (17:4), Spr 2001, pp 223-249.

Chen, P.P.-S. "The entity-relationship model - toward a unified view of data," ACM
Transactions on Database Systems (1:1), March 1976, pp 9-36

Daft, R., and Lengel, R.H. "Organizational Information Requirements, Media Richness and
Structural Design.,"Management Science (33:5) 1986, pp 554-569.

Davis, G. "Strategies for information requirements determination," IBM Systems Journal

(21:1) 1982, pp 4-31.
den Hengst, M., van de Kar, E., and Appelman, J. "Designing mobile information services:

user requirements elicitation with GSS design and application of a repeatable
process," The 37th Annual Hawaii International Conference on System Sciences,
IEEE, Big Island, Hawaii, 2004, p. 10.

Grudin, J. "Interactive Systems - Bridging the Gaps between Developers and Users,"
Computer (24:4), Apr 1991, pp 59-69.

Haumer, P., Pohl, K., and Weidenhaupt, K. "Requirements elicitation and validation with real
world scenes," IEEE Transactions on Software Engineering (24:12), Dec 1998, pp
1036-1054.

Hevner, A.R., March, S.T., and Park, J. "Design Research in Information Systems Research,"
MIS Quarterly (28:1) 2004, pp 75-105.

Holtzblatt, K., and Beyer, H. "Making Customer-Centered Design Work for Teams,"
Communications of the ACM (36:10), October 1993, pp 93-103.

Jürjens, J. "UMLsec: Extending UML for Secure Systems Development," UML 2002 - The
Unified Modeling Language: Fifth International Conference, Dresden, Germany,
2002, pp. 412-425.

Lehtola, L., Kauppinen, M., and Kujala, S. "Linking the business view to requirements
engineering: long-term planning by roadmapping," 13th IEEE International
Conference on Requirements Engineering, IEEE, Paris, France, 2005, pp. 439-446.

March, S., and Smith, G. "Design and Natural Science Research on Information
Technology," Decision Support Systems (15) 1995, pp 251-266.

Mathiassen, L., Seewaldt, T., and Stage, J. "Prototyping and Specifying: Principles and
Practices of a Mixed Approach," Scandinavian Journal of Information Systems (7:1)
1995, pp 55-72.



11th Pacific-Asia Conference on Information Systems

574

Mylopoulos, J., Chung, L., and Yu, E. "From Object-Oriented to Goal-Oriented
Requirements Analysis," Communications of the ACM (42:1), January 1999, pp 31-
37.

Nuseibeh, B., and Easterbrook, S. "Requirements engineering: a roadmap," Future of
Software Engineering, ICSE 2000, ACM Press, Limerick, Ireland, 2000, pp. 35-46.

Orlikowski, W., and Iacono, C. "Desperately Seeking the "IT" in IT Research - A Call to
Theorizing the IT Artifact.," Information Systems Research (12:2) 2001, pp 121-134.

Peffers, K., and Tuunanen, T. "Planning for IS Applications: a Practical, Information
Theoretical Method and Case Study In Mobile Financial Services.," Information &
Management (42:3), March 2005, pp 483-501.

Purao, S. "Design Research in the Technology of Information Systems: Truth or Dare,"
Georgia State University, Atlanta, USA.

Richters, M., and Gogolla, M. "Validating UML Models and OCL Constraints," UML 2000 -
The Unified Modeling Language, Advancing the Standard: Third International
Conference, Springer, York, 2000, pp. 265-277.

Rossi, M., and Sein, M. "Design Research Workshop: A Proactive Research Approach," IRIS
26, Helsinki School of Economics, Haikko, Finland, 2003.

Selic, B. "The pragmatics of model-driven development," IEEE Software (20:5), September-
October 2003, pp 19-25.

Shaw, M.L.G., and Gaines, B.R. "Requirements acquisition," Software Engineering Journal
(11:3), May 1996, pp 149-165.

Sommerville, I. Software Engineering, (6th ed.) Addison-Wesley, 2001.
Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., and Manuel, D. "Supporting Scenario-Based

Requirements Engineering," IEEE Transactions on Software Engineering (24:12),
December 1998, pp 1072-1088.

Tuunanen, T. "A New Perspective on Requirements Elicitation Methods," JITTA : Journal of
Information Technology Theory & Application (5:3) 2003, pp 45-62.

Tuunanen, T., Peffers, K., Gengler, C., Hui, W., and Virtanen, V. "Developing Feature Sets
for Geographically Diverse External End Users: A Call for Value-based Preference
Modeling," JITTA: Journal of Information Technology Theory & Application (8:2)
2006, p in press.

Tuunanen, T., Peffers, K., and Gengler, C.E. "Wide Audience Requirements Engineering
(WARE): a Practical Method and Case Study," Helsinki School of Economics,
Helsinki, p. 52.

Tuunanen, T., and Rossi, M. "An Advanced Requirements Elicitation Method and Tool,"
WITS 2003, Seattle, USA, 2003.

Tuunanen, T., and Rossi, M. "Engineering a Method for Wide Audience Requirements
Elicitation and Integrating It to Software Development," 37th Hawaii Int. Conference
on System Sciences, IEEE, Big Island, Hawaii, USA, 2004b, p. 10.

van Lamsweerde, A., Darimont, R., and Letier, E. "Managing conflicts in goal-driven
requirements engineering," IEEE Transactions on Software Engineering (24:11), Nov
1998, pp 908-926.

van Lamsweerde, A., and Letier, E. "Handling obstacles in goal-oriented requirements
engineering," IEEE Transactions on Software Engineering (26:10), Oct 2000, pp 978-
1005.


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	From Rich User Requirements to System Requirements
	Michael Przybilski
	Tuure Tuunanen
	Recommended Citation


	Microsoft Word - Proceedings P2.doc

