
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2007 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2007

An Empirical Study Of Software Quality
Improvement Practices From Multiple Perspectives
– An Australian Case Study
Lesley Pek Wee Land
The University of New South Wales, l.land@unsw.edu.au

Jeremy Higgs
The University of New South Wales

Follow this and additional works at: http://aisel.aisnet.org/pacis2007

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Land, Lesley Pek Wee and Higgs, Jeremy, "An Empirical Study Of Software Quality Improvement Practices From Multiple
Perspectives – An Australian Case Study" (2007). PACIS 2007 Proceedings. 36.
http://aisel.aisnet.org/pacis2007/36

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2007%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007?utm_source=aisel.aisnet.org%2Fpacis2007%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2007%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2007%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007?utm_source=aisel.aisnet.org%2Fpacis2007%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2007/36?utm_source=aisel.aisnet.org%2Fpacis2007%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


11th Pacific-Asia Conference on Information Systems

547

40. An Empirical Study Of Software Quality Improvement Practices From

Multiple Perspectives – An Australian Case Study

Lesley Pek Wee Land
The University of New South
WalesFaculty of Business
School of Information Systems,
Technology and Management
Sydney, NSW 2052, Australia

l.land@unsw.edu.au

Jeremy Higgs
The University of New South Wales
School of Information Systems,

Technology and ManagementFaculty
of Business

Sydney, NSW 2052, Australia.

Abstract

The literature on software quality research to date has shown a lack of empirical insight into

the use of methods for achieving quality in a real context. Further investigation is required if
we want to increase our understanding on how to improve software quality practices. In

particular, we wanted to explore the key factors which impact software improvement
practices in a case study, by studying the perspectives of three key stakeholders - developers,

managers and customers. The selected exemplary case is a small Australian based software
company with exceptional record in terms of organizational growth and performance. A

qualitative approach was adopted to conduct this exploratory study. Results were analyzed
using the Grounded Theory approach to develop an initial framework from the empirical

data. We hope that this framework will provide a deeper understanding of the reasons and
perceptions for the use of quality methods in practice, and thus have an impact on both

researchers and practitioners.

Keywords: software quality, software improvement, software quality practices

Introduction

The failure of many large software projects in terms of not meeting user/business
requirements, prone to errors etc has led to software quality becoming one of the key issues
from all stakeholders’ perspective. As society comes to rely more on the interaction with
software in all aspects of life, questions of 'quality' are increasingly important. In the
literature, there is a lack of depth of study into what quality initiatives are successful.
Software quality techniques have been studied using mostly experimental methods
manipulating variations within each technique (e.g. testing and inspection). However, little is
known about the practice of quality techniques in the real context. For example, how are
various techniques used in combinations and under what circumstances are they more
effective? Moreover, the use of quality techniques is only a component of software
improvement practices/initiatives. Other components such as the use of various development
standards, methodologies, tools, as well as non-technical aspects such as communication etc
all come into play. In a real organizational setting, what are the key factors impacting
software improvement initiatives?

Surprisingly, little work has been done on what quality initiatives are actually used in
practice. Even though each organization is different in terms of context (e.g. setup, structure,
size, maturity, experience, development practices and culture), there is much value in
learning about exemplary practices. An in-depth understanding of how improvement
practices evolve to achieve an exemplary level, and lessons learnt on why certain
techniques/practices (in isolation or in combinations) work well or not at all, will assist
stakeholders evaluate and evolve their own practices. These reasons motivate the study



11th Pacific-Asia Conference on Information Systems

548

reported in this paper. Moreover, we also believe that different stakeholders have diverse
interests and objectives through the different roles that they play in the software development
project, and therefore understanding diverse perspectives represented by the key stakeholders
will present a more holistic picture of the software process improvement undertaken.
This study is exploratory in nature. Our main objective is to develop an initial framework
from a case study in order to create an understanding of the key drivers of a successful
software improvement initiative.
This paper is structured as follows. In section 2, we provide a literature review. In section 3,
we describe the research methodology, followed by the results in Section 4. Lastly in Section
5, we conclude with study with a summary of findings, research limitations and suggestions
for future work.

Literature Review

Researchers have debated whether quality is defined by the number of defects, quality-
carrying properties or quality factors. Garvin suggests integrating different perspectives into
quality, so a more holistic view can be formed (Garvin 1984). At the smallest scale, the
literature covers tasks and activities that can be performed to improve software quality.
Practices change the approach to development in such a way as to construct quality software
from the outset. Finally, development methodologies have a wider impact, providing a
framework for the transformation of the entire software development process. Table 1
provides a sample of the quality methods drawn from a review of the literature. Though this
is far from an exhaustive list, it gives an indication of the types of quality initiatives that have
been covered in the literature.

Table 25. Examples of software improvement activities, practices and methodology

Name Description Type

Unit Testing Automated source code testing Activity

Functional Testing Determines if system fulfils customer acceptance criteria Activity

Code Coverage Determine coverage of the tests Activity

Code Review Manual defect identification Activity

Automated Defect Detection Automatic defect identification Activity

Pair Programming 2 developers working on the same task Practice

Test-Driven Development Writing tests before development Practice

XP Increase quality through quick release cycles, testing &

feedback

Methodology

We summarize in Table 2 a sample of case studies investigating practices and methodologies
that have been reported in the literature. The absence of user feedback poses a problem for
assessing the results of quality initiatives from different stakeholder perspectives. The
literature review shows that there is little or no consensus on what methods are successful in
creating quality software. Without a clear indication of ideal methods, implementing and
achieving quality in software may be difficult.



11th Pacific-Asia Conference on Information Systems

549

Primarily, research so far has been characterized by a lack of insight into how and why
quality methods are used outside of an experimental or controlled context, and the influences
that give rise to their uses. This study seeks to address such problems. Furthermore, we
believe that greater insight can be achieved through a careful selection of an exemplary case
of a successful process improvement initiative. Our research objective explores the following:
What are the main factors driving software quality improvement in an organizational
context?

Research Methodology

In order to answer the research question posed in Section 2, a case study was conducted at a
Sydney based software company. Although this study adopted a 'strong pluralist'/multi-
method approach (survey and semi-structured interviews) to "deal effectively with the full
richness of the real world." (Mingers 2001), due to lack of space, this paper will only focus
on the qualitative results (generated from the semi-structured interviews); without significant
loss of meaning and interpretation to original data set.

Grounded Theory methodology was employed. There are three main reasons for this choice.
Firstly, no previous research on software quality has attempted to understand the use of
quality practices from different perspectives. Grounded Theory allows the researcher to
induce and discover a theory from the empirical observations and data. Thus, it is useful
when trying to build new theories. Secondly, Grounded Theory allows the researcher to
incorporate the complex nature of organisations and social interaction into the study. This is
important in researching the empirical context. Finally, the purpose of this research is to
understand the complex reasons behind the use of quality practices. This is likely to involve
processes, organisations and social interaction, which Grounded Theory facilitates
(Orlikowski 1993a) Grounded Theory thus allows the researcher to develop a theory on the
use of quality practices in an empirical context. Finally, the purpose of this research is to
understand the processes, organization and social interaction behind the quality improvement
practice, which Grounded Theory facilitates (Orlikowski 1993b).

3.1. The Case
The study was performed at an Australian software development company. This was made
possible through the first author’s involvement with the company in a University work
placement program. The researcher as a 'participant observer' is afforded credibility by
reducing "barriers to disclosure" (Nandhakumar and Jones 1997) during the data collection
process. Thus, 'convenience sampling' is adopted in this study. The sample company employs
around 50 staff, including 20 to 30 developers, with a young and open work culture. There
are two major product teams (Product A and B) with different project leaders and markets.
The company fosters open relationships with its customers by making its issue-tracker
publicly available. This allows customers to report defects and suggest new features. In order
to facilitate honest responses, all data collected from the sample company will remain
anonymous.

Data Collection
Semi-structured, qualitative interviews were performed at the sample company to investigate
subjects' perceptions and understanding of software quality. This method provided the
flexibility to investigate topics of interest to the interviewer and interviewee as they arose
(Yin 2003). Interviews have been used extensively in the IS realm for case study research (as
evidenced by the summary of case study research on software quality). Previous research
employing the Grounded Theory research methodology has also made use of interviews
(Orlikowski 1993b).



1
1
th
P
a
c
if
ic
-A
si
a
C
o
n
fe
r
e
n
c
e
o
n
In
fo
r
m
a
ti
o
n
S
y
st
e
m
s

55
0

T
a
b
le
2
6
.
S
u
m
m
a
ry
o
f
ca
se
st
u
d
ie
s
o
n
so
ft
w
a
r
e
im
p
ro
v
e
m
en
t

S
tu
d
y

Q
u
a
li
ty

M
e
th
o
d
(s
)

S
tu
d
ie
d

R
es
ea
r
ch

M
e
th
o
d
s
U
se
d

D
es
c
ri
p
ti
o
n

C
o
n
te
x
t

C
o
m
p
a
n
y

D
ev
e
lo
p
er
F
e
ed
b
a
ck
U
se
r

F
ee
d
b
a
ck

O
u
tc
o
m
es

(J
oh
an
se
n
an
d

G
il
b
20
05
)

E
vo
lu
ti
on
ar
y

D
ev
el
op
m
en
t

O
bs
er
va
ti
on

A
na
ly
si
s
of
a
3-
m
on
th

tr
ia
l
of
th
e
E
vo
lu
ti
on
ar
y

D
ev
el
op
m
en
t

M
et
ho
do
lo
gy

P
ri
or

u
se

of
W
at
er
fa
ll

m
od
el

an
d
C
M
M

F
ut
ur
e

In
fo
rm
at
io
n

R
es
ea
rc
h

M
an
ag
em
en
t

Y
es
:

•
In
cr
ea
se
d

de
ve
lo
pe
r

m
ot
iv
at
io
n

•
D
if
fi
cu
lt
to
de
fi
n
e

go
od

re
qu
ir
em
en
ts

Y
es

•
M
et
ho
do
lo
gy
ha
s
a
fo
cu
s
on

m
ea
su
ra
bl
e
pr
od
uc
tq
ua
li
ti
es

•
A
bl
e
to
fo
cu
s
on
d
el
iv
er
in
g
va
lu
e

to
th
e
us
er

•
C
om
pa
ny
in
te
nd
s
to
u
se
in
th
e

fu
tu
re

(W
il
li
am
s

et
al
.2
00
3)

T
es
t-
D
ri
ve
n

D
ev
el
op
m
en
t

O
bs
er
va
ti
on
,

D
oc
um
en
t

A
na
ly
si
s

A
im
s
to
de
te
rm
in
e
ho
w

ef
fe
ct
iv
e
T
D
D

is
in

de
fe
ct
re
du
ct
io
n

U
se
d

T
D
D

to
de
ve
lo
p

a
ha
rd
w
ar
e

dr
iv
er
,

w
it
h
co
m
p
ar
is
on
to

th
e

le
g
ac
y

de
ve
lo
pm
en
t

pr
oc
es
s

IB
M

Y
es
:

•
D
ev
el
op
er
s

po
si
ti
v
e
ab
ou
t

T
D
D

•
P
ra
ct
ic
e
h
as
b
ee
n

co
nt
in
ue
d

N
o

•
40
%
lo
w
er
de
fe
ct
de
n
si
ty

•
S
im
il
ar
pr
od
uc
ti
vi
ty

•
C
re
at
es
re
gr
es
si
on
te
st
li
br
ar
y

(W
il
so
n

an
d

H
al
l1
99
8)

Q
ua
li
ty

In
te
rv
ie
w

In
ve
st
ig
at
es

th
e

pe
rc
ep
ti
on
s
of
so
ft
w
ar
e

qu
al
it
y

am
on
g

de
ve
lo
pe
rs
,

m
an
ag
er
s

an
d

so
ft
w
ar
e

qu
al
it
y

pr
ac
ti
ti
on
er
s.

C
as
e

st
ud
ie
s

at
fo
ur

A
us
tr
al
ia
n

co
m
pa
ni
es

N
/A

Y
es

N
o

•
D
if
fe
re
nt
gr
ou
ps
h
av
e
d
if
fe
re
n
t

pe
rc
ep
ti
on
s
of
so
ft
w
ar
e
qu
al
it
y

•
C
ul
tu
re
af
fe
ct
s
th
e
qu
al
it
y

ap
pr
oa
ch

•
D
ev
el
op
er
s
of
te
n
re
je
ct
fo
rm
al
or

pr
oc
ed
ur
al
ap
pr
o
ac
h
es
to
qu
al
it
y

•
S
uc
ce
ss
fu
l
qu
al
it
y
in
it
ia
ti
v
es

re
qu
ir
e
at
ti
tu
de
al
ig
nm
en
t

(B
iy
an
i

an
d

S
an
th
an
am

19
98
)

D
ef
ec
tA
n
al
y
si
s
D
oc
um
en
t

A
na
ly
si
s

A
na
ly
si
s
o
f
de
fe
ct
d
at
a

an
d
re
li
ab
il
it
y
ov
er

a
m
ul
ti
pl
e

so
ft
w
ar
e

re
le
as
es

D
ef
ec
t

an
al
ys
is

pe
rf
o
rm
ed

on
th
e

de
fe
ct
s
di
sc
ov
er
ed

du
ri
ng

de
ve
lo
pm
en
t
an
d
4

re
le
as
es

of
an

ap
pl
ic
at
io
n

fo
r

'h
ig
h-
en
d
sy
st
em
s'

N
/A

N
o

N
o

•
M
od
ul
es
th
at
h
av
e
m
or
e
de
fe
ct
s

du
ri
ng
th
e
d
ev
el
op
m
en
tp
ro
ce
ss

ar
e
li
ke
ly
to
h
av
e
m
or
e
de
fe
ct
s

fo
un
d
by
cu
st
om
er
s

•
R
at
io
of
d
ev
el
op
m
en
t
to
fi
el
d

de
fe
ct
s
ca
n
be
us
ed
to
as
se
ss
th
e

re
la
ti
ve
qu
al
it
y
o
f
a
so
ft
w
ar
e

re
le
as
e

(H
or
ga
n
et
al
.

19
94
)

C
od
e
C
ov
er
ag
e
D
oc
um
en
t

A
na
ly
si
s

In
ve
st
ig
at
es

u
se

of
a

co
de

co
ve
ra
g
e
to
ol

in
as
se
ss
in
g

te
st

co
m
pl
et
en
es
s
an
d
qu
al
it
y

fo
r

tw
o

re
al
-w
o
rl
d

so
ft
w
ar
e
p
ro
je
ct
s

C
od
e

co
ve
ra
ge

pe
rf
o
rm
ed
on

tw
o

au
to
pi
lo
t
so
ft
w
ar
e

sy
st
em
s

U
ni
ve
rs
it
y

of
Io
w
a,

R
oc
kw
el
l/
C
ol
li

ns
A
vi
on
ic
s

D
iv
is
io
n

N
o

N
o

•
R
el
at
io
ns
hi
p
be
tw
ee
n
hi
gh
un
it
te
st

co
ve
ra
ge
an
d
lo
w
fa
ul
tl
ev
el
s

•
C
ov
er
ag
e
da
ta
is
a
go
od
fe
ed
b
ac
k

m
ec
h
an
is
m
fo
r
pr
og
ra
m
m
er
s



11th Pacific-Asia Conference on Information Systems

551

Interviews were held with three groups (developers, project leaders, customers) related to the
sample company. The three perspectives provide a rounded understanding of software quality
to be developed from the practical context, and triangulate the perceptions of software quality.
Developers from Products A and B (Developer A1-A4, B1-B4) were interviewed to establish
the reasons behind the use of quality methods and determine the approach and perceptions to
software quality. Interviews were also held with two company directors (Director A and B)
and two project leaders (Product A and B Lead), to explore how software quality has been
implemented through the company culture. One customer of each product (Customer A and
B) was interviewed to establish how they perceive the quality of the software. They were
chosen on the basis of their knowledge of the products. This ensured that the customer had
time to form an accurate judgement of the software quality.

Each interview was held in person or over the phone. Interviews were recorded (with
permission), and lasted between 1/2 and 1 1/2 hours. Hand-written notes were also taken by
the researcher. Interviewees were required to sign consent forms accepting participation in the
study, in accordance with the UNSW Ethics Committee guidelines. The questions were
developed in an iterative fashion to uncover the perspective of each stakeholder. The sample
of developers involved in qualitative interviews was derived using stratified sampling. 2
junior developers and 2 senior developers were selected from each team, making a total of 8
developer interviews.

Data Analysis

Grounded Theory was adopted in the qualitative interviews to guide the collection of data and
reveal themes in the interviews. Open coding was first performed to "generate an emergent
set of categories and their properties." (Glaser 1978) (p.56) Following this, axial and
selective coding were used to construct a theory from the empirical data. Thus, the coding
process created a new theory on the use of quality methods to be derived from an empirical
grounding.

Analysis followed the steps of open, axial and selective coding. A 'selective' approach to
transcription was adopted in this study (Strauss, 1987). The large number of interviews and
limited time and resources constrained the ability to perform full, verbatim transcriptions of
the interviews. Instead, notes were made on the recordings of all interviews. Important
passages were selected and transcribed verbatim, based on the researcher's understanding of
the data, as suggested by (Strauss 1987). 'Constant comparison' enabled further refinement of
the selections as the researcher developed a better understanding of the data. There were also
opportunities to perform additional transcription when theoretical gaps were identified. In
addition, written field notes from the interviews were integrated. Using these 'rules', each
interview typically took around 3-4 hours to complete.

The first stage of analysis involved open coding to "generate an emergent set of categories
and their properties." (Glaser 1978) (p. 56) As each interview was analysed, comparisons
were made to previous interviews to incrementally refine the coding process (Ezzy 2003).
Interviews were read to discover important codes or themes, which were highlighted on paper.
As this was the researcher's first experience of Grounded Theory, a couple of attempts were
made at open coding, as the initial attempts were not comprehensive enough. This process
occurred while interviews were being performed, in line with the concept of 'constant
comparison'. This continued for a number of weeks, until the codes were saturated.

Once it was felt that the codes were saturated, axial coding commenced. The aim of this stage
was to let a theory emerge from the empirical data by identifying common themes. All
identified codes (and the relevant quotes) were laid on a table and grouped into related areas.
A number of attempts were made, as the previous emergent categories did not fit the data. At



11th Pacific-Asia Conference on Information Systems

552

the conclusion of this stage of analysis, a set of categories had emerged, explaining the
underlying codes that had been identified.

Finally, selective coding was performed to determine a central category for the data. This
involved exploring the relationships between the categories established in the previous step.
Various combinations of categories were attempted, until one emerged that linked together the
categories in a suitable manner. At this point, the theory had been saturated (Ezzy 2003). The
results will be presented in Section 4.

Results

The phases of data collection have revealed that the company is undergoing a period of
change. In this section, we present an initial framework for the improvement of software
quality.

Developer responses varied greatly. Many focused on attributes of the source code, including
documentation, modularity and maintainability, as well as the presence of unit tests. "User
Experience" was a central theme. Responses clustered around the expected functionality,
performance and usability. The final area of focus was the level and speed of customer
support. The responses from the management team were quite similar to the developers. The
focus remained on the user experience and code attributes. It is important to question whether
this focus has influenced the perceptions of the developers through the company culture. The
customer responses reveal an unsurprising focus around the "user experience" of the software.
The number of bugs present and reliability were key factors. One customer mentioned the
"intent" of the software as one of the key quality factors:

"If your product is marketed for 24 by 7, a lot of things that [Product B] has to do is provide
cluster-based support, right, which is not there today." (Customer B)

These perspectives provide a wide range of factors that make up quality for the company.
Clearly there is an overlap between the perspectives in the focus on user experience. Both
management and developers also focused on code attributes. This definition of quality, as an
amalgamation of the views of the stakeholders, provides the basis from which the company's
approach to software company can be understood. According to (Wilson and Hall 1998), this
is the key to successfully achieving software quality.
Grounded Theory analysis of the interview data has led to an empirically grounded
framework, shown in Figure 1.

Continuous improvement of software quality is the driving force behind the company's
approach. The other constructs contribute to the improvement of the development process,
which in turn contributes to software quality. A culture of improvement creates teams in
which there is a drive to constantly improve the team and the product. This can be seen in two
areas: developer self-improvement and a culture of continuous process improvement.
According to Director A, developers in the company are expected to have an intrinsic

motivation to increase their knowledge and improve the way they work. This is based on the
belief that intrinsically motivated developers will seek to make high-quality software and
continuously strive to improve it. The directors have tried to achieve this from the outset, by
adopting a policy of hiring only the best developers. Developers and management subject
potential employees to rigorous interviews and programming tests. This allows technical
people to evaluate the suitability of a potential employee in terms of their personality and
abilities. A company with staff that are talented and intrinsically motivated to improve
themselves is therefore likely to function well in a culture of continuous improvement.
The management team expressed that a culture of continuous process improvement had
been cultivated in the company. The culture supports continuous feedback, which encourages
developers to address problems, try new development practices and see which work best.
Primarily, this is achieved by establishing processes to allow developers to do good work:



11th Pacific-Asia Conference on Information Systems

553

"The way you get better quality software is that you have the processes in place that ... give
people the room to do thorough work and encourage people to do thorough work, and at the
same time give people clear direction and make sure that there's time to complete tasks and
make sure there's a culture of things like ... automated testing and continuous testing, and the
important part is that whatever successes and failures we have in that, we can discuss them
openly and feed that whole thing back into the development process." (Product B Lead)

Developers shared this approach to continuous process improvement through reflection and
problem solving:

"... the assumption that after we do something, we should sit down and have a chat about it
and work out ways to improve what we did,… that's kind of the fundamental good thing that
we do to achieve quality." (Developer B3)

This reinforces (Wilson and Hall 1998) the view that culture affects the approach to quality in
a company. This culture clearly addresses the SPI success factors of incremental approaches
and 'tailoring' of the development process (Stelzer and Mellis 1998; Rainer et al. 2003). The
gradual introduction and refinement of new development processes also embodies the
continuous improvement approach. Previous experience has shown that implementing XP at
once does not always work:

"Introducing them little by little also allows us to see which ones work. …" (Product B Lead)

Continuous process improvement is normally achieved in the company through small,
incremental improvements to the development process. This allows developers and teams to
learn from previous mistakes and implement practices or processes to overcome them,
improving the development process and ultimately software quality. An example was
provided by Developer A3. The daily meeting was shortened and provided greater focus after
developer feedback was implemented:
"Our standups [meeting] changed this morning... Previously I think it was about half an hour;
this morning's was 8 minutes. So, very quick and precise and we sort of just covered what
needed to be done and talked about commitment for the day …" (Developer A3)

Figure 1: Key factors driving software process improvement

Continuous improvement is essentially driven by how the organization utilizes its resources to
achieve the software quality objective. Resources include:
• People
• Time

Continuous
Improvement

Software
Quality

People

Practices and
Procedures

Allocation and
Usage of Resources

Time



11th Pacific-Asia Conference on Information Systems

554

• Practices and procedures enacted by people.
Each of these components needs to be utilized and managed in the best possible way because
they are limited and deliver value propositions. Resource availability has already been
identified as a success factor in SPI initiatives (Baddoo and Hall 2002a; Paulish and Carleton
1994). Consequently, resource availability is a key factor in process improvement and quality.
These will be addressed below.

People

People include employees at all levels of the organization. Beginning with the management,
proper management direction is important. In this case, the direction given to developers is
provided through frequent releases of the software and visible evidence of progress. The
development teams have adopted the XP mantra of 'release early, release often'. Releases are
partitioned into one or more two-week 'iterations'. Planned work is broken down into
manageable sub-tasks at the start of every iteration. Developers and management estimate the
amount of effort for each task and schedule according to priorities. The result of this is a short
release cycle that allows developers to remain focused on small tasks. Previously all
development tasks, such as bugs, enhancements and new features, would be entered into the
online issue-tracker. Instead, development tasks for each iteration, are now written on index
cards and placed on a wall in the team office, called the 'story wall'. As work is completed, the
relevant index card is marked and moved onto an adjacent wall. This provides a visible
indicator of progress and guidance on the work remaining.

Non-management employees also play an important role in taking ownership and
responsibility of various aspects of the continuous improvement process. For example, the
introduction of "XP Process Champions" has led to greater commitment and motivation for
improvement, and thus improvement of the development process and software quality. The
role of "XP Process Champions" was introduced into the Product B team earlier in 2006. At
the time of the interviews, it had not been introduced to the Product A team. Developers were
encouraged to take ownership of different aspects of the development process. The Product B
Lead summarised their role as the following:

"Each person has been given an overview of a particular part of the process, like testing or
making sure the builds work or looking for refactoring or all that kind of stuff, and each
person has been given a small area of focus to look at how we can improve the way we do
things and also the most important part there is coming up with metrics and measuring what
we're doing." (Product B Lead)

The key to the champion's role is the time dedicated to the improvement of the one practice,
rather than shared ownership of all. The role of the champions is to promote and champion
the use of a practice, and to improve the way the practice is done. This allows developers to
be more involved in the improvement of the development process, while giving management
greater flexibility and perspective. Currently, there are six different champions in the Product
B team as depicted in Table 3. There were no champion roles in the Product A team, as XP
process champions had not been introduced at the time of the study. A sense of ownership and
responsibility has been cultivated by making individual developers in charge of aspects of the
development process. Champions feel a responsibility and commitment to ensure that their
practice or process is providing the greatest benefit to the team. Responsibility also provides
motivation for improvement. There appears to be no extrinsic reward for the champions.
Rather, self-improvement and contribution to the team are likely to be the intrinsic
motivations.

Time

Due to time limitations in every project, the interviews revealed a pragmatic approach to
quality. This approach underpins the decisions to use practices and procedures in the



11th Pacific-Asia Conference on Information Systems

555

development process. The 'pragmatic' approach can clearly be seen in the use of testing, TDD
and PP by developers. For example, Developers made it clear that a 'practical' approach to
testing was adopted. An informal 'cost/benefit analysis' was cited as the way to judge whether
tests should be written when working on a development task (Developer A2, A3, B3). The
main determinant in this judgement was the difficulty in writing tests. If it was "too
technically difficult" (Developer B3) or the code was "untestable" (Developer A3, B1, B2, B3,
B4; Project Lead A, B; Director B), then it was unlikely that tests would be written. The
architecture of the source code often affected this.

Table 3: XP Process Champion roles

Role Responsibilities

Code Coverage 3. Provide reports on the amount of code coverage by
tests

4. Explore ways to increase the usage of code coverage
tools

Continuous Integration 5. Provide reports on the build stability for unit and
functional tests

6. Ensure developers value testing and fix build issues
quickly

Daily standup meetings 7. Ensure daily meetings happen
8. Explore ways to increase the effectiveness of the

meetings
Frequent Releases 9. Develop processes to facilitate frequent software

releases
Refactoring 10. Identify areas that require rework

11. Ensure there is one refactoring task included in each
iteration

Velocity Tracking 12. Report on the amount of work required for tasks
completed in each iteration, compared to the estimated
tasks

Practices and Procedures

Proper allocation of people and time resources enable practices and procedures to be enacted
efficiently and effectively. Practices may be enabled by the appropriate mechanisms such as
metrics (measurement) and employee communication.

Measurement (e.g. in areas like product quality, productivity or speed) is a key aspect of any
SPI initiative (Paulish and Carleton 1994). Metrics were officially introduced to the Product B
team recently, in order to quantify improvements to the development process. Measurements
are collected by the "XP process champions" responsible for each practice. Conversely,
measurement can also reveal problems. Primarily, measurement of key aspects of quality
quantifies the efforts of the developers and gives them an incentive to make further
improvements

Metrics provide visible evidence of progress. Developers are encouraged to present graphs on
key areas of the development process (e.g. build stability, code coverage and iteration
velocity) in a bi-weekly 'process meeting'. These metrics provide evidence of success and a
motivation to improve. Frequent releases provide the SPI factor of 'visible success'
(Hardgrave and Armstrong 2005; Baddoo and Hall 2002b) and overcome a 'lack of guidance'
(Hardgrave and Armstrong 2005). Therefore, developers and management both contribute to
the direction of the development process at the company.

A decline in communication is one of the main reasons for the most recent quality initiatives
in the company. Consequently, communication has received significant focus from the
developer, management and customer perspectives. Communication is effective when it
promotes visibility of the development process and when developers’ reflect on their
practices.



11th Pacific-Asia Conference on Information Systems

556

Table 4 shows that customers provide feedback to the development teams through various
methods which facilitate communication between development teams and customers. The
customer perspective of quality is thus integrated into the development process. Until
recently, teams often met (daily) to discuss product status, problems developers encounter and
any other pertinent issues. However, it was recognized that these meetings did not provide a
way to reflect and improve on the development process itself. Product planning meetings
were also held infrequently. As a result, this meeting was differentiated into three separate
meetings with distinct foci. A "daily standup meeting" was established, where each team
member outlines their 'commitments' for the day:

"So, very quick and precise and we sort of just covered what needed to be done and talked
about commitment for the day and not all of the shit we did the previous day, so it went a lot
quicker." (Developer A3)

Developers gain a better understanding of the team status through focus on daily tasks. It also
provides a medium to express development problems. A fortnightly "process meeting" was
also introduced to Product B. Developers and managers in each team discuss problems with
the development process and possible improvements:

"We don't talk about ... features, bug fixes, what bugs are being fixed, we just talk about what
we're doing well, what we could be doing better and how we could be doing it better, and
that's ... an important thing for building good quality software... because it keeps the
conversation going." (Product B Lead)

Table 4: Communication methods between developers, managers and customers

According to Director B, it was also one of the key changes made to this implementation of
the XP methodology over previous attempts:

"The process meeting is our attempt to implement XP better this time, … We don't talk about
the application, we don't talk about how well we're doing in terms of developing features. We
don't talk about what the features are. We talk just about the process that the team is
undergoing. How do we think we're doing at XP? …" (Director B)

This meeting has allowed the team to be intimately involved in the appraisal and evolution of
the development process, in line with the 'involvement' SPI success factor [14]. Such a
meeting had not been introduced to the Product A team at the time the interviews took place.
Developers from that team mentioned that they could only raise development issues in the
daily meeting. Often, they felt their suggestions would be skipped or not discussed at length.
Conversely, developers from Product B seemed quite happy with the level of discussion of

Name Purpose Focus Frequency
Blogs Share knowledge and customer feedback Internal/External Ad-hoc
Support/issue-
tracking System

Request support, report bugs, provide suggestions Internal/External Ad-hoc

Forums Request support, report bugs, provide suggestions External Ad-hoc
Email Request support, report bugs, provide suggestions,

share information
Internal/External Ad-hoc

Instant Messaging Share information, chat Internal Ad-hoc
Planning Meeting Plan major software release, discuss problems with

planning
Internal End of each release

Iteration Meeting Plan 2-week development iteration, discuss problems
in planning/estimation with the previous iteration

Internal Every 2 weeks (Product B
only)

Process Meeting Discuss how the development process is working,
suggest improvements to the development process,
present reports and metrics on practices/procedures

Internal Every 2 weeks (Product B
only)

Standup Meeting Discuss what tasks will be performed by each person
that day

Internal Daily

Wiki Share knowledge and development plans Internal Ad-hoc



11th Pacific-Asia Conference on Information Systems

557

the development process. The third meeting, the "iteration planning meeting", is held every
other week to the "process meeting". In the iteration planning meeting, team members plan
the tasks for the next two weeks.
Discussion of the preceding iteration also reinforces the concept of reflection:

"When we finish an iteration... or when we finish a release cycle, we regularly get together
and say 'ok, what was good about this, what was bad about this, what can we do better?'
Quite a bit of the feedback will come from [Director B] and [Director A] and myself, but a
significant amount comes up from the crew." (Product B Lead)

The net effect of these differentiated meetings is greater communication about product
development and the software development process. These meetings provide feedback forums
in which developers and management can contribute to the improvement of the development
process, and indirectly the quality of their products. These are in line with SPI success factors
'communication' and 'feedback' (Stelzer and Mellis 1998; Conradi and Fuggetta 2002). There
is also evidence of more informal methods of communication. In particular, the interviews
revealed that there is a degree of 'diffusion' of ideas between the teams. An example is the
formal introduction of Pair Programming to the Product A team. The Product A Lead had
been discontent with the number of bugs being reported. A combination of positive feedback
from the Product B team and the suggestions of the Product A developers led to the
subsequent introduction of Pair Programming. Thus, there is likely to be informal inter-team
communication, which aids in the improvement of the development process. Another key
aspect of communication is the developer interaction with customers. The company recently
established dedicated support staff for both products. However, 2 developers rotate onto the
support team every few weeks. This gives them exposure to customer problems and
expectations, increasing the communication between the groups. Thus, developers can then
understand customer problems and develop the software in a way as to overcome them. The
communication methods allow the stakeholders to discuss and develop the products further.
In particular, the differentiated meetings have encouraged further feedback and reflection on
the development process by developers and management. These improvements feed back into
the improvement of the development process and overall quality.

Visibility communicates progress and value to the development teams. The first affected area
is metrics and communication of progress. Secondly, increased visibility can also
communicate the importance of particular beliefs. Visibility of progress was introduced by the
use and presentation of metrics. Metrics on the procedures and practices are presented in the
meetings mentioned in the previous section. A developer provided an example of this:

"The Continuous Integration champion is tracking the build values every day, which is a good
way of making sure that the tests are actually passing more often than not. So [Developer
B4], basically every morning, he checks whether the tests are passing... and he tells everyone
in the standup [meeting] or sends out an email if it's breaking. Everyone then looks at it and
realises who broke it and then get finger-pointed." (Developer B3)

The reporting of metrics on build stability thus communicates progress of the improvement
initiatives and relative increases in software quality. The communication of value was another
area where visibility had an impact. A developer raised this concern, in relation to the
collection of metrics:

"If something requires ongoing effort, then it has to have enough value that the person who's
doing it feels like they should continue doing it." (Developer B3)

Under the previous build system, build results were ignored. A new Continuous Integration
system was introduced in early 2006, which built the software and ran tests against it on every
commit to the source code repository. Developers would then be notified of the build results
by email and the internal instant messaging (IM) platform. These messages report the
developer that made a change to the source code and the results of the build and tests. One of
the benefits provided by its introduction was increased visibility and emphasis on quality:



11th Pacific-Asia Conference on Information Systems

558

"There's a lot of value in just making it more visible that this is something you care about…"
(Product B Lead)

Thus, increased visibility communicates the importance of quality and attention to detail in
development. The introduction of differentiated meetings and increased visibility have had a
large impact on the development teams and process. Creating distinct meetings has allowed
developers to openly discuss issues in daily tasks, the development process and in iterations.
Higher visibility of values has been achieved through the Continuous Integration system,
providing a common understanding to developers and management.

The enactment of practices and procedures enable their integration into the development
process. This is important because increasing practices and procedure usages by developers
help gain consistent benefits as a result. Developers were unlikely to use practices if they felt
they were not essential. Developers are likely to skip practices under pressure. The
'institutionalization' of practices into the development process was suggested as a remedy for
this by the management team. The clearest example of this is the integration of testing
through Continuous Integration. The value of testing and quality is maintained by the
automatic execution of tests by the CI system, independent of the amount of pressure on
developers. An example of a lack of institutionalization also emerged through the interviews.
Developers expressed the benefits of using code coverage analysis to determine how well
written their tests were. Leading code coverage software that worked with the Integrated
Developer Environment (IDE) had been purchased for the entire company and was available
to all developers. Despite this, the Product A Lead commented that code coverage analysis is
"not done very often, but it does happen". Developer A3 was aware of the available code
coverage tool, but felt that inexperience with the tool and a lack of integration into the IDE
workflow hindered its use. A lack of understanding and value on the practice is also likely to
have contributed to the level of use. Management plays a key role in the integration of
practices through institutionalization and repeatable processes. These aspects of integration
contribute to the effectiveness of the development process, and consequently software quality.

The practices and procedures used in the development process serve as 'enablers' for the
improvement of product quality. The use of suitable practices and procedures is therefore
important to improve software quality. Testing, Test Driven Development (TDD), Pair
Programming (PP) and CI serve as 'enablers' for the improvement of the development process
and the SPI initiatives. The responses of the developers indicate largely positive attitudes to
the development practices and procedures used, which contribute to the improvement of the
development process and product quality. However, the code coverage and code review
practices had less positive responses, which indicate issues in their use at the company.
People and time are therefore important ingredients to the use of practices and procedures.

Equally, adequate and appropriate management of scarce resources are critical for ensuring
quality in software development.

Conclusion

A case study was conducted to understand the key factors driving software quality
improvement practices in a software company based in Sydney, from key stakeholder
perspectives. At the centre of the framework is continuous improvement. We argue that
continuous improvement is driven by efficient allocation and usage of scarce resources –
people, time, software development practices and procedures.

The proposed framework is supportive of the existing literature on software quality
improvement practices. Since our case study was done in depth, we have provided a rich
picture of how scant resources are utilised by organizational members to deliver quality
improvement and ultimately software quality for the particular case. For example, we have
shown that the organization has to be practical in implementing practices due to time
constraints, thus pragmatism is an attribute in decision making of practices and procedures.
Not surprisingly, human factors play a big role in software quality success in this case. This
includes strong management and headship, as well as ownership and responsibility for



11th Pacific-Asia Conference on Information Systems

559

employees below. Equally appropriate practices and procedures must be integrated within the
software processes, these were made possible by effective and efficient allocation and use of
time and people resources. Our results were derived from multiple stakeholder perspectives,
so is not bias towards developers, management or clients.

This study provides a deeper understanding of the perceptions behind software quality
practices. A better understanding of these reasons can contribute to more effective software
quality initiatives in practice. This framework proposes technical and non-technical resource
factors that contribute to software quality improvement at the company. This study offers a
unique insight; it has provided into a software development company run by developers. The
project managers and company directors are all of a technical nature and often engage in the
development of the software. This is in contrast to many companies in the industry. The level
of influence and the team dynamics may therefore differ from the 'norm'. Only one case study
was performed. Although this was a unique and exemplary case, there is a limited context.
Future research should address process improvement practices of a different context. Further,
future work could explore the resource view for enabling software process improvement
along other resource dimensions, such as those that spans across organizational boundaries.

Acknowledgements

We would like to thank the management and development teams of the company involved in
this study. Many hours were spent performing interviews and filling out the surveys, which
are greatly appreciated. We would also like to thank the customers that donated their time to
provide a user perspective on quality.

References

Baddoo, N., and T. Hall. 2002a. Motivators of Software Process Improvement: an analysis of
practitioners' views. Journal of Systems and Software 62:85 - 96.

———. 2002b. Software Process Improvement Motivators: An Analysis using
Multidimensional Scaling

Empirical Software Engineering 7:93 - 114.
Biyani, S., and P. Santhanam. 1998. Exploring defect data from development and customer

usage on software modules over multiple releases
Paper read at Proceedings of the Ninth International Symposium on Software Reliability

Engineering.
Conradi, H., and A. Fuggetta. 2002. Improving software process improvement IEEE

Software 19:92 - 99.
Ezzy, D. 2003. Qualitative Analysis: Routledge.
Garvin, D. A. 1984. What Does "Product Quality" Really Mean? Sloan Management Review

26:25-44.
Glaser, B. G. 1978. Theoretical Sensitivity: Advances in the methodology of grounded theory.

Mill Valley, California: Sociology Press.
Hardgrave, B. C., and D. J. Armstrong. 2005. Software process improvement: it's a journey,

not a destination. Communications of the ACM 48:93-96.
Horgan, J. R., S. London, and M. R. Lyu. 1994. Achieving software quality with testing

coverage measures. Computer 27 (9):60-69.
Johansen, T., and T. Gilb. 2005. From Waterfall to Evolutionary Development (Evo): How

we rapidly created faster, more user-friendly, and more productive software products
for a competitive multi-national market.

Kaplan, B., and D. Duchon. 1988. Combining Qualitative And Quantitative Methods In
Information Systems Research: A Case Study MIS Quarterly 12:571-586.

Markus, M. L. 1994. Electronic Mail As the Medium of Managerial Choice Organization
Science 5:502-527.



11th Pacific-Asia Conference on Information Systems

560

Mingers, J. 2001. Combining IS Research Methods: Towards a Pluralist Methodology
Information Systems Research 12:240-259.

Nandhakumar, J., and M. Jones. 1997. Too close for comfort? Distance and engagement in
interpretive information systems research

Information Systems Journal 7:109-131.
Orlikowski, W. J. 1993a. Case Tools as Organizational Change: Investigating Incremental

and Radical Changes in Systems Development. MIS Quarterly 17 (3):309-340.
———. 1993b. CASE Tools as Organizational Change: Investigating Incremental and

Radical Changes in Systems Development MIS Quarterly 17:309 - 340.
Paulish, D. J., and A. D. Carleton. 1994. Case studies of software-process-improvement

measurement. Computer 27:50 - 57.
Rainer, A., T. Hall, and N. Baddoo. 2003. Persuading developers to "buy into" software

process improvement: a local opinion and empirical evidence Paper read at
Proceedings of the 2003 International Symposium on Empirical Software Engineering.

Stelzer, D., and W. Mellis. 1998. Success factors of organizational change in software process
improvement. Software Process: Improvement and Practice 4:227-250.

Strauss, A. 1987. Qualitative Analysis for Social Scientists. Cambridge: Cambridge
University Press.

Williams, L., E. M. Maximilien, and M. Vouk. 2003. Test-Driven Development as a Defect-
Reduction Practice Paper read at Proceedings of the 14th International Symposium on
Software Reliability Engineering.

Wilson, D. N., and T. Hall. 1998. Perceptions of software quality: a pilot study. Software
Quality Journal 7 (1):57-75.

Yin, R. K. 2003. Case Study Research: Design and Methods 2003. 3rd edition ed. Thousand
Oaks, California: Sage Publications,.


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	An Empirical Study Of Software Quality Improvement Practices From Multiple Perspectives – An Australian Case Study
	Lesley Pek Wee Land
	Jeremy Higgs
	Recommended Citation


	Microsoft Word - Proceedings P1.doc

