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23. Simulative and Game-Theoretical Approaches for Strategic Behavior in

Name-Your-Own-Price Markets

Oliver Hinz
ohinz@wiwi.uni-frankfurt.de

School of Business and Economics
Goethe-University of Frankfurt, Germany

Abstract

Name-Your-Own-Price is a popular interactive pricing mechanism in Electronic Commerce
that lets both, buyer and seller, influence the price of a product. At the outset, a seller defines

a secret threshold price indicating the minimum price he is willing to sell the product for.
Subsequently, a buyer is asked to place a bid indicating her willingness-to-pay for the product

offered. If the bid value is equal or above the seller’s threshold price, the transaction is
initiated for the price denoted by the buyer’s bid. In this paper we show how buyer and seller

strategically behave in such markets and derive from the results what product classes seem
suitable for sale in a Name-Your-Own-Price-channel. To address this question, we apply two

different approaches - an agent-based simulation and a game theoretical approach - and
illustrate thereby the advantages and disadvantages of both methods.

Keywords: Name-Your-Own-Price, Agent-based Simulation, Game Theory

Introduction
Due to lower transaction and menu costs the Internet enabled a plethora of dynamic pricing
mechanisms (Bakos 1997). In the context of this paper we define the class of interactive
pricing mechanisms as a subset of dynamic pricing mechanism where both, buyer and seller,
interactively influence the final price by exchanging bids or messages.

Interactive pricing mechanisms have numerous advantages; mainly these mechanisms allow
the seller to price discriminate. Price discrimination can yield on average higher prices and
thereby increase the seller’s profit. Moreover, interactive pricing mechanisms tend to increase
allocation efficiency of markets since low valuation buyers who are priced out in a fixed price
scenario can be served by a lower individual price in markets applying an interactive price
finding (Bakos 1997).

Market places like eBay.com or Amazon apply interactive pricing mechanisms. Yet, these
market places primary differ in the design of the applied pricing mechanism. Market leader
eBay uses besides traditional posted price (“Buy now”-feature) a variant of the second price
auction. Nevertheless, eBay recently started an additional interactive pricing format which
allows buyers to send a bid to a seller, which he can accept or reject. This feature is called
“Best offer” (eBay 2006).

This mechanism is closely related to the mechanism which literature (e.g. Hann and
Terwiesch 2003) calls Name-Your-Own-Price (NYOP) or Reverse Pricing. NYOP was
introduced in 1998 by the US-based company Priceline.com that uses this pricing mechanism
for the sales of airline tickets, hotel rooms and rental cars. With revenues of $1,123 million
and a gross profit of $401 million in 2006, Priceline indicates both the acceptance and the
success of the NYOP mechanism and became a strong player in the tourism and airline
industry. Additionally, several companies now employ the NYOP mechanism in different
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formats such as Expedia.com, Combined Systems Technology, Inc. on its procurement
platform ITProcurement.com and various European low-cost airlines (e.g. Germanwings.com,
LTU.com).

NYOP allows both, buyer and seller, to influence the final price. The seller can set a secret
threshold price indicating the minimum price he wants to achieve. By submitting bids the
buyer indicates her willingness-to-pay. The bid is accepted if it hits or surpasses the secret
threshold price. The buyer’s bid then denotes the final price.

In contrast to other common auction mechanisms, the price discriminating feature of NYOP is
not based on the competition between buyers (or sellers in the case of reverse auctions). To
close a deal, the buyer has solely to overbid the secret threshold price, whereas bids from
other buyers do not have any influence on the final price or success probability. In the case of
limited product capacity and high demand, products would be sold to successful bidders on
base of a first-come/first-serve principle.

One of the characteristic features of NYOP is, that after the bidding process, information
about neither accepted nor rejected bids is published. This leads to a very intransparent
market, which allows sellers to use a NYOP channel for sales with very low prices without
the cannibalization of traditional posted price sales channels. NYOP allows thereby
addressing a very price sensitive buyer segment.

Finally, NYOP is suited for the simultaneous sales of large number of identical products,
since a single offer has to be created. Indeed different auction sites allow so called “power” or
“dutch”-auction (e.g. eBay.de or BesteAuktion.de), though these auctions lead to a uniform
price for n units of the same product. This is suboptimal in terms of price discrimination. In
contrast to these uniform prices, NYOP allows to charge differentiated prices for every single
buyer and therefore a better extraction of consumer surplus.

Research on NYOP focused primary on bidding behavior and optimal design of NYOP
mechanisms. Most of these models assume behavior of one side as exogenously given. The
aim of this paper is therefore, to relax this assumption and present a model that addresses
buyer’s and seller’s behavior simultaneously and takes strategic interaction effects into
account. Thereby, we will show that Name-Your-Own-Price is not a suitable mechanism for
all product classes.

We address this problem with a game theoretical approach based on insights from the domain
of bargaining games and additionally with the application of an agent-based simulation. The
application of two different approaches allows us to demonstrate the strengths and
weaknesses of both methods.

The remainder of this paper is organized as follows: Chapter 2 introduces Name-Your-Own-
Price in detail, summarizes prior research in this area and places this work into perspective.
Chapter 3 describes the general setup for the game which is then solved using insights from
the domain of bargaining games in chapter 4. We then show how to approach the same
question with an agent-based simulation before we finally compare and discuss the results in
the concluding chapter.
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Name-Your-Own-Price

Mechanism Description
As interactive pricing mechanism NYOP allows both, seller and buyer to have influence on
the final price of a transaction. While the seller ascertains a minimum price for the transaction
by setting the secret threshold price, the buyer determines the final price by her submitted bid.
If her bid surpasses or hits the secret threshold price, it denotes the agreed price of the
transaction.

A seller can moreover influence the process and thereby the outcome of the pricing by
choosing an adequate design for his sale. Bernhardt (2004) terms these options that can be
used to modify the pricing process “design variables”. For example, the number of bids is a
very important design variable as shown by Spann, Schäfers and Skiera (2004). Also the price
elicitation format and the minimum increment between bids are such design variables. A
detailed classification can be found in Bernhardt (2004).
In contrast to traditional auction mechanisms Name-Your-Own-Price is not based on direct
price competition between buyers. For a winning bid the buyer has solely to overbid the secret
threshold price. Other bidders do not have any influence on the outcome of the pricing
mechanism.

Figure 1 depicts the bargaining zone in case of a successful bid: The seller faces variable costs
c for the product offered. He sets the threshold price TP normally to a price above or equal to
his variable costs c. This ascertains in case of a successful bid a basic rent BR which is equal
to TP-c. Additionally, the seller realizes some surplus due to the buyer’s overbidding. This
surplus is called information rent IR. The buyer however has a certain willingness-to-pay
WTP and tries to minimize the information rent IR by hitting exactly the threshold price. We
term the difference between a successful bid b and the willingness-to-pay WTP the consumer
surplus CS.

Figure 9: Zone of Bargaining in Name-Your-Own-Price

Figure 1 clarifies that buyer and seller haggle over the information rent IR. The buyer tries to
minimize the overbidding while the seller wishes for significant overbidding on buyer’s side
since this is the price discrimination feature of Name-Your-Own-Price.
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Literature on Name-Your-Own-Price
The research on Name-Your-Own-Price has aimed at three different research goals: The first
goal was to determine the optimal design for Name-Your-Own-Price, the second goal is to
analyze bidding behavior in Name-Your-Own-Price markets and third, how to apply Name-
Your-Own-Price optimally from an IS point of view. This paper thus combines the aim of the
first two goals since we want to show how a seller should set the threshold price optimally
and how buyers bid strategically.

Chernev (2003) focuses in his work on the single bid case and analyses the buyers’
preferences in terms of price elicitation formats. Thereby, he examines in a laboratory
experiment whether the buyers prefer to state their bid in a bidding box (“price generation”)
or whether they prefer to choose from a list of possible bid amounts (“price selection”).
Chernev (2003) concludes that buyers prefer the price list but does not investigate further into
bidding behavior.

Fay (2004) develops an analytical model for seller profit in a NYOP market under varying
restrictions for the possible number of bids consumers can submit. Thereby, he compares the
single bid case with a case where experienced consumers can submit multiple bids at Priceline
by applying various “tricks” such as the use of different “identities” via multiple credit cards.
Hann and Terwiesch (2003) analyze empirically the bidding behavior in a market with
repeated bidding. They first develop a microeconomic model with utility maximizing buyers
to explain bidding behavior and apply this model then on data to measure frictional costs.
Terwiesch, Savin and Hann (2005) extend this model and derive how to set the threshold
price optimally. Our work is related to this paper. However, our paper applies a bargaining
model and a simulative approach with reinforcement learning allowing both players, buyer
and seller, to behave strategically. We finally show how our framework for the single bid case
can be linked to the work of Terwiesch, Savin and Hann (2005).

Spann, Skiera and Schäfers (2004) also develop a normative model for the bidding behavior
and estimate with its help the willingness-to-pay of participating bidders. Moreover, the
authors derive optimal bidding behavior and can finally conclude that sellers should allow
multiple bidding in Name-Your-Own-Price markets.

Hinz and Spann (2007) examine the influence of information diffusion amongst buyers in
Name-Your-Own-Price markets. The authors find a significant influence of the social network
amongst the buyers on the success of NYOP markets and derive managerial implications for
NYOP markets with information diffusion.

Hann, Hinz and Spann (2006) find that it could be beneficial for a Name-Your-Own-Price
seller to apply an adaptive threshold price. This could not only increase profit and welfare but
also diminish buyers’ frustration which is a counter-intuitive outcome of their work. They
also consider the interesting case of infinite horizon where an unlimited number of bids are
allowed.

The second research stream deals with bidding behavior only. The work by Ding et al. (2005)
use the single bid case to show that buyers suffer from frustration in case of a rejected bid and
excitement in case of a winning bid and show that these emotional aspects can have an
influence on repeated purchase. Spann and Tellis (2006) utilize Name-Your-Own-Price to
show that irrational behavior has not diminished since the raise of the Internet.
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The third research stream examines Name-Your-Own-Price from an IT and IS perspective:
Bernhardt (2004) classifies the possible design variables for the Name-Your-Own-Price
design space. Amongst multiple bidding, he also categorizes the already mentioned price
elicitation format, bidding costs and waiting time between consecutive bids. Hinz and
Bernhardt (2005) analyze whether a seller should use an intermediary for the sales in Name-
Your-Own-Price markets or develop a proprietary software solution with high total costs of
ownerships. They conclude that a solution based on a service-oriented architecture might
combine the advantages of both approaches without the specific disadvantages. This scalable
solution is then described in Bernhardt and Hinz (2005) in detail.
Our framework incorporates both players simultaneously and shows thereby that the buyer’s
estimation about the seller’s cost strongly influences her strategic behavior and is thus a
crucial determinant for the seller’s profit in NYOP markets.

General Setup
In NYOP markets buyer and seller bargain over the price of a product which is worth c to the
seller and WTP to the buyer. The buyer submits bids b and the seller can only reject or accept
these bids. If a bid is accepted the buyer’s bid denotes the price of the transaction. However, if
the bid fails to surpass the threshold price, the buyer’s ability to raise her offer and place
additional bids depends on the design of the NYOP mechanism specified by the seller. For
example, a seller could specify a minimum waiting time between two consecutive bids of the
buyer or charge a small fee if a buyer wants to place additional bids. In this paper, we will
focus on the case where only one bid is allowed. This variant of NYOP is applied by
Priceline.com and is therefore the most relevant variant.

The seller is aware of his valuation c but only assesses the buyer’s valuation to be given by
the distribution F(WTP) with a positive density f(WTP) on [WTPlow, WTPhigh]. The buyer is
aware of her WTP but can only assess the seller’s valuation given by the distribution G(c)
with a positive density g(c) on [LBC, UBC] and additionally assess the threshold price to be
given by the distribution TP(c) with a positive density tp(c) on [LBTP, UBTP]. Thereby,
LBTP�LBC and UBTP�UBC must hold since the seller would not sell below his costs. Both
players are solely interested in maximizing their payoff and are assumed to be risk-neutral.
The distributions and the structure of the game are common knowledge.

As an example, assume a buyer with a willingness-to-pay of 110, who assesses the seller’s
costs with support of [80, 135] and conjectures the threshold price to be distributed between
[80, 200]. The seller’s costs are c=90 and the seller assess the buyer’s willingness-to-pay
given by f(WTP) on [90, 150].

As shown by Spann, Skiera and Schäfers (2004) risk-neutral buyers maximize their expected
consumer surplus. In their work they also consider search costs sc which we set to 0 without
the loss of generality.

( )( ) ( )
TP

b

TP

T

TP TPLB

b LB
ECS WTP b tp c dp sc WTP b sc

UB LB

�
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��

With a higher bid b the buyer increases on the one hand the likelihood to surpass the threshold
price but on the other hand he decreases the consumer surplus (WTP-b).
To yield the optimal bid b* we maximize ECS by differentiating with respect to p and set to
0:
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Solving for b yields:
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The optimal bid is thus a function of the willingness-to-pay WTP and the buyer’s believes
about the lower bound of the threshold price distribution. If UBTP<WTP then the optimal bid
is given by:

*

2
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b
+

� =

However, we will show in this paper, that strategic behavior of seller and buyer reduces the
problem to a guessing of the seller’s costs.

In the following chapters, we therefore derive how a seller would infer optimal threshold
prices in such a setting and how a buyer would react. From the results we can conclude that
not all product classes are suitable for sales in a Reverse-Pricing-channel. We address this
question with two different approaches. First, we solve the problem using insights from
bargaining games and second, we run an agent-based simulation to evaluate the market
outcome. Besides solving this relevant problem, we show that the outcomes are identical but
that the application of both approaches can yield different insights.

Game-Theoretical Approach
The model by Spann, Skiera and Schäfers (2004) focuses on the bidding behavior of buyers in
Name-Your-Own-Price and build upon the assumption of an exogenously given threshold
price. In real markets however sellers would strategically take the buyers’ behavior into
account. The buyers in turn anticipate the seller’s considerations. To model this kind of
problem, game theory is a proper approach.

We model the seller’s decision making in terms of setting the optimal threshold price as
normal form game, i. e. both players, buyer and seller, set their strategy without knowledge of
the strategy of their counterpart. Thereby, the game can be modeled as static bargaining game.
As a game with two players I={buyer, seller}, we face a limited set of possible strategies and
thus the game can be depicted as a table. We assume that each player has a set of three
possible strategies to outline the mechanism, before we then can extend the number of
strategies arbitrarily.

In this three-strategy scenario, the seller can set the threshold price close to his variable costs,
to a medium price or a high price. If the buyer hits or surpasses the threshold price, the
transaction is initiated. The buyer realizes the consumer surplus as the difference between his
willingness-to-pay and his bid. If the buyer’s bid fails to surpass or hit the threshold price, the
surplus for seller and buyer is 0.
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The seller can choose one of the given three strategies: a low threshold price (LS), a medium
threshold price (MS) and a high threshold price (HS), whereas the buyer can bid low which
would lead to high consumer surplus (HB), bid medium (MB) and bid high leading to a low
consumer surplus (LB). We consider only the case where the buyer’s willingness-to-pay is
higher than the seller’s costs. Otherwise both counterparts would never reach an agreement.
Overall, both players bargain over (WTP-c), thus (InformationRent+BasicRent+
ConsumerSurplus) which is also called welfare. Each player’s part of the welfare depends on
the bargaining outcome. If the buyer bids very high, the seller realizes the larger part. If the
buyer bids very low and the bid surpasses the threshold, she realizes a large part whereas the
seller receives only a small part. However, if the bid is too low, both players receive a payoff
of 0.
Let us assume the following numerical example: The seller’s cost c=50$ and the buyer’s
willingness-to-pay WTP=110$. Thus both player haggle of 110$-50$=60$. Depending on the
bargaining success these 60$ are divided amongst buyer and seller. Table 1 shows the
resulting payoff matrix in absolute values.

Table 17: Payoff matrix for the numerical example c=50$ and WTP=110$

Buyer/Seller HS
Threshold Price=100$

MS

Threshold Price=80$
LS
Threshold Price=60$

HB Bid=60$ 0; 0 0; 0 50$; 10$
MB Bid=80$ 0; 0 30$; 30$ 30$; 30$
LB Bid=100$ 10$; 50$ 10$; 50$ 10$; 50$

Table 2 depicts the payoff for a generalized case. W denotes the welfare (WTP-c) that is
negotiated over, moreover 1>AH>AM>AL>0 and W>0 must hold.

Table 18: General payoff matrix for three strategies

Buyer/Seller HS
High Threshold Price

MS

Medium Threshold Price
LS
Low Threshold Price

HB Low Bid 0; 0 0; 0 W*(AH; 1-AH)
MB Medium Bid 0; 0 W*(AM; 1-AM) W*(AM; 1-AM)
LB High Bid W*(AL; 1-AL) W*(AL; 1-AL) W*(AL; 1-AL)

We conduct now an iterative elimination of weak dominated strategies. In favour of
comprehensibility we use typical values (AL=0.1; AM=0.5; AH=0.7 und W=1) in Table 3.

Table 19: Initial payoff matrix of evaluated game

Buyer/Seller HS
High Threshold Price

MS

Medium Threshold Price
LS
Low Threshold Price

HB Low Bid 0; 0 0; 0 70%; 30%
MB Medium Bid 0; 0 50%; 50% 50%; 50%
LB High Bid 10%; 90% 10%; 90% 10%; 90%

Looking at the payoff matrix, we observe that the seller’s strategy HS is weakly dominated by
MS since he would prefer a payoff of 50% compared to 0 which is the outcome when the
buyer picks strategy MB. The outcome of the remaining strategies stays the same. A seller
would therefore never play strategy HS (high threshold price) since he has better strategies
that result in favorable outcomes. We therefore eliminate this column and result in Table 4.



11th Pacific-Asia Conference on Information Systems

- 321 -

Table 20: Payoff matrix after elimination of strategy HS

Buyer/Seller MS

Medium Threshold Price
LS
Low Threshold Price

HB Low Bid 0; 0 70%; 30%
MB Medium Bid 50%; 50% 50%; 50%
LB High Bid 10%; 90% 10%; 90%

An anticipating buyer would now consider strategy LB (high bid) as unattractive, since
strategy MB strictly dominates strategy LB (payoff 50% or 50% versus 10% or 10% when
choosing strategy LB). Therefore, we eliminate strategy LB which yields Table 5.

Table 21: Payoff matrix after elimination of strategy LB

Buyer/Seller MS

Medium Threshold Price
LS
High Threshold Price

HB Low Bid 0; 0 70%; 30%
MB Medium Bid 50%; 50% 50%; 50%

A seller could in turn now take the buyer’s considerations into account and regards thus
strategy LS as weakly dominant strategy since the seller receives 30% if the buyer plays
strategy HB whereas there is no change (still 50%) if the buyer plays MB.

Table 22: Payoff matrix after elimination of strategy MS

Buyer/Seller LS
Low Threshold Price

HB Low Bid 70%; 30%
MB Medium Bid 50%; 50%

Finally, we obtain a weakly dominant strategy equilibrium in (HB, LS) by eliminating MB

since the buyer can realize 70% by playing HB vs. 50% by playing MB.

The number of strategies can be extended arbitrarily for both, buyer and seller (proof by
induction); we will always observe equilibrium in the upper right corner of our payoff matrix.
This means, that a seller will always set the costs very close to his variable costs. A strategic
buyer would anticipate this and would therefore always place a bid which is based on the
beliefs about the seller’s costs. This means that [LBTP, UBTP] can be reduced to [LBC, UBC]
for the single bid case. The optimal bid can then be determined by the maximization of the
consumer surplus which was exposed in chapter 2.

For Name-Your-Own-Price with n possible bids and neglect of frictional costs we can derive
an equilibrium where the buyer submits (n-1) unacceptable offers, in order to submit a n-th
bid as take-it-or-leave-it-offer (backward induction).

Simulative Approach
Although we already derived equilibrium behavior by applying a game theoretical approach,
we will develop an agent-based simulation since this allows us for comparing these different
methods illustratively.
Fudenberg and Levine (2006) state that it is crucial, to define the context precisely for a valid
market simulation: One such example is the difference between an environment in which a
fixed pair of agents plays each other in every period and environments with a large population
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of roughly similar agents. In the simulation where the same two agents play each other every
period, they may try to influence each other’s future play with their current behavior, so that
the natural benchmark solution concept is that of equilibrium in the repeated game. However,
this kind of equilibrium is not applicable in most environments with a large population of
agents. To clarify this, consider first games with anonymous random matching: In each period
we match all players to play a one-shot simultaneous-move game and at the end of each round
each player observes only the play in his own match. Thereby, the player’s behavior today
will influence the way his current opponent plays tomorrow, but if the population is
sufficiently large then the player is unlikely to be matched with his current opponent or
anyone who has met the current opponent for a long time. This implicates for learning theory
that myopic play is approximately optimal if the population is finite but sufficiently large
(Fudenberg and Levine 2006).

Let us assume m sellers (e.g. Priceline, Expedia and Germanwings or rather single decision
makers in such companies who aim to sell flight tickets) that have heterogeneous variable
costs cm drawn from an interval [LBC, UBC] which is common knowledge. Then we have n
buyers who have heterogeneous valuation wtpn for the airline tickets and try to maximize their
utility by maximizing their expected consumer surplus.

The seller i picks a strategy si,t from a fixed strategy set for the setting of the threshold price
for the round t. At the beginning in t=0 he picks a strategy randomly. In subsequent rounds
t>0 he picks myopically the strategy that generated the highest profit on average in the past
with probability (1-�) and picks a strategy randomly with probability �. This trial-and-error-
coefficient � prevents the agents to stuck to suboptimal strategies and makes them to try
alternatives from time to time.

Each buyer j chooses a seller randomly. She then determines her strategy bj,t for round t. She
also starts with picking a strategy from the strategy set randomly in t=0. Later on in t>0 she
chooses the strategy that yielded the highest consumer surplus on average in the past with
probability � or picks randomly a strategy with probability (1-�). Based on the strategy she
determines her optimal bid and submits it to the paired seller. The negotiation is assumed to
be costly for buyer and seller so that a strategy that resulted in a failed negotiation is less
likely to be chosen compared to a strategy that never was chosen.

If the bid is successful, the buyer realizes consumer surplus=(wtp-bid-negotiation costs) and
the seller realizes profit=(bid-variable costs c-negotiation costs). Otherwise both face a loss in
form of negotiation costs.

In the next round t+1, we reroll wtpn for all buyers n and cm for all sellers m since new
products are up for sale. Due to the very simple reinforcement learning rule we expect,
according to Fudenberg and Levine (2006), that the agents select profitable strategies more
often over time. To speed up the process, we also apply evolutionary game theory where the
buyer and seller with the highest fitness (=most successful in terms of consumer surplus and
profit respectively) breed another agent whereas we eliminate the buyer and the seller with the
lowest fitness.

Table 7 lists the available strategy sets for both types of agents.
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Table 23: Strategy set for bargaining parties

Strategy Description

Seller Strategy 1 Seller sets threshold price to his costs c
Seller Strategy 2 Seller sets threshold price to (LBTP+UBTP)/2
Seller Strategy 3 Seller sets threshold price to UBTP
Seller Strategy 4 Seller sets threshold price to (LBC+UBC)/2
Seller Strategy 5 Seller sets threshold price to UBC
Seller Strategy 6 Seller sets threshold price to LBC=LBTP
Seller Strategy 7 Seller sets threshold price to c+Random(0, UBC)
Buyer Strategy 1 Buyer bids LBTP� best response to Seller Strategy 6
Buyer Strategy 2 Buyer bids (LBTP+UBTP)/2� best response to Seller Strategy 2
Buyer Strategy 3 Buyer bids UBTP� best response to Seller Strategy 3
Buyer Strategy 4 Buyer bids (LBTP+Min(wtp, UBTP))/2 � best bidding strategy according to Spann,

Skiera and Schäfers (2004)
Buyer Strategy 5 Buyer bids (LBc+Min(wtp, UBc))/2 � hypothesized to be the best strategy according

to game theoretical model in chapter 4

We developed an agent-based simulation (see Tesfatsion 2002 for an introduction) under
.NET in C# from the scratch. The agents’ strategy choice was stored in a database for every t
and we visualize the strategy choice probability over time with Excel. We set m=50, n=1000,
�=0.05, �=0.10 and terminate the simulation in t=1000.

Figure 2 depicts a lot of fluctuations at the beginning when the agents start to learn their best
strategies. The seller’s best strategy choice becomes evident quite early: The seller should set
the threshold price to his costs (Seller Strategy 1, blue line) which was also the
recommendation by Terwiesch, Savin and Hann (2005). This is also quite intuitive, since
every bid over the seller’s variable costs c generates surplus for the seller. A threshold price
above the costs would cause bids to be rejected that would have been beneficial and would
thus mean a loss in profit. Further, a threshold price below the costs could cause accepted bids
that would force the seller to sell his products below his costs. This is usually not a profit-
maximizing strategy.
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Figure 10: Probability of Strategy Picking over Time

In contrast, the buyer’s optimal strategy is different for a market in equilibrium and a market
that is still developing: When the market still consists of sellers that apply suboptimal
strategies it is better for the buyer to follow a risk-averse strategy and bid higher which is
implied by Buyer Strategy 4 (green line). Thereby, the buyer increases her probability to
surpass a suboptimal threshold price but she is only able to realize a relative low consumer
surplus. Not until there are enough sellers in the market that play the optimal strategy 1, this is
the preferred strategy and it takes some time for the buyers to learn that Buyer Strategy 5
(yellow line) outperforms Buyer Strategy 4 slightly when enough player follow the optimal
strategy. Nevertheless, the market converges to the predicted equilibrium.

It becomes also evident when we use different interval settings for [LBTP, UBTP] and [LBC,
UBC] that sellers benefit from high uncertainty. The extreme example of LBC=UBC leads to a
take-it-or-leave-it-offer by the seller which is equivalent to the case where he sells his goods
for a fixed price amounting to his costs. In this case Name-Your-Own-Price with a single-bid
policy is not a suitable sales channel for the seller.

Discussion
We have shown with two different rigorous approaches how to solve a relevant problem: We
have demonstrated by using two different methods how we can consider strategic buyer and
seller behavior in a single framework. We conclude that our model is an improvement in
understanding bidding behavior in Name-Your-Own-Price and finally it can be used to give
advices for the seller how to set the threshold price optimally.
Moreover, our model shows that the assessment of the seller’s costs is crucial for the success
of Name-Your-Own-Price. When buyers can asses the seller’s costs accurately and without a
high grade of uncertainty, bids are primarily influenced by the assessment of the seller’s costs.
This leads to suboptimal price discrimination which can then in turn lead to lower profits.

We therefore recommend applying Name-Your-Own-Price in markets with high uncertainty
about the seller’s costs. In real markets we observe that Name-Your-Own-Price is mainly
applied where the buyer can not infer the seller’s costs, e.g. for flights, hotel rooms, rental car
and vacation packages. It is very difficult for prospective buyers to estimate the opportunity
costs for these perishable goods since they can still be sold with a positive unknown
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likelihood in a traditional sales channel. Additional evidence for our hypothesis is the recent
application of NYOP for the sales of software and the sales of virtual items in online games.
Companies in the field of software development like Ashampoo (Ashampoo 2007) apply such
a mechanism in an additional sales channel. Similarly, HabboHotel.com sells virtual items
with NYOP that can be used to personalize in-game chat rooms. In both cases the marginal
costs for an additional unit is approximately 0 since the products can easily be replicated.
Buyers easily overestimate the marginal costs in such cases and NYOP seems then to be a
profitable alternative to posted prices.

In markets with a low grade of uncertainty in terms of seller’s cost, it might be beneficial to
allow multiple bidding. For optimal threshold prices in such a setting we refer to Terwiesch,
Savin and Hann (2005).

From a methodical point of view our work points out two different results: Firstly, simulation
and game theory yield the same outcome. This is not very surprising but secondly it illustrates
the advantages and disadvantages of both methods: Game theory is advantageous to
determine the equilibrium since we can use paper and pencil and we do not have to put much
effort into the development of software. Nevertheless, game theory can not make any
normative statement in terms of dynamics. Based on the insights from game theory we are not
able to determine how and how long the market fluctuates till it reaches its equilibrium.

Vice versa, simulation can be used to visualize this process and its timeline but normally we
have to put more effort into the development of such a simulation system although simulation
frameworks nowadays help to speed up the development. Depending on the intention,
scientists should choose the adequate method. In our eyes, both methods are valid approaches
for solving problems in the domain of Information Systems.

Future research could test our findings in laboratory experiments with induced valuation (see
Smith 1976 and Smith 1982). Especially when buyers do not behave rationally and follow
very risk averse strategies (see e.g. Tversky and Kahneman 1991), it might create untapped
potential for sellers. Further research could also examine how buyers and sellers behave in
Name-Your-Own-Price markets with multiple bid policy. From a methodical point of view it
is very interesting how economics and computer science recently converge in the domain of
game theory and multi-agent systems and we expect a further convergence in near future.
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