
Association for Information Systems
AIS Electronic Library (AISeL)

BLED 2005 Proceedings BLED Proceedings

December 2005

Web Services System Development: A Grounded
Theory Study
Maddalena Sorrentino
State University of Milano

Francesco Virili
State University of Cassino

Follow this and additional works at: http://aisel.aisnet.org/bled2005

This material is brought to you by the BLED Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in BLED 2005
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Sorrentino, Maddalena and Virili, Francesco, "Web Services System Development: A Grounded Theory Study" (2005). BLED 2005
Proceedings. 51.
http://aisel.aisnet.org/bled2005/51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301341263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fbled2005%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2005?utm_source=aisel.aisnet.org%2Fbled2005%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled?utm_source=aisel.aisnet.org%2Fbled2005%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2005?utm_source=aisel.aisnet.org%2Fbled2005%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2005/51?utm_source=aisel.aisnet.org%2Fbled2005%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1

18th Bled eConference
eIntegration in Action

Bled, Slovenia, June 6 - 8, 2005

Web Services System Development:
a Grounded Theory Study

Maddalena Sorrentino

State University of Milano, Italy
maddalena.sorrentino@unimi.it

Francesco Virili

State University of Cassino, Italy
francesco.virili@eco.unicas.it

Abstract

This study in progress presents a grounded theory analysis of a case study in the banking
industry with a view to showing the role of “Web services” technology in information
systems development practices. The case study relates to the implementation in the
Central Europe Bank (a pseudonym) of a new software application based on Web
services technology. In particular, the focus is on the following research question: what
are the peculiarities of the Web services software development process? A tentative
answer to the question is advanced here in the form of a preliminary formulation of a
descriptive theory of the Web services ISD process. In particular, an effort is made to
understand whether the Web services ISD process can be considered as a short-cycle
development process (Baskerville and Pries-Heje, 2004). The process under observation
might be categorised in a preliminary way as a “hybrid” one lying between methodical
and amethodical development processes. Indeed, the data collected and analysed so far
confirm the complexity and richness of the situation taken into consideration, offering
useful insights to complete and further extend both theoretical and empirical analysis.

1. Introduction

Web projects “at Internet time” are often carried out in ways different to those
characterising traditional Information Systems development projects (Baskerville and
Pries-Heje, 2001; 2002; Baskerville et al., 2003). These differences, however, are still far
from being well understood (Baskerville et al., 2002). The first studies on the subject

Maddalena Sorrentino, Francesco Virili

 2

produced different reactions. For example, two divergent views on Web development
were reported in Glass (2003). One maintains that the “golden rules” of classical
Information Systems Development (ISD hereafter) still hold for Web systems
development: there is nothing really new in Web work, nothing that has not already been
experienced in the past (Kautz and Nørbjerg 2003). The opposite position holds that
building Web systems may constitute a new and quite different kind of process, still “in
the making” and partially unknown (Baskerville and Pries-Heje, 2002).

This paper arises out of a study conducted on the implementation of a new software
application in a Swiss bank. We analyse empirically an actual case of Web services
software development and seek to answer the following research question: what are the
peculiarities of the Web services software development process? We would like to offer
an answer to the question in the form of a preliminary formulation of a descriptive theory
of the Web services ISD process. In particular, we hope to establish an understanding of
whether the Web services ISD process under examination can be considered as a short-
cycle development process (Baskerville and Pries-Heje, 2004).

The paper is organised as follows: Section 2 describes the research methodology adopted.
Section 3 is dedicated to the Grounded Theory analysis of the case under observation.
This is discussed in Section 4, where it is compared and contrasted with other recent
research findings. The paper concludes in Section 5 The paper concludes in Section 6
outlining implications for researchers and practitioners, together with occasions for
further research.

2. Research Methodology

Given the exploratory nature of the research question, we opted for an in-depth case study
approach (Yin, 1994). Case studies can achieve a holistic understanding of cultural
systems of action (Feagin, Orum, & Sjoberg, 1990; Tellis, 1997). Moreover, they
facilitate multi-perspectival analyses that consider not just the voices and perspectives of
individual actors but also those of important groups of actors in addition to the interaction
between the various actors (Tellis, 1997). A relationship having been established with the
Central Europe Bank, data was collected by way of semi-structured interviews and
document reviews. A qualitative research approach of this kind is especially appropriate
for the study of complex, dynamic social phenomena that are ‘both context and time
dependent’ (Orlikowski and Baroudi, 1991).

2.1 Site Selection

Given the limited spread of Web services technology in the banking sector at the time the
research was first embarked upon, gaining access to a fully-fledged Web services
development project proved quite difficult. At the time, a major Swiss bank (here referred
to as the “Central Europe Bank”) was engaging in an important initiative to redesign a
part of its front-office application portfolio using Web Services technology (Virili and
Sorrentino, 2003).

The new software application (Cashier Management Systems - CMS hereafter) was
adopted to automate the bank’s retail banking activities. Because its primary business was
private banking (i.e. banking services for affluent individuals, including investment and
portfolio management), the bank did not consider retail banking strategically important.
Consequently, this latter activity was considered an ideal “test-bed” to introduce a new
technology in a real setting, in that, even in case of failure, the bank’s core-business

Web Services System Development: a Grounded Theory Study

 3

activities would have not been affected. Nevertheless, reliability, security and quality of
service were still primary requisites of the new software solution.

The Central Europe Bank’s information system is managed internally by the IT Division.
The development of new retail banking applications was partially outsourced to an
external software developer specialising in financial and retail banking systems. The
project team included both the bank’s and the provider’s specialists.

2.2 Data Collection

The investigation was set up as an exploratory case-study. The interviews took the form
of a series of open-ended questions based largely on the questionnaire developed by
Baskerville and Pries-Heje (2002). Some adaptation was effected with a view to better
focusing on the particular subject under consideration. The interview was structured in
terms of the following 5 headings:

1. information on the interviewee and the organization;

2. software development methods and tools;

3. software applications;

4. teams and people;

5. problems and challenges.

Interviews and field observations were supplemented with internal documents - mainly
technical literature - made available by the bank and by external sources. In the first
round, carried out between September 2003 and February 2004, a total number of 11
interviews were conducted. On average, each interview lasted about two hours. Two
people were interviewed twice. The team leader was present at all the interviews and
actively intervened when necessary.

Five of the nine interviewees were bank employees while four worked for the software
company. Here follows the list of the interviewees.

From the bank:

• the IT executive;

• 2 project managers/functional analysts;

• 2 IS architects and integration managers.

From the software company:

• 3 components of the project team;

• the team leader.

The two researchers conducted together the interviews at the bank site. One of the
researchers took notes of the interviews using a laptop computer while the other took
hand-written notes. Later, the notes taken by the two researchers were re-examined and
compared. The final text of each interview was generated after comparison and
integration of the two different sources.

Maddalena Sorrentino, Francesco Virili

 4

2.3 Data Analysis

The data generated by the interviews was analysed and coded according to the Grounded
Theory Methodology, following in particular the detailed directions given in Strauss and
Corbin (1990). Grounded Theory analysis is essentially based on two activities: open
coding (the identification and labelling of particular concepts in text passages) and axial
coding (the definition of the relationships between concepts). This process was carried
out with the help of a well-known software application for text analysis (Atlas.ti, rel. 4.1
and rel. 5.0).

In an initial phase, after transcription and comparison, all the interviews were printed out
and carefully examined to make sense of the general content and meaning of the texts.
Then, in order to generate some initial concepts - together with their specific properties
and dimensions - and to discover the basic relationships between them, a detailed analysis
was carried out. To this end, the two researchers analysed and discussed line by line and
even word by word a first batch of interviews, taking notes and writing memos along the
lines suggested by Strauss and Corbin (1990) (see, in particular, chapter 5, “Analysis
Through Microscopic Examination of Data”).

The main categories (i.e. families of concepts) generated were:

1) The Web services technology and its properties;

2) The software development process and its main phases/activities;

3) The context: bank organization and its environment, project team and application
software peculiarities.

After about 13 months from the first interviews, open and axial coding had generated a
list of 298 concepts linked by relationships in 13 different networks.

The final outcome of both data collection and data analysis was finally validated together
with the software company team leader.

In the rest of the paper some outcomes from this empirical study are presented.

3. Grounded Theory Analysis

The outcome of the Grounded Theory analysis is essentially constituted by a list of
concepts grouped into categories and subcategories, with multiple hierarchical levels.
During axial coding, categories and concepts are linked by relationships into several
networks of concepts. The core categories generated through the empirical analysis of the
European Central Bank were:

1) The Web services technology and its properties;

2) The software development process and its main phases/activities;

3) The context: bank organization and its environment, project team and application
software peculiarities.

In order to offer a thorough insight into Web services development as experienced in the
ECB case, the role played by all three categories was investigated in detail. Indeed,
besides the three networks of concepts related to the core categories, the researchers built
several additional networks, along with their mutual relationships.

Given space limits, only two of the three core categories will be (partially) discussed in
this paper, i.e. Web services technology and software development process. Moreover,

Web Services System Development: a Grounded Theory Study

 5

within these attention will be directed only to the most important concepts. The
importance of concepts is calculated in terms of so-called “groundedness”, i.e. the
number of citations (the number of times a concept was mentioned during interviews) and
in terms of so-called “density”, i.e. the number of links to other concepts. While no
detailed analysis of the category context is provided, a few considerations about
contextual factors will be offered in section 4.

3.1 Properties of the “Web Services (WS) Technology”

Figure 1 represents what the participants in the Central Europe Bank CMS development
process perceived as some of the key characteristics of the Web services technology
adopted in the project.

The graphic components represent the “Web services technology” in terms of concepts,
properties and relations. Concepts, represented by rectangles, are organized in a hierarchy
signalled by means of the “is a” relationship. Rectangles may also identify properties.
Though both represented here by rectangles, concepts and properties are different in
nature and should not be confused. Properties are attributes belonging to a concept. For
example, “functional decomposition” is a property of “Components”. A property at a
higher hierarchical level is inherited by all the child member concepts: for example
“functional decomposition” belongs to the whole “Components” family (WS, DCOM and
CORBA). Properties are linked to pertaining concepts by the “is property of”
relationship.

is a

Not property of

is a

Not property of

Not property of

Not property of
is property of

is a

is property of

Not property of
is property of

Not property of

is property of

is enabling

is a

is a

is enabling

is a

ISD technologies {3-1}

Microsoft .Net environment {2-7}

Microsoft C# language {1-4} Components {2-7}

CORBA {2-6}

WS {4-11}

DCOM {1-5}

platform--independence {4-5}

extensible data serialization

XML-based {1-5}

extensible data serialization {2-9}

functional decomposition {1-1}

Figure 1: Web services technology: key characteristics in terms of concepts, properties
and relations.

Maddalena Sorrentino, Francesco Virili

 6

In Figure 1 Web services technology shows two peculiar properties: “platform
independence” and “extensible data serialization”; the “is enabling” relationship indicates
the enabling role of the property “XML-based” for the properties of “platform
independence” and of “functional decomposition”: The role of these features for WS-
enabled ISD practices will become evident in the discussion of Figure 2 below.

3.2 Enabling Effects of “WS Technology”: General View

In Figure 2 a first general view is given of the enabling effects that result from the fact
that WS is XML-based. In particular, the upper part of the figure shows once again that
the property “XML-based” enables “platform independence” and “extensible data
serialization”. In order to appreciate the role that these two factors play in the ISD
process, the process as a whole may be divided conceptually - in accordance with
mainstream Software Engineering literature (see, for example, Sommerville 1982, chapter
3, 6th ed. 2000) - into two main categories/macrophases: “system analysis and design” and
“implementation, testing and operation”.

As Figure 2 shows, “platform independence” is mainly associated with system
implementation, testing and operation (see Figure 4 and accompanying discussion) while
“extensible data serialisation” has an enabling effect in relation to “incremental
implementation of the contract”, “simplified versioning” and “reusability”.

is enabling

is enabling

is associated with

is property of

is enabling

is enabling
is enablingis enabling

is property of

is enabling

is enabling

is enablingis enabling

is property of

is enabling

is enabling

is enabling

is enabling

is associated with

is enabling
is enabling

is enabling

is enabling

is enabling

is enabling

is enabling

is enabling

is enabling

is enabling

is enabling

is property of
XML-based {1-5}

Incremental implementation of the
"contract" (WSDL component interface)
{3-7}

Simplified versioning {3-2}~

extensible data serialization {2-9}

incremental implementation {6-5}

specifications "emerging" in use (In vivo)
{3-5}

requirements revision {6-8}

platform--independence {4-5}

WS {4-11}

incremental analysis {2-3}

implementation, testing and operation
{6-27}

reusability {4-1}

Figure 2: The enabling role of Web services in the ISD process: how the key property
“XML-based” affected other properties and activities in the CMS project.

The key property of Figure 2, which is visible in the middle of the diagram, is designated
“Incremental implementation of the contract (WSDL component interface)”. What is a
software contract? Software contracts play an important role in communicating to

Web Services System Development: a Grounded Theory Study

 7

potential consumers (e.g. people using a software component) the functional properties of
the component itself (Crnkovic et al., 2002, p. 36). In particular, “a contract lists the
global constraints that the component will maintain (the invariant). For each operation
within the component, a contract also lists the constraints that must be met by the client
(the pre-condition), and that the component promises to establish in return (the post-
condition). The pre-condition, the invariant and the post-conditions constitute the
specification of a component’s behaviour” (Crnkovic et al., 2002, p. 37).

The possibility offered by WS technology to change a software contract is a fundamental
enabler, as discussed in sections 3.3 and 3.4: System Analysis and Design is affected by
incremental analysis, requirements revision, specifications “emerging” in use (Figure 3);
system implementation is affected by “incremental implementation” (Figure 4).

3.3 How “WS Technology” Affected “System Analysis and Design”

How was the system analysis and design affected by WS technology? Figure 3 shows the
enabling effects of the feature “Incremental implementation of the contract”. The GT
analysis revealed how, among the numerous properties of analysis and design referred to
by the interviewees, the most prominent one (both in terms of groundedness: 6 and
density: 8) was “requirements revision” (Figure 3, top left). The possibility of revising
and changing software requirements originally formulated during system analysis was
explicitly mentioned 6 times by 5 different interviewees (i.e. by everyone in the team
except the system architect and one junior developer who had lower visibility on system
analysis during the project).

is property of

is property of

is property of
is property of

is property of
is associated with

is property of

is associated with

is associated with

is property of

is property of

is enabling

is property of

is enabling

is property of

is property of

is enabling

is associated with

is a

is property of

accurate {1-1}

rigorous {1-1}

ISD lyfecycle {1-5}

analysis and design {2-12}

complete {1-1}

requirements revision {6-8}

specifications "emerging" in use (In vivo)
{3-5}

Multiple platforms affect analysis {2-2}

system integration analysis required
{1-3}

back-end analysis more complex than
front-end {2-1}

traditional analysis still fundamental {2-2}

constraints in design {1-1}

need for a good knowledge of the
problem {1-2}~

traditional analysis

about 1/3 of the initial analysis changed
{1-1}

central role of trust {1-1}

requirements revision easier than C++
{3-1}

user initiative is important {1-2}

Incremental implementation of the
"contract" (WSDL component interface)
{3-7}

incremental analysis {2-3}

Figure 3: The enabling role of Web services in the ISD process: how it affected system
analysis and design in the CMS project.

Maddalena Sorrentino, Francesco Virili

 8

Recall from Figures 1 and 2 that this is due to extensible serialization, an exclusive
property of Web services in the components family. Some of the interviewees had
previous experiences with DCOM and CORBA and explicitly recognized the difference.

Not only ”requirements revision” (top left side of Figure 3), but also new “specifications
emerging in use” (just below in Figure 3) are enabled by Web services, as explicitly
stated 3 times; moreover, 2 interviewees declared that, by using Web services, system
analysis, though still detailed and accurate, is somewhat less deep than before and is
frequently updated during development iterations (incremental analysis): “The phases are
the same, but depth and openness have changed” (one interviewee, functional analyst).

3.4 How “WS technology” Affected “System Implementation, Testing
and Operation”

Figure 4 shows the ISD macrophase of “Implementation, testing and operation” and the
enabling role of the WS technology in it.

is property of

is associated with

is property of

is property of

is part of

is property of

is property of

is property of

is property of

is property of

is part of

is property of

is property of

is property of

is property of

is property of

is property of

is property of

is property of

is associated with

is property of

is property of

is a
is enabling

is associated with

is property of

is property of

is property of

ISD lyfecycle {1-5}

implementation, testing and operation
{6-27}

dealing with inadequate analysis {1-1}

test components separately {4-1}

testing w/o full system {2-1}

testing w/o whole data set {1-1}

debugging faster easier and more
effective than C++ {1-2}

complex decisions about granularity of
components {2-2}

difficult debugging of composite
components {2-2}

co-location of software delelopers {4-1}

host development {1-2} client-side development {1-2}

time windows critical for sw testing {1-1}

coordinating development teams {1-1}

incremental design less needed in the
past {1-1}

incremental design not possible in the
past {1-1}

architects and developers working
together {2-1}

software development requires
architectural knowledge/skills {1-1}

innovation culture and open mind
required {1-1}

user initiative is important {1-2}

unexpected errors depending on the
whole system/architectures {1-1}

incremental development requiring
careful planning and release
management {1-1}

developers and system engineers
working together {1-1}

infrastructure: 1 year and heavy
investments {2-4}

infrastructural challenges {3-1}~

complex management of distributed
components {5-1}

Maintenance

platform--independence {4-5}

incremental implementation {6-5}

Incremental implementation of the
"contract" (WSDL component interface)
{3-7}

Figure 4: The enabling role of Web services in the ISD process: how it affected system
implementation, testing and operation in the CMS project.

Once again, the WS feature “Incremental implementation of the contract” (see top left)
plays an important enabling role, opening the way to incremental development. In the
context represented by Figure 4, incremental development, which was mentioned by all
the software developers and by one functional analyst, constituted the most prominent

Web Services System Development: a Grounded Theory Study

 9

concept (groundedness: 6, density: 5). In incremental development, software coding is
based on small incremental additions, and it is achieved by working in collaboration with
architects and system engineers, paying attention to user needs, cultivating and
stimulating user initiatives all within a culture of innovation and open mindedness. Host
development is significantly different from (and more complex than) client-side
development. The latter is characterised by easier development of the single software
components, which are quite independent from each other and can be developed and
tested separately. On the down side, the overall management of distributed components,
including their orchestration and tracing, poses new problems, including the need to
handle a higher level of infrastructural complexity. According to one functional analyst,
incremental development was not as viable in the past as it is today. Most of these aspects
are associated with the property of “platform independence”, represented in the top right
of the figure.

To sum up, the Grounded Theory analysis of the CMS development project at the Central
Europe Bank shows that Web services technology may act as a key technological enabler
for more agile forms of IS development, even under the Central Europe Bank’s stringent
quality standards. In facts, the research suggests that Web services-based system
development may offer significant opportunities in terms of incremental analysis,
requirements revision, requirements emerging in use and incremental implementation.
This could make Web services, as opposed to other component-based technologies like
DCOM or CORBA, an ideal candidate for continuous redevelopment approaches (Truex,
Baskerville and Klein, 1999). One question naturally arises here: are we dealing with a
new class of software development practices? This topic will be addressed in the
following section.

4. Discussion: Web Services System Development Practices

Does Web services development constitute a new class of software development
practices? This issue may be explored by viewing our findings in the light of the so-called
“short cycle system development” practices as illustrated by Baskerville and Pries-Heje
(2004) in an extensive analysis of several web-based ISD projects in the US and
Denmark. The relevance of such a comparison stems from the fact that, as the authors
suggest, some of these emergent practices may be assuming a significant role in current
IS development projects: “We do not currently understand the essential characteristics of
short cycle systems development that are enduring in actual IS practice. The field
appears to be in a state of transition. It is a transition from a period where furious
change engulfed a new sector of the systems development community (Internet speed
software). It is a transition into a period where certain techniques of short cycle time
development are likely to stabilize and endure.” (Baskerville and Pries-Heje, 2004, p.
239).

Figure 5 depicts the short cycle development process. It is notable how it is strongly
conditioned by a market environment where time pressure is intense. Another important
environmental determinant is lack of experience, something that is natural in the presence
of technical novelty. A consequence of this is that software quality is less important than
completion speed and delivery time. The development process is characterised by agility,
prototyping, parallelisation and release orientation. In this scenario, architecture and
infrastructure inevitably play a critical role.

Maddalena Sorrentino, Francesco Virili

 10

Market environment

Lack of experience

Desperate rush to market

Quality
is negotiable

A changed culture
causing

causing

causing

resulting in

resulting in

resulting
in

New
Software Process

• Parallel development
• Release orientation
• Prototyping
• Criticality of architecture

Figure 5: Short cycle system development process. Adapted from (Baskerville and Pries-
Heje, 2004), Figure 2 and Table 5.

Figure 6 represents the Central Europe Bank Cashier Management System development
process, clearly revealing the presence within it of the main conceptual categories of the
short cycle system development process together with its essential causal structure. In
addition, Figure 6 shows the enabling role that is played by Web services technology (see
Section 3 above).

The inclusion of the “Web services” conceptual category is underlined by the use of a
dotted circle and a dotted link. The causal link is here designated by the label
“influencing” (as opposed to “causing”). It underlines how Web services played a central
role as enabling technology, disclosing new opportunities and affecting in a significant
way the spectrum of choice and action of the participants in the whole process, as
previously shown in Section 3. The colour grey highlights those categories and concepts
that, in view of the findings reported by (Baskerville and Pries-Heje, 2004) and shown
above in Figure 5, constituted distinct features in the Central Europe Bank case.

Web Services System Development: a Grounded Theory Study

 11

Market environment

Lack of experience

Limited focus
on completion speed

Web services
technology

Quality
is not negotiable

Cross-cultural
partnership

in
flu

en
cin

g

influencing

influencing

influencing

resulting in

resulting inresulting
in

target organization(s)

nature of application

Software Process

 • Prototyping
• Release orientation
• Parallel development
• Criticality of architecture

• Auditing
• Milestones
• Compliance with the bank’s ISD standards
• Documentation
• Traditional, goal-driven, in-depth initial analysis

Figure 6: The Central Europe Bank Cashier Management System development process.

The contrasts between the Baskerville and Pries-Heje’s model and the present case study
were as follows:

Market environment: the characteristics of the target organisations and the nature of the
applications were different. In the one case the market was a rather generic one and the
applications were not mission critical. In the bank case, by contrast, what was at issue
was a banking application characterised by marked reliability and security requirements
and destined for a private banking context.

Changed culture: in the one case the software developers’ organizational culture was
characterized by informality, innovation and often undisciplined creativity. In the bank
case there took place an encounter between two distinct and to some extent opposed
cultures: that of the bank, formal, disciplined and rigorous and that of the external
software developer, informal, racy and creative. Despite differences in backgrounds, skill
sets and experience levels, though, both groups sought to proactively solve problems.

Completion speed: in the one case the emphasis was on the “rush to market”, i.e. the need
to rapidly introduce new products and services into the market. In the bank case, by
contrast, the time factor did not have a high priority. Security and reliability of software
applications were the most important factors.

Quality: in the one case quality was of secondary importance in respect of the “rush to
market” factor. In the bank case, quality was not negotiable.

ISD practices: So far as the bank case is concerned, one can notice the presence of the
four essential practices observed by Baskerville and Pries-Heje in short cycle
development and listed above in Figure 5 (i.e. Prototyping, Release orientation, Criticality
of architecture and Parallel development). In addition, however, highlighted in grey, there
appear five additional practices:

• auditing,

Maddalena Sorrentino, Francesco Virili

 12

• milestones,

• compliance with the bank’s ISD standards,

• documentation,

• traditional goal-driven, in-depth initial analysis.

These five practices are usually adopted in traditional ISD contexts.

Figure 7 shows that the Central Europe Bank software development process observed
here does not fit precisely into either of the two categories, i.e. methodical and
amethodical processes (Truex, Baskerville and Travis 2000).

Short-cycle
Software Process

(Baskerville et al. 2004)

• Prototyping
• Release orientation
• Parallel development
• Criticality of architecture

Case study
Software Process

Amethodical
systems

development

Methodical
systems

development

• Prototyping
• Release orientation
• Parallel development
• Criticality of architecture

• Auditing
• Milestones
• Compliance with the bank’s ISD

standards
• Documentation
• Traditional, goal-driven, in-depth

initial analysis

Figure 7: Comparison between the two studies.

In short, what appears to be involved is a process that could be categorised in a
preliminary way as “hybrid”, in that it does not fall precisely and completely into any
predefined category.

5. Conclusions and Implications

The findings of this qualitative study provide an account of the characteristics of the Web
services software development process within the context of the Central Europe Bank. As
with any theory based on a single case, it remains to be determined to what extent the
findings can be generalised to other settings.

The study suggests that Web services-based system development may constitute a new
class of ISD practices. In particular, Web services-based system development offers the
advantage of facilitating incremental analysis, requirements revision, requirements
emerging in use and incremental implementation. In contrast to traditional short-cycle

Web Services System Development: a Grounded Theory Study

 13

development processes, the Central European Bank ISD process analysed here is partially
methodical and partially amethodical. Rather than explain and interpret this from a
narrow technological perspective a wider and more complex view was adopted, in line
with an approach where a combination of factors (see Figure 4) is reputed significantly
more important than choosing the “best” development platform. These factors include:

• market environment (i.e. target organisation and nature of software application,
influencing completion speed and quality requirements);

• organizational learning associated with technical novelty;

• cultural factors emerging during an “outsourced cooperative process” (Sabherwal
and Robey, 1993, p. 568), where the partnership between the bank and the supplier
in the development and commercialisation of the software resulted in a cross
fertilisation of two distinct organisational cultures.

5.1 Research Implications

It would seem that the case of the Central Europe Bank opens up some interesting
research prospects. Although not arising directly out of the research evidence, several
additional considerations can be offered to stimulate further research. These speculations
are not limited to the analysis of software development processes but rather extend more
generally to the action and decision-making processes that characterise complex
organisations.

1) The Central Europe Bank project is characterised by uncertainty both in relation to
means (and not just technological means) and aims (Thompson, 1967). This
uncertainty explains the attempt on the part of the management of the bank to
maintain a) a supervisory role in relation to the design processes through a control
over the architectures and the company standards (even though it declined to realise
the applications directly, due to a lack of competencies and an adequate capacity to
carry out innovation); b) a supervisory role in the implementation processes (EAI
organisation units); and c) a supervisory role over the processes of use, in particular,
in relation to how the end users chose to use and control the services offered.

2) The process that led to the realisation of the CMS system at the Central Europe Bank
throws light on a set of choices and objectives that changed over time in accordance
with an increased awareness of the opportunities for and obstacles to change that
sprung up. We believe that such opportunities and obstacles deserve to be analysed in
detail, along with their business and functional implications. The technology used
was only one of the factors that lay behind this continuous emergence of awareness.

3) The relational conception of power as “reciprocal dependence” (Crozier and
Friedberg, 1977) explains, for example, the numerous processes of negotiation that
took place at various level in the course of the design, implementation and utilisation
phases of the system (e.g. between users and developers; between developers and the
management of the bank etc.). In the future, the interpretation of such phenomena in
the light of a process-oriented perspective will surely act as a great stimulus for
researchers.

5.2 Implications for Practitioners

The implications of this study for the development effort in organizations are important
for management and change agents involved in organizational contexts similar to Central
Europe Bank.

Maddalena Sorrentino, Francesco Virili

 14

1) The case has demonstrated that Web technology and, in particular, that based on
“Web services” is not necessarily synonymous with amethodical and short-cycle
development. Nonetheless, the experience at the Central Europe Bank shows that
Web services can help to render more flexible and incremental “traditional”
development projects in which the initial analysis of the requisites remains
fundamental, the quality is non-negotiable and rigorous methods for the control and
evaluation of results are deemed necessary. The greater level of flexibility, however,
is not without costs: if they are not carefully controlled and managed, the increased
architectural complexity and the rise in infrastructure management costs can
outweigh the benefits.

2) Other problematic consequences of the approach include a high degree of difficulty in
deciding upon the appropriate level of componentisation (“What is in and what is
out”, Levi and Arsanjani, 2002, p. 46). The difficulty of such decisions lies in
achieving a correct balance between small fine-grained components that offer
flexibility and larger coarse-grained components that are easier to manage and
guarantee a certain level of performance.

3) Interactive development has proved of very high value, but at the same time system
management poses some concerns in relation to problem identification, problem
tracking, scalability and balancing of the IT infrastructure.

References

Baskerville, R., and Pries-Heje, J. (2001): Racing the E-Bomb: How the Internet Is
Redefining Information Systems Development Methodology. In B. Fitzgerald
and N. Russo & J. DeGross (Eds.), Realigning Research and Practice in Is
Development: The Social and Organisational Perspective (pp. 49-68). New York:
Kluwer.

Baskerville, R., and Pries-Heje, J. (2002): Information Systems development @ Internet
speed: A new paradigm in the making!. Proceedings of ECIS 2002, Gdansk,
Poland, pp. 282-291.

Baskerville, R., Levine, L., Balasubramanian, R., Pries-Heje, J., and Slaughter, S. (2003):
Is Internet-Speed Software Development Different? IEEE Software,
November/December.

Baskerville, R., Levine, L., Balasubramanian, R., Pries-Heje, J., and Slaughter, S. (2002):
Balancing quality and agility in Internet speed software development.
Proceedings of ICIS 2002, Barcelona, Spain, pp. 859-864.

Baskerville, R., and Pries-Heje, J., (2004): How Internet Software Companies Negotiate
Quality, Information Systems Journal, No. 14, pp. 237-64.

Crnkovic, I., Hnich B., Jonsson, T., and Kiziltan, Z., (2002): Specification,
Implementation, and Deployment of Components, Communications of The
ACM, Vol. 45, No. 10, pp.35-40.

Crozier, M., and Friedberg H., (1977): ”L’acteur et le système”, Editions de Seuil, Paris.

Feagin, J., Orum, A., and Sjoberg, G. (eds.), (1991): “A case for case study”, University
of North Carolina Press, Chapel Hill (NC).

Glass, R. (2003): A Mugwump’s-Eye View of Web Work: Choosing a point of entry into
a contemporary software development debate. Communications of the ACM,
46(8), pp. 21-23.

Web Services System Development: a Grounded Theory Study

 15

Kautz, K. and Nørbjerg, J., (2003): Persistent Problems in Information Systems
Development: The Case of the World Wide Web, in C. Ciborra et. al. (eds.):
Proceedings of ECIS 2003, Naples, Italy, 19-21 June, 2003.

Levi, K. and Arsanjani, A., (2002): A Goal-driven Approach to Enterprise Component
Identification and Specification, Communications of the ACM, Vol. 45, No. 10,
pp. 45-52.

Orlikowski, W., and Baroudi, J., (1991): Studying information technology in
organizations: research approaches and assumptions. Information Systems
Research, Vol. 2, No.1, pp. 1-28.

Sabherwal, R., and Robey D., (1993): An empirical taxonomy of implementation
processes based on sequences of events in information systems development,
Organization Science, Vol. 4, No. 4, pp. 548-576.

Sommerville, I. (1982): Software Engineering, Addison Wesley, NY (6th edition: 2000).

Strauss, A. L., and Corbin, J., (1990): “Basics of Qualitative Research: Grounded Theory
Procedures and Techniques”. Sage Publications, NY.

Tellis, W., (1997): Introduction to case study, The Qualitative Report [On-line serial],
Vol. 3, No. 2, http://www.nova.edu/ssss/QR/QR3-2/tellis1.html.

Thompson, J. D., (1967): “Organizations in action”, Mc Graw Hill, NY.

Truex, D., Baskerville, R., and Klein, H. K. (1999): Growing Systems in an Emergent
Organization. Communications of the ACM, Vol. 42, No. 8, pp. 117-123.

Truex, D., Baskerville, R., and Travis, J. (2000). Amethodical Systems Development:
The Deferred Meaning of Systems Development Methods. Accounting,
Management and Information Technology, 10, pp. 53-79.

Vessey, I., and Glass, R., (1998): Strong vs. Weak Approaches to Systems Development.
Communications of the ACM, Vol. 41, No. 4, pp. 99-102.

Virili, F., and Sorrentino, M. (2004): Making stable systems grow with web services: a
case study; in Proceedings of the IFIP WG 8.2 Organizations and Society in
Information Systems (OASIS) Workshop, Seattle (USA), December 13-14, 2003.

Ye, F., and Agarwal, R., (2003): Proceedings of the International Conference on
Information Systems (ICIS), “Strategic information technology partnerships in
outsourcing as a distinctive source of information technology value: a social
capital perspective”, Seattle 2003, pp. 304-15.

Yin, R., (1994): “Case study research. Design and Methods”, Sage Publications,
Thousand Oaks.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2005

	Web Services System Development: A Grounded Theory Study
	Maddalena Sorrentino
	Francesco Virili
	Recommended Citation

	Web Services System Development: a Grounded Theory Study

