View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

Pacific Asia Conference on Information Systems

PACIS 1993 Proceedings (PACIS)

December 1993

Efhcient Lattice Operations Using N-grid
Encoding

Wen-Gong Shieh
Chinese Culture University

Follow this and additional works at: http://aisel.aisnet.org/pacis1993

Recommended Citation

Shieh, Wen-Gong, "Efficient Lattice Operations Using N-grid Encoding" (1993). PACIS 1993 Proceedings. 49.
http://aisel.aisnet.org/pacis1993/49

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 1993 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

https://core.ac.uk/display/301341072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis1993%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1993?utm_source=aisel.aisnet.org%2Fpacis1993%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1993%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis1993%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1993?utm_source=aisel.aisnet.org%2Fpacis1993%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis1993/49?utm_source=aisel.aisnet.org%2Fpacis1993%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1993 Pan Pacific Conference on Information Systems

Efficient Lattice Operations Using N-grid Encoding

Wen-Gong Shich

Department of Information Management
Chinese Culture University
55 Hwa Kang Rd.,
Yang Ming Shan,
Tatpei, Taiwan, R.O.C.
Tel: (02)861-0511 Ext. 539

Abstract

To support semanlic struclures organized as partial orders (e.g.
inheritance hierarchies or class hierarchies), a compilation-lime
partial order encoding technique, called compact encoding with
modulation {CEM for short), has previously been developed to
enable efficient compuiations of greatest lower bound (e.g.
grealest common subclass) and least upper bound (e.g. least
common superclass) al run time. Since most practical semantic
structures can be organized as partial orders of small number of
dimensions, this paper examines a different partial order
encoding lechnique, called N-grid encoding. For partial orders
of small dimensionality, the N-grid encoding is shown 1o
oulperform CEM for most practical semantic structures of
extremely large size. Besides, the codes of a partial order using
N-grid eneoding can be modified efficiently if the partial order is
changed dynamically al run lime, provided that the changes are
top-down relinements. That is, an element in the partial order is
expanded 1o another partially ordered sel of elements. This is
another advantage of the N-grid encoding.

1. Introduction

This paper is motivated by the work of H. Ait-Kaci et.al.
FAi89] where they observe that efficient run ime computations
of greatest lower bound (GLB) and least upper bound (LUB) in
a partial order are imporiant 1o the run time performance of a
system with semantic struciures of extremely large size. For
example, {inding GLB and LUB corresponds o finding the
greatest common subclass and the least common superclass in a
class hierarchy of an object-orienied system. They propose a
compilation-lime partial order encoding lechnigue using compact
binary code words 1o support efficient run time computations.
To facilitate a trade-off between time and space for large partial
orders, a code modulation (grouping) technique is introduced
inlo their encoding. We call such an encoding compact encoding
with modulation (CEM for sheri) _throughout this paper. The
code moedulation lechmique reduces the code size of a partial

order from O(N?%) (using only compact binary code words) 1o
O(N log Ny (using CEM) , provided that the partial order can be
perfectly modulated [Ait89]. This, of course, has a run time
penalty [Ait89].

In this paper, based on our observation that mosi
semantic siruciures have very small number of dimensions in
terms of partial orders, we append necessary dala structures and
algorithms to the partial order encoding lechnique in [ShieS0],
called N-grid encoding, to be another allernative 1o support
efficient latlice operations, Ii should be noted that we need an
alternative because “perfect” modulation may nol be possible in
CEM [Ai89]. For low-dimension partial orders, especially two-
dimensional, the N-grid encoding is shown to outperform CEM
for most practical semantic siructures of extremely large size.
Besides, the codes of a partial order using N-grid encoding can
be modified efficientty if the partial order 1s changed dynamically
al run time, provided that the changes are {op-down refinements.
That is, an element in the partial order is expanded to another
partially ordered set of elements. This is another advantage of
the N-grid encoding.

— 3275 —

1.1 Assumptions and Background

Without loss of generality, we assume thal all partial
orders involved in our encoding have unique GLB and LUB for
any lwo elements (i.e. we consider only lattices). For formal
justification of this assumption, see [Ait89].

A partial order R on a non-empty set of elements S is
a reflexive, transitive, and anli-symmetric relationship defined
on elements of S. For example, consider 8={1,2,3,4,6,9}, and

the relationship D, where for m, n € 8, m D n, il m divides n,
then D is a partial order on S. Usually, the relationship is
represenled as m<n and the partial order is represented by an
updirected graph called a Hasse disgram as shown in the
following example for the partial order D.

N
\/

'l

Elements m and n of S are comparable if either m < n or
n < m, otherwise, they are nol comparable. In the above
example, | and 3, as well as 1 and 9 are comparable; but 2 and 3

are not. A member]l ES (u € 8) is a lower (upper)

bound of a subset Eof §,iff l <x (x < v) forall x & E. For
example, in the above Hasse diagram, element 6 is a upper
bound of elements 2 and 3. Similarly, element 1 is a lower
bound of {2,3}. The partial order R on S is called a lattice, iff

for every pair a, b € 8, a greatest lower bound (GLB) and a
least upper bound (LUBY} exists fer {a,b}.

A partial order T is a total order if every pair of
elements in T are comparable. A partial order may be converted
(nonuniquely) into a total order uwsing topological sort. For
example, T1=(1, 3,5, 2,6, 49 and To= (1, 2, 4, 3,6, 9) are
twa possible total orders for the partial order D given earlier.
Note that some new relationships among the elements of S are
created while obtaining the total order. The original partial order
may be reconstructed using a realizer, which is defined as the
set of total orders whose intersection yields the original partial
order [Dush41]. The cardinality of the smallest realizer for a
partial order R is known as the dimension, dim(R), of the
partial order. In the above example, the realizer for the partial
order D is {T1, To} and the dimension of D is 2. In this paper,
the notation n-POS is used to refer to an n-dimension partial
order.

A partial order P on G can be refined by replacing an

element v € G by ancther partial order Q on H, leaving a new

partial order R on {G-u} U H. We call such a change to a
partial crder a top-down refinement on the partial order. The
refinement is defined as follows [Sand88],

R = {(xx) 1 (xx") €P forall xx' & G-{u}}
U {xyi(xweEP foralxe G-{u}, yEH}
U iy (ux)EP forall x € G-{u},yEH}
U {(v.¥) I (xy) €Q Jforall (y.y) € H}

For the above reflinement, it is known that dim{R)=
max{dim(F}, dim(Q)} [Hiru51]. An example of refinement of
the previous partial order D using the partial order Q is shown
below. Noie that the element 3 in I is expanded to (or replaced
by) the partial order (, resulting the new partial order D", ’

A Y
o

1.2. A Brief Review of the N-grid Encoding

Q: D

b

The N-grid encoding in thhe N-grid model represents an
n-POS by an n-dimension vector space (known as an N-grid
[ShieS0T). Each element of an n'grid will be represented by an
n:tuplesof integers: x =(X], X2, ..., Xp). For any two elements
X = (X1, X2, ..., Xg) and " ¥ = (1, ¥2, .., ¥p) X<y (¥
dominates X} iff x1<y1, X2<y9, ..., Xy<¥p. ‘

The following example illustrates the n-grid concept using

a 2-dimension partial order (2-POS) and a 2-grid Tepresentation
(see Figure 1). In Figure 1, the members of P are A, B, C, D,
E and their 2-tuplesare. A=(1,1), B=(2,4), C=(3.3), D=(4,2),
and B=(3,5). P is a 2-POS, since the smallest realizer of P
consists of two total orders, Ty = (A,B,C,D.E) and Ta =
(AD.C.B.E). The vector representation is obtained using Tq
for selecting the first integer and Ty for the second integer of the
2-maple. Given a size d realizer of a d-dimension partia] order,
the time complexity of encoding the partial order on an N-grid
(N=d) i$ in O(nd) where n is the number of elerhents in the
partial order [ShieS0]. For detailed algorithms regarding N-grid
‘encoding, see [Shie90], : ‘
P S
¢ N

N\

Figure 1. P on & z-grid.

- IL GLB and LUB Using N-grid Encoding

) For simplicity, we will first use two-dimension partial
" orders in this section to demonstrate necessary data structures
and algorithing for GLB and LUB operations using N-grid (i.e.
2-grid) encoding. We assume in the [ollowing discussions that
the 2-grid encoding of each element in each partial order is
given. .

2.1. Data Structures and Algorithms for 2-POS’

: . For example, to support efficient GLB and LUB

operations, the 2-POS in Figure 2 uses three arrays: Dim32,
LOW1 and UP1. These armays are created as follows, First,
sort all elements in the 2-POS into a list in ascending order based
on their dimension | entries. We will use E(i) to denote the j-th
element in the sorted list; Fiitries of dimension 1 are then used
as indices of the three arrays. Each array element Dim?2[i] stores
the dimension 2 edtry of E(i). Each array element LOW1[i]

1993 Pan Pacific Conference on Information Systems

stores some value J, a pointer, such that E(j) is a lower bound of
E(0), and E(j) has the largest dimension | entry among ali B(iY's
tower bounds. If E(i) has no lower bound, then LOWI]i] stores
zero. Similarly, Each array element UPIfi] stores some value I
a pointer, such that E(j) is an upper bound of E(i) and E(j) has
the smallest dimension | entry among all E(i)’s vpper bounds.
If E(i) has no upper bound, then UPI[i] stores zero. The
[ollowing algorithms create the UP1 array and the LOWI array.
Since each element E(i) requires exactly vne PUSH and one
POP in each of the following two algorithms, the time
complexity of each algorithm is in O(n). (Note thal the TOP
[unction returns the top element in the stack)

Create-UP1 Algorithmi:
Input: Array Dim2 and n (the number of elements).
Qutput: Aray UPL
begin
PUSH(1);
fori:=2tondo
while . STACK = empty
~ and Dim2[TOP]<Dim2[i] do
i TPL[TOP] :=i;
POP(STACK)
endwhile;
PUSH(i)
endfor,
while STACK = empty do
UPI[TOPF] := 0,
POP(STACK)
endwhile
end; .

Create-LOW1 Algorithm:

Input: Amay Dim2 and n (the number of elements).

Output: Armay LOWL.

begin
‘PUSH(n);
for i:=n-1 downto 1 do

while STACK = empty
and Dim2[TOP>-Dim2fi] do

LOWI[TOP] =1i;

. POP(STACK)-
endwhile;
PUSH(i)

endfor, . o

while STACK = emipty do

" LOWI[TOP] := 0,
POP(STACK)

endwhile .

end;

Dim. 2

1993 Pan Pacific Conference on Information Systems

» Dim. 1

12 14 16

uP 2 3 41616 7 1615610111616 14 16 16 D pointers to upper bound
LOW1 0 1 2 2 2 2 6 6 1 91010 2 131315 pointers to lower bound

Bim2 1 9 131514101211 2 6 8 7 3 5 4 16 anires of Dim. 2

Index 1 2 3 4 5 6 7 8 9 10111213 141516 entries of Dim. 1
OM | ABJCDNKETFLGH T elements

Figure 2. Data Structures {or Finding GLB and LUB.

.Observe that, in the above 2-grid (Figure 2), E is in the left

upper comer of G. Based on the definition of N-grid encoding
{i.e. for any iwo elements x = {x{, X3, .., Xp) and y = (¥, ¥2.
s Yp)h X € ¥ (y dominates x) iff x] <y}, X2 <¥y2, ... Xp <
¥n). if we scan [rom right to lell (following dimension 1)
starting al E, and stop at the {irst element with dimension 2 entry
less than that of G (i.e. the clament N), we will always find a
common lower bound of G and E (because E's dimension [
entry is smaller than that of G, and G's dimension 2 entry is
smaller than that of E). Since G and E is assumed to have
unique GLB, and N is the lirst element on the left of E such that
its dimension 2 entry is smaller than G’s dimension 2 entry, N
must be the GLB of G and E. Thal is, the dimension 1 entries
of all other common lower bounds of G and E must be less than
that of N due 1o the scanning order. Besides N, if any other
common lower bound of G and E had dimension 2 entry greater
than N’s dimension 2 eniry, it would be incomparable with N,
and thus G and E would not have unique GLB, which would be
a violation of the assumption. However, using this idea, 1o find
GLB of D and E, we need to scan D,CJJBALM, and O,
almost half of the whole partial order. The purpose of the above
data structure LOW | 15 to skip those elements between D and O
that have dimension 2 entries higher than that of D. This
guaraniees that each element scanned is a lower bound of D.
Thus, following the pointers in LOW1, we need to scan only
D,J.M and O. Such a scanning path is guaranieed to be part of a
vertical path in the Hasse diagram of the partial order because the
suceessor of each element in the scanning path is a lower bound
of the element. Since LUB has symmetric behavior on the N-
grid (i.e. 2-grid in the example) using UPl, we can now
summarize the algorithms for GLB and LLUB operations using
N-grid encoding for 2-POS as follows.

GLB Algorithm:
Input: X and Y encoded as (x.%9) and (y1.ye) in a 2-grid

respectively .
Quiput: Z=GLB(X,Y) encoded as (z],25} in a 2-grid.
begin

=X

if xy<yq then
while Dim2[i] » y; do i:= LOWI[i] endwhile
else 1=y
while Dim2[i] > x5 do i:= LOWI[i] endwhile
endil,
return {1,Dim2[i])
end;

LUB Algorithm:
Inpu: X and Y enceded as (xq,%p) and {¥1.y2) in a 2-grid

respeclively .
Output: Z=LUB(X,Y) encoded as (z,z5) in a 2-grid.
begin

=Xy

if xy<yy then
while Dim2[i] < y5 do i:= UPL[i] endwhile
else =y,
while Dim2[i] < x2 do i:= UP1[i] endwhile
endif;
retum (i,Dim2[il)
end;

— 277 —

2.2. Dynamie Top-down Refinement on Partial
Orders

In this section, we demonstraié the necessary changes

the data structures using N-grid” encoding -at run lime if top- -

down refinemenis on partial orders are performed. Again, we
only show examples using 2-dimension partial orders. In
Figure 3, a partiat order P is encoded on an N-grid (N=2) with
reserved quota. For example, the reserved quota ol element C is
10 through 14 in dimension i, and 8 through 12 in dimension 2,

Observe that each element whose 2-tuple is of the lorm; (d1,d2), .

10=d1=<14, 8=d2=<12, using 2-grid encoding, has the same

A

-~ Dim. 2
20

E

18 — i

-] . ot /
12_ I . /

— /(z
8 i /

II (/ -

o T /:/_./

-]

4 I Bim. 1

T T L T T T TT1T T

1] 4] 12 16 2(_)

Figure 3. Pina 2-grid with reserved quota.

1993 Pan Pacific Conference on Information Systems

relationship with A B.DE as C dues. Expanding element C into
another parlial order Q (i.e. refinement of C in P into Q) is
possible il Q can be encoded using the reserved-quota of C.
That is, each element of Q-can be encoded by a distincl 2-tuple
of the Torm: (d1.d2), 10=d1<14, 8=<d2=<12. It should be noted

_that such a refinement will not change the 2-tuples of other

elemeiits (i.e. the 2-wples of A,B.D, and E remain the same).

) As an example, the partial order P in Figure 3 is refined
by expanding the element C into a partial order Q as shown in
Figure 4. Figure 5 demonstrates the necessary changes (o the
data structures belore and after the reflinement of C in P inlo Q.
Since lhe algorithms for making these changes are easy Lo
construcl, we omit the algorithms in this paper. ’

N o
- Dim. 2
- f h
20
E
15 = — 7 []
] f
12 71 B
= . I
] / A
] h
8 7 ,
/ i i
4 A] ___/
: | 'I Dim, 1
~
0 T 's}_ Th F LI I A

Figure 4. Refinement of C in P info Q,

Data Structures of P before Refinement:

UM 6 i9 ig 0 pointers to upper bound
Low1 0 3 3 - 15 pointers to lower bound
" Dim2. -3 15 6 19" entries of Dim. 2
Index 1 2 3 4 5§ 87 8 91011121314 1515817. 18 19 entrles of Dim. 1
A B o - “E - elements
Data Structures of Q
U 110430 0
SLOW1 010 0 12 12
Dim2 1012 8 11 9
Index 10 11 12 13 14
i i
Data Structures of P after Refinement:
UP1 6 18 111913197919 . 0 poiters to upper bound
LOW1 0 3 310 31212 3 . 15 pointers to lower bound
Dim2 3 15 1012 8 411 9 6 ‘19 - entries of Bim. 2
Index 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 1718 19 entries of Dim. 1 Lo
A =] if g hD E elemeants

Figure 5. Data Structures -- Refinement of C in P into Q.

The data struetures (or partial order Q is given based on
the reserved quota and the assumption that only the elements of
Q are considered. After the relinement i1s performed, two steps
arc Laken to change the dala structures of P. Step 1, the contents
of the dala structures with indiees 1{) through 14 (nole that these
indices corresponds (o the reserved quota of C) are modified.
That is, copy the conlents of data structures of Q inlo
corresponding positions in the data structures of P. Step 2, the
0's in the newly copied portion of the data structures of P must
be modified. That is, UPI[11], UPI[13], UPI[14],
LOWIF10], and LOWI1][12] must be changed. We use lialic
and bold {ormal to highlight the new values in those postlions.
For 0's in UP1, we modifly them ino 19°s, where 19 is the
original vahe in UP1|13] before the refinemenl. Nole that i3 is
the index corresponding 10 the expended element C. Similarly,
for ’s in LOWI1, we change them into 3’s where 3 ig the
criginal value in LOWI[I3]. These lwo sleps complete the
necessary changes lo the dala structures of P after the
relinemen.

2.3. Evaluation

Let’s consider first the total number of bits required 1o
encode a partial order. We have the space required [or encoding
as lollows.

Lowest dimension | Highest dimension

#hits{N-grid encoding): 1 logy n | (nzf'-l)[logs a]

#bits{compact encading): n{n-1} | o[lug2 n]

Next, let’s consider the space requirement of CEM and
N-grid encoding to support efficient lattice operations. With
modulation, the total number of bits reguired for CEM is at least
n(logen)n(u L0geh) (the Jower bound exists in partial orders that
are perfectly modulated) [Ait89]. With the dala structures
needed to support GLB and LUB operations, based on
Hirugachi’s theorem [Hiru55,Boga73], the total number of bils
required is in 0(112 log n) for N-grid enceding, which is worse
than that of CEM. However, when the dimension d is small and
fixed, especially when d=2 (i.e. two-dimension), the N-grid
encoding (where N=d=2) is compatible with CEM (i.e. in O(n
log n)).

Now, consider the time required to find GLB between
elements X and Y. The lime required {or compact encoding
withoul modulation is proporiional to the lenglh of ithe compact
code. With modulation (assuming that the partial order is
perfectly modulated), the time complexity using CEM is in Oflog
n} [Ait89].

The time required for GLB using N-grid encoding is
constant in case of comparable X and Y when the dimension of
the encoded partial order is fixed (e.g. 2 in a 2-POS). In case of
incomparable X and Y, the time required is at most proportional
to the longest vertical path in the Hasse diagram of the partial
order. The longest verlical path in the Hasse diagram is loggn if

the Hasse diagram is a complete binary iree, and is about F‘l(n),
where F(n)=n!, if the Hasse diagram is a tree of exponential
nature (the branching factor at depth D was D+1). Therefore,
the performance for incomparable X and Y is better than O(log
n) in this case.

As mentioned in |Ait89], in practice, the Hasse diagrams
of the pariial orders we have encountered are generally trees of
exponeniial nature with extra links among nodes. Therefore, the
N-grid encoding outperforms CEM in mosi praclical semantic
struciures of extremely large size for GLB operations (needs
only about F ‘l(n) steps, where F{n)=n!). Besides, since the
performance for both GLB and LUB are the same using N-grid
encoding, and GLB operations are more efficient than LUB
operations using CEM [Ai89], we can conclude thal N-grid
encoding outperforms CEM in mosl practical semantic structures
of extremely large size for both GLB and LUB operations using
compatible space, compared to the time and space used in CEM.

1993 Pan Pacific Conference on Information Systems

11I. Conclusions

In conclusion, we have presented a compilation-lime
partial order cneoding technique, the N-grid encoding, and its
necessary data structures and algorithms 1o support efficient run
lime GLB and LUB operations. The size of the space used in
the encoding and dala structures is aceeptable and compatible
wilh that of CEM, especially for two- (or low-) dimension
partial orders (i.e. latlices).

The major advanlages of our approach, compared to
CEM, inciude (1) using N-grid encoding, the GLB and LUB
operations are more efficient than using CEM for most practical
semanlic structures of extremely large size, (2) the space
requirement is compatible with that of CEM (and is better than
that of CEM in the case of low-dimension partial orders that are
not perfectly modulated), and (3) efficient run time changes o
partial orders and ils corresponding data structlures are possible
using N-grid encoding. Since some partial orders cannot be
perfectly modulated, we believe that our approach provides a
valuable allernative, other than CEM, 1o support efficient lattice
operations using acceptable space. Besides, generalized
algorithms (nol presented in this paper) also suggests an efficient
way of information organizalion and retrieval.

IV. REFERENCES

jAi189] H. Ait-Kaci, R. Boyer, P. Lincoln and R. Nasr.

“Bfficient Implementation of Lattice Operations”, ACM

Transactions on Programming Languages and
Systems, vol. 11, No. 1, January 1989, pp. 115-146.

[Boga73] K. Bogart and W. Trottér. “Maximal dimensional
partially ordered sets”, I, Discrete Math. 5 (1973), pp.
21-32.

[Dush41] B. Dushnik and EW. Miller. “Partially ordered sets”,
Amer. J. Math. 63, (1941), pp. 600-610.

[Hiru51] T. Hirugachi. On the dimension of partially ordered
sets. Science Rep. Kanazawa Univ. Vol. 1, 1951, pp.
77-94.

|Hiru55) T. Hirugachi. On the dimension of orders. Science
Rep. Kanazawa Univ. Vol. 4, 1955, pp. 1-20.

[Sand88} Ravinderpal S. Sandhu. “The NTree: A Two

Dimension Pariial Order for Proteclion Groups”, ACM
Transactions on Computer Systems, Vol. 6, No. 2,

May 1988, pp.197-222.
[ShieS0] W.-G. Shieh, B.P. Weems and K. Kavi. “An N-grid

Model for Group Authorization”, Sixth Annual

Computer Security Applications Conference, Tucson,
Arizona, Dec. 3-7, 1990.

— 279 —

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 1993

	Efficient Lattice Operations Using N-grid Encoding
	Wen-Gong Shieh
	Recommended Citation

	tmp.1219244626.pdf.TjsE4

