
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2000 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

December 2000

Shortcomings in Software Development Project
Management: An Analysis of New Zealand Cases
John Paynter
University of Auckland

Daud Ahmed
University of Auckland

Follow this and additional works at: http://aisel.aisnet.org/pacis2000

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Paynter, John and Ahmed, Daud, "Shortcomings in Software Development Project Management: An Analysis of New Zealand Cases"
(2000). PACIS 2000 Proceedings. 69.
http://aisel.aisnet.org/pacis2000/69

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301341007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2000%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2000?utm_source=aisel.aisnet.org%2Fpacis2000%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2000%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2000%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2000?utm_source=aisel.aisnet.org%2Fpacis2000%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2000/69?utm_source=aisel.aisnet.org%2Fpacis2000%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

� ����

���������	
���	������������������	������������	�
���	����	��	���������

���������	��������

John Paynter, M. Daud Ahmed
Department of Management Science and Information Systems

University of Auckland
j.paynter@ auckland.ac.nz�

���������

��������	
���������	��������	�������������������	�����������	����	�	������������������	��

���� 	�������	����������	� ����	����������������������������
����������������������� ���

�������� �����
������������ �!�����"������#�������������� ���� 	����� ������������������������

���	���� 	�� �������� 	��	� ���� ��� �����	�� !���� �������� ������� ��� ���������� ��������� �������

����	�����������������������������$��
����������	�������������	���$�����	��	���������	�

���������%��&����������	����	�������������������������������������	��������	�����	�	��	������&��

��� 	����	�� 	�� �����	�� '�����	� $�������	�� ������ 	�� ��� ���������� ���� ������������	������ ����

��$��
������

�

��������: IT failure, project management, planning
�

	
�������������

�

The failure of the Police Integrated National Crime Information System (INCIS) project is the
most publicised one of many involving budget blowouts in the public sector (Jackson, 1999).
Others include: the National Library’s NDIS project and the Land Information New Zealand
(LINZ) project. The private sector is not immune from similar failures, although they tend to be
less well publicised. The INCIS project is reported to have cost between $100-200 million and
Telecom’s Customer Sales and Service project (CS&S or "������) is thought to be of a similar
magnitude. The information in this paper is taken from internal and external project reports as
well as interviews of some of those involved.

Software projects are inherently complex, and complex projects cannot succeed without
careful planning. A well-planned project can be actively controlled, to do so you must ensure
that progress is visible. Software projects are also inherently risky and they cannot succeed
without active risk management (McConnel, 1998).� Software Project management (SPM) is
the first layer of the software engineering process (Pressman, 1994). As software is intangible,
it is difficult to predict with certainty when a particular software process is likely to cause
development problems. Software development projects are plagued by technical and
managerial problems. More than 30% of all software projects in the United States are never
completed, and of those completed, only 9-16% meet their time and budget projections. Over
half of software projects exceed budget by 189% (anon, 1997).

Software development projects are different from other engineering projects. The success of a
software project depends on how the project is managed. This paper focuses on the
shortcomings in different project management activities and discusses possible corrective
measures for these. Those covered are transfer of experience from previous projects, change of
scope, planning (including estimation, scheduling, risk management, project control, progress
monitoring and reviews) human resources management and teamwork, project managers and
consultants, project visibility, work environment, user involvement and management tools.
�

� ����

�
�������������������

The project management body of knowledge defines project management as the application of
knowledge, skills, tools and techniques to project activities in order to meet or exceed
stakeholders' need and expectation from a project. Metcalf (1991) opined that project
management embraces four basic disciplines: methodology, or procedures (15%), personnel
management (50%), communications (25%), and planning techniques (10%). Some projects
never seem to terminate . . . rather, they become like Moses, condemned to wander till the end
of their days without seeing the promised land (Keider, 1974). While it is difficult to obtain
statistics on the actual frequency of IT failures, various sources suggest that at least half of all
IT projects are not as successful as we would like them to be (Gladden, 1982; Lyytinen and
Hirschheim, 1987). While there are undoubtedly many different modes of IT failure, one
pattern of failure that has been observed but seldom studied is the IT project that seems to take
on a life of its own, "continuing to absorb valuable resources without ever reaching its
objective” (Keider, 1974; Lyytinen and Hirschheim, 1987; Meredith, 1988). Eventually, these
projects are abandoned (or significantly redirected), but the cost of having funded them can
represent a tremendous waste of organisational resources (Keider, 1974).

Major modes of software project failure are late delivery or never completed, poor reliability,
cost overrun and user dissatisfaction for exhibiting poor performance characteristics i.e. failing
to meet the requirements (Brooks, 1975). The actual costs of software projects often greatly
exceed the estimated cost. Other projects are completed within time and cost but do not provide
full user satisfaction. The skillful integration of software technology, economics and human
relations in the specific context of a software project is not easy. Poor strategic management
and related human factors are the major causes of failure (Rodrigues and Williams, 1997). The
main areas of software project management shortcoming that lead to software project failure
are discussed below. �
�

	
���

Effective project management depends on the use of experience from previous projects by both
the project manager and the organisation. Efficient transfer of knowledge between projects is
complex as each features unique characteristics. The management team may encounter
problems in distinguishing the similarities and dissimilarities from among projects.
Management techniques derived from small-scale projects may not scale up to large systems
development (Sommerville, 1995). The software project manager needs to satisfy a variety of
constituencies yet theory indicates good software project management should simultaneously
be simple, specific, and general. A good theory should be able to explain why the project
encountered problems and prescribe improved approaches that would have avoided the
problem (Boehm and Ross, 1989). Failure to learn from mistakes has been a major obstacle to
improving software project management (Abdel-Hamid and Madnick, 1990). �
�

�

�

	
	�����������������

A statement of software scope must be bounded (Pressman, 1994). Software scope describes
function, performance, constraints, interfaces and reliability. Scope is related to business
objectives and strategies of the organisation. Software project planning starts after bounding
the scope. Due to the tendency for developers to add to the specifications, feature-creep, it is

� ����

equally important to specify what is outside the scope for a project (stage). The development
time for a large software project may be many years; during that period the organisation may
change the project objectives and requirements. Management may decide to stop the software
development or to change the project to accommodate the changes to the organisation
(Sommerville, 1995).
�

	
 ��!�������

�

Planning is a management activity that deals with measurement techniques and estimation
methods with risk analysis, scheduling and other decision-making activities. A Software
Project Management Plan (IEEE 1058.1, 1987) describes objectives and sets constraints
detailing project organisation, risk analysis, resource requirements, tasks, project schedule and
monitoring and reporting mechanisms (Pressman, 1994; Sommerville, 1995). Software
projects generally are staffed with technical people, who prefer technical work rather than
planning. Many technical managers lack adequate training in technical management, so depend
mostly on planning tools without the proper knowledge of planning. Failure to properly plan is
one of the most critical mistakes a project manager can make. Thus the average project spends
about 80 percent of its time on unplanned rework and fixing mistakes that were made earlier in
the project, leading McConnel (1998) to argue that success in software development depends
on making a carefully planned series of mistakes in order to avoid making unplanned large
mistakes. Early planning is necessary to avoid doing extensive rework. While the macro-level
aspects of project planning and control have been addressed extensively, research on the
micro-empirical analysis of individual decision making behavior is lacking (Abdel-Hamid, et
al., 1993). The initial assumptions, estimation and scheduling should be pessimistic rather than
optimistic. There should be sufficient contingency built into the plan so that the project
constraints and milestones need not be renegotiated every time in the planning cycle
(Sommerville, 1995). Planning is an iterative process that is only complete when the project
itself is complete.

(�)�*�+�	���	���

�

Project estimates provide a foundation for project plans. A careful estimate leads to scoping the
project appropriately, which in turn leads to budgeting, staffing and scheduling it
appropriately. A poor estimate can undercut the project in all these respects, making it difficult
to complete the project successfully and impossible to complete it efficiently (McConnel,
1998). Poor estimation and poor visibility hamper software project planning and control
(Abdel-Hamid, et al., 1993). Typically, a software project planner estimates the project as if
nothing will go wrong and then increases that estimate to cover anticipated problems, with a
further contingency factor to cover unanticipated problems (Sommerville, 1995). Project
managers have to ask for funding for the entire project before they have had a chance to
complete much exploratory work. Such requests inevitably miss the mark because too little is
known about the requirements to support creation of meaningful cost and schedule estimates
(McConnel, 1998). A software life cycle model is often used to divide a software project into
phases that can be used as a basis for estimating the project cost in terms of time, money and
people. The important factors in estimating software projects are: complexity-novelty, staff
characteristics, clarity of project requirements, development environment, performance
constraints, human resource availability, project size, support commitments, target audience,
vacation, sickness, staff turnover and number of interruptions (Schroeder, 1991).

� ����

Estimates of the completed portion of development work increase as originally projected until
a level of 80%-90% is reached. At that point, estimates increase slowly until the work actually
is completed. Analysis of a NASA software project (Abdel-Hamid, 1988) indicated that the
problem results from interaction are under-estimation and inaccurate measurement of progress
due to poor visibility. To improve estimates, software producers need to develop and maintain
databases (using tools such as COCOMO) of organisation-specific software project metrics
such as cost, duration, error rate and staffing level. Software estimation can never be an exact
science but a combination of good historical data and systematic techniques can improve
estimation (Pressman, 1994). �
�

(�)�(�!����������

�

A major problem in the classical life-cycle approach to software development is the
completeness and clarity of the user requirements. Alternate paradigms, such as the use of
prototype software models, may be timelier. Prototyping is shown to be an appropriate
approach that can be used as a significant feature of the more formal life-cycle process, with
little overall reduction in project control (Rowen, 1990). Limitations of scheduling include
overlooking required tasks and the unavailability of key team members. A delay in one task
causes cascading delays in dependent tasks. The schedule should provide more time than
expected for unfamiliar aspects of the design and implementation (McConnel, 1998).�
�

(�)�)�%��&����������	�

�

Risk management is crucial to good software management project, yet many projects are
undertaken with no specific consideration of risk. Early identification of mistakes or external
threats and prompt curative measures should minimise the risk. The project document should
describe at least ten major risks of the project and the way the risks could be tracked and
monitored. Gilb (1988) says, "if you don’t actively attack the risks on a software project, they
will actively attack you". Failure to plan, failure to follow the plan that has been created and
failure to revise the plan when project circumstances change are some of the most serious
software project risks specifically related to planning (McConnel, 1998).
�

(�)�,�'�����	� ��	���-�����	����������%�$��
���

�

Software projects might be controlled to meet their schedule, budget and other targets.
Management of changes to requirements is to be done carefully so that only necessary changes
are accepted. A quality assurance plan that includes both technical reviews and testing assures
that the project will not succumb to a costly, defect-ridden build-and-fix model. Progress
monitoring and review is a control mechanism, identifying shortcomings and anticipated
problems. Progress is compared to milestones and deliverables stipulated in the scheduling
document. The PM-Net model (Lee, et al., 1994) may be used for representing and monitoring
the software development process. This model provides information for progress management,
as well as information of project status at different levels of detail, for the benefit of project
managers. The model emphasises bottom-up data collection and top-down information inquiry
functions. The data flow diagram (DFD) and work breakdown structure (WBS) techniques are
used for construction of a hierarchical structure of the software development process. This
process can be viewed as a set of activities, with each activity viewed as a set of sub-activities
and each sub-activity as a set of tasks.
�

� ����

(�)�.�'�����	�/�������	��

The concept of visibility, referring to the ability to determine a project’s true status, is closely
related to project control. If you want good visibility, the project team has to plan it into the
project from the start. Project reviews, unit development folders and computer-aided software
engineering tools can be used to improve visibility (Abdel-Hamid, 1988). The Software Project
Survival Guide (McConnel, 1998) recommends: regularly comparing actual performance
against planned performance; using binary milestones to determine whether tasks are done;
and revising estimates at the end of each phase.
�

	
"�#�����$���������%��������������������&�

Project managers are constrained in their choice of staff by factors of availability, budget, skill
level (the best people may be otherwise allocated), difficulties and delays in recruiting and
deployment of staff on projects to learn and gain experience. The industry’s persistent
managerial turnover and succession promote instability, leading to a discernible shift in
cost/schedule trade-off choices affecting staff allocation and ultimately project performance in
terms of both cost and duration (Abdel-Hamid, 1992).

Teamwork is an important feature of most software-development projects, but computerised
project-management systems give little support for cooperation and communication among
team members. Many programmers do not feel the need to work closely with other people. The
majority of project management systems focus on planning and control at the top and
intermediate levels, assisting project managers as far as coarse sub-tasks and activities are
concerned, but not transforming these into schedules for individual team members (Kurbel,
1994). Project staff require extensive training in project teamwork. The key steps for the
introduction of a comprehensive project management system are to create the environment,
involve the team and achieve control (Metcalf, 1991).

	
'���������%����������������!������

In today's software development environment, researchers, academics, engineers and managers
are focusing more energy toward developing software engineering as a science in order to deal
with the growing complexity of software applications. In so doing, there is a trend toward
losing sight of the product, process and technology for which software is being developed.
Bridging the gap between software and product development requires effective leadership and
project management within the software design teams (Pulk, 1990).

Many software development and project management experts work independently as
consultants, providing services on a full- or part-time contract basis. Such experts proffer
multi-dimensional real-life experience in various fields of project management. They can assist
the company in creating an environment in which it can continue the work and carry out the
management of projects on the organisation's behalf (Metcalf, 1991).�
�

	
(�)��&�������������

Most software engineering takes place in environments designed for other functions,
principally business offices. McCue (1978) concluded that the open plan architecture favored
by many organisations was neither popular nor productive, encroaching on the important
environmental factors of privacy, outside awareness and personalisation. DeMarco and Lister

� ��	�

(1987) found that programmers with good working conditions were more than twice as
productive as equally skilled programmers in poorer conditions. Work areas should be
congestion and noise free, with adequate light, airflow, etc. Software development is a deeply
intellectual activity, bearing few interruptions (McConnel, 1998).�
�

	
*�+����,���!�������

User involvement is critical to a software project in several respects, especially for user
interface design. Success in building software hinges on building a product that end-users will
use and like. Without end-user involvement, software developers are notorious for crafting
technically elegant solutions to problems that users don’t care about (McConnel, 1998). Large
software development organisations have consciously insulated developers from the user. In a
case study (Steven and Jonathan, 1994) Poltrock et al. mention that interface developers do not
know how to build a friendly user interface because they don't understand the user. They argue
that the interface developers should at least spend a couple of hours a year with the user to
observe their usage pattern, so that, they understand the user requirement. Authors are
concerned that the developers may be excessively influenced by the request for features from
customers who may not be the representative of the market place (Steven and Jonathan, 1994).
Gould (1988) in 'How to Design Usable Systems' recognises that most designers give some
consideration to users but few involve users directly in the design process or plan for design
iterations. �
�

	
-�%������������!��

About 400 project management software packages are on the market, about one-third for
personal computers. Most are oriented to generic project or time management. However some
view software project management as specialised and that the tools should be highly designed
to support specific tasks (Wylie, 1986). The Capability Maturity Model for Software (CMM)
developed by the software community with stewardship by the Software Engineering Institute,
provides the management tools to define a software development project. The methodology
requires the tracking of cost, standardising the software process, measuring the software
process and continually improving the process with quantitative feedback (Mandell, 1997).�
�

�

�
��������

�

There is no suggestion that the non-transfer of experience from previous projects caused
problems in the INCIS project. However the Police representatives on the project may have
lacked the experience of the (IBM) contractors. The most publicised cause of the cost and time
overruns was the change in the project’s scope. One major change was from IBM’s OS2
operating system to that of Windows NT. This change was costed at $12 million. Additional
requirements to include traffic, firearms and family violence databases have an attributed cost
of $14 million (Jackson, 1999). If there was a fault in the planning of the project it probably lies
in the area of too many reviews by a variety of boards and committees (e.g., Treasury, Police).
In the human resources arena, the State Services Commission identified a lack of strength in
project and contract management skills. Although as the main contractor IBM could be
expected to bring strong project management skills to bear on INCIS, one problem was that
much of this was based offshore (in California) and conflicts occurred. This could conceivably
lead to problems in the teamwork across the various sites and also between the Police and their
contractors. IBM would have ample recourse to consultants within their organisation but as has

� ����

been highlighted above, this is not the case in the public sector. There was also the suggestion
that there was disagreement on the project within IBM (Hutchinson, 1999).

No evidence suggests problems with estimation or scheduling although this might be revealed
later in the official enquiry. It would appear from a review of the project that there was no risk
management – a factor that would appear to be largely responsible for the failure of the project
and the failure to take remedial action earlier. This is allied with the problems of the disparate
project control and tied up with the fact that although there were (too) many reviews (more than
40), there was little project control. The fact that the phases of the project were so large would
suggest that there was low project visibility. Nothing was reported about the work environment
or management tools but it is unlikely that either contributed to the project failure. The Police
Association did not receive the project favorably (not surprisingly when it was to be paid for by
a lowered head count) and there was little user involvement by the rank-and-file. The
Association called for the restructuring to be halted while INCIS was sorted out.

�
�������

There was low transfer of experience from previous projects as most people were brought in
and largely isolated from existing Telecom projects. Unlike INCIS there were no large-scale
changes in the project’s scope but many small changes in the delivered project, e.g. Stage 14.
These were not so much new features but annoying and counter-productive alterations to
existing ones. However planning: suffered from indecision on the implementation platform
(Plan A or Plan B – in any event the decision was deferred).

The mixture of human resources utilised caused problems. There was a hodge-podge of users,
permanent employees, individual contractors and contracted organisations. Allied with this, at
times it was difficult to get access to key users, or key development staff. The project suffered
from poor teamwork – there was a low level of cooperation and distrust between teams (but not
so much within teams) and projects. Although consultants were employed they were from
many organisations and countries, bringing in different methodologies, techniques and work
cultures. There was conflict between support staff trying to enforce (changing) methodologies
and documentation, and the development teams. Conflict also arose with people reviewing
other team’s work and trying to integrate the various models against the corporate model.

Within stages the estimation and scheduling were unrealistic. The early setting of deadlines
often resulted in throwing more people at a problem. Risk management was ostensibly ignored,
although there was provision for this in some of the project documents, the sections went
unfilled. Project facilitators (support staff) and managers were used for project control and
utilised management tools such as Microsoft Project. There were comments that there were too
many reviews and too much time spent in meetings, yet communication was lacking between
projects and stages. Despite the project being divided into many deliverables (stages) project
visibility was low on account of the (too) complex business model. The work environment did
not seem to detract from the project although there was overcrowding. The lack of meeting
rooms and personal space in which to try to think ‘outside the square’ from time-to-time did
cause some problems as did frequent changes to the seating and reporting arrangements. User
involvement was high during implementation but low prior to that. However it was commented
that the project was signed off at too high a level – the senior managers lacked knowledge of
operational requirements (Anon, 1999).

� ����

�
�����������

The backlog of software development projects is steadily increasing and cost overruns and
schedule slippage are expensive, but methods used for cost estimation and project control are
not standardised or reliable. Therefore, management requires a better understanding of the
process, and a set of simple methods based on a sound, scientific foundation. Software project
failure can be reduced to a greater extent by efficiently applying the project management
techniques. A bounded software scope with subsequent changes analysed before incorporation
into the revised scope. Planning is an iterative process and it should be reviewed and updated
regularly. The initial planning assumptions should be pessimistic rather than optimistic so that
any constraints can be easily overcome.

Projects need to be staffed with people having sufficient competence levels, as planned in the
project document. Staff should be deployed timely and a project should not be considered as a
training venue for the unskilled staff due to their toll on others’ time. The knowledge, expertise
and leadership style of the project manager have a big impact on the project. The project
manager should be well trained in software development projects. In addition, the project can
take assistance either from the individual consultants or management-consulting firms to
strengthen weak areas in the development team.

Project managers must estimate costs, time and effort at an early, even exploratory stage, with
sufficient contingency. Estimation tools are imperfect for specific projects. They should be
used carefully and multiple methods should be used. Estimation may be made in two phases
(preliminary and detailed) so that the detailed phase could consider most of the activities
correctly. The project schedule shall clearly identify all the project activities and must allocate
more time for unfamiliar activities.

Risk management is a critical activity of project management. Risk management is added by
earlier planning including approaches such as listing ten risks or threats to the project. Project
visibility is needed for controlling, monitoring and review of activities. All the milestones and
deliverables must be clearly defined to ensure good project visibility. The work environment
impacts the performance of engineers, so should nurture intellectual activities by being
distraction-free and allowing sufficient privacy.
A user-friendly interface can enhance the user satisfaction. It is difficult to involve the user
directly to the development process but interface developers can design a good interface by
knowing user's usage pattern in the field.

At the conclusion of each project a debriefing should be held so that the lessons learnt from the
success or failure of the project can be applied to future development.�

 �!��������

�

Abdel-Hamid, T. K. "Understanding the "90% Syndrome," in Software Project Management:
A Simulation-Based Case Study," 0����������!��	����1�!��	
��� (8:4), 1988, pp. 319-330.

Abdel-Hamid, T. K. "Investigating the impacts of managerial turnover/ succession on software
project performance," 0������� ��� ���������	� �������	���� !��	��� (9:2), 1992, pp.
127-144.

� ��
�

Abdel-Hamid, T. K. "A multiproject perspective of single-project dynamics," 0������� ���
!��	����1�!��
��� (22:3), 1993, pp. 151-165.

Abdel-Hamid, T. K., and Madnick, S. E. "The Elusive Silver Lining: How We Fail to Learn
from Software Development Failures," !��������������	�%�$��
 (32:1), 1990, pp. 39-48.

Abdel-Hamid, T. K., Sengupta, K. and Ronan, D. "Software project control: An experimental
investigation of judgment with fallible information," �+++� �������	����� ��� !��	
����
+���������� (19:6), 1993, pp. 603-612.

anon �������	����2��&��, 30 June 1997,

Boehm, B. W., and Ross, R. "Theory-W Software Project Management: Principles and
Examples," �+++��������	��������!��	
����+���������� (15:7), 1989, pp. 902-916.

Brooks, F. ���� ��	������ �������	�3� +������ ��� !��	
���� +����������, Addison-Wesley,
Reading, MA, 1975.

COCOMO "COCOMO Model," http://www.softstarsystems.com/overview.htm#The
Intermediate Model

DeMarco, T., and Lister, T. '����
���3�'�����	�$��'�����	�����������, Dorset House, New
York, 1987.

Gilb, T. '������������!��	
����+��������������������	, Addison-Wesley, 1988.

Gladden, G.R. "Stop the Life-Cycle, I Want to Get Off," 4 ��!�"!56��!��	
����+�����������
��	�� (7:2), 1982, pp. 35-39.

Gould, J.D. "How to Design Usable Systems," In 7����8��&����7����� ���	�����	����	���,
1988, pp. 757-789.

Hutchinson, M. "INCIS," ����������������	����!	��	�����-���
��������, (2:7), June 1999,
pp. 25-28.

IEEE 1058.1 "Standard for Software Project Management Plans," �+++�*9.:�*, Institute of
Electrical and Electronic Engineers, Inc., 1987, Chapter 8.

Jackson, R. "Why IT projects go so horribly wrong," ;�����	��������������
�	���������	���,
August 1999, pp. 54-60.

Keider, S.P. "Why Projects Fail," <�	���	��� (20:12), 1974, pp. 53-55.

Kurbel, K. "Groupware extension for a software-project management system," ��	����	������
0����������'�����	����������	 (12:4), 1994, pp. 222-229.

Lee, K.C., Lu, I.Y. and Lin, H. "PM-Net: A software project management representation
model," �������	����1�!��	
�������������� (36:5), 1994, pp. 295-308.

Lyytinen, K. and Hirschheim, R. �������	����!��	����6��������4�!��$������� ���������	�������
	���+��������=�	���	���, Oxford University Press, Oxford, 1987.

� ����

Mandell, J. "Taming Chaos," !��	
��������>���, (17:8), July Supplement 1997, pp. 92.

McConnel, S.C. "�!��	
����'�����	�!��$�$���"������!'SG)," 1998.

[McCue, G.M., "IBM's Santa Teresa laboratory: architectural design for program
development," �8��!��	����0������ (17:1), 1978 pp. 4-25.

Meredith, J. "Project Monitoring For Early Termination," '�����	����������	�0������ (19:5),
1988, pp. 31-38.

Metcalf, B. "Software Project Management: The Role of the Consultant," �����	�����
���������	�1�<�	��!��	��� (91:3), 1991, pp. 3-5.

Pressman, R.S. !��	
���� +����������� �� 4� '���	�	�����?�� 4�����, McGraw-Hill Book
Company, 1994.

Pulk, B.E. "Improving Software Project Management," 0����������!��	����1�!��	
��� (13:3),
1990, pp. 231-235.

Rodrigues, A.G. and Williams, T.M. "System dynamics in software project management:
Towards the development of a formal integrated framework," +������� 0������� ���
�������	����!��	��� (6:1), 1997, pp. 55-66.

Rowen, R.B. "Software Project Management Under Incomplete and Ambiguous
Specifications," �+++��������	��������+��������������������	 (37:1), 1990, pp. 10-21.

Schroeder, B.G. "Estimation Issues in Software Project Management," '�����	����������	�
0������ (22:1), 1991, pp. 5-10.

Sommerville, I. �!��	
����+����������, Addison-Wesley, 1995.

Steven, E.P. and Jonathan, G. "Interface Development in a Large Organisation: An
Observational Study," 4 ���������	�������� ���	���7�������	����	��� (1:1), 1994, pp.
52-80.

Wylie, C. "Project Management: Beware the Thundering Herd -- More than 400 Software
Products Are on the Market," ���	���� ����� (12:2), 1986,

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2000

	Shortcomings in Software Development Project Management: An Analysis of New Zealand Cases
	John Paynter
	Daud Ahmed
	Recommended Citation

