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Abstract 
 
Studies show that many software developers are reluctant, for a variety of reasons, to employ 
system development methodologies (SDMs) in the course of building their applications. The 
proponents of Agile methodologies suggest that many of the factors that have inhibited the 
use of SDMs to date have largely been addressed in the underlying principles of Agile 
methods. Using adoption theory as a basis to inform, this paper contextualises the results of a 
preliminary study into the adoption process of an early adopter of Extreme Programming 
(XP). The case study undertaken provides further insights into the factors that have thus far 
inhibited the use of SDMs and describes the potential for the more widespread adoption and 
diffusion of Agile methodologies, as a relatively new systems development approach. 
 
Keywords: Adoption, Agile Methodology, Extreme Programming, System Development 
Methodology 
 
 
1. Introduction 
Avison and Fitzgerald (1995) defined an information systems (development) methodology as 
‘a collection of procedures, techniques, tools and documentation aids which help the systems 
developers in their effort to implement a new information system’.  There are many such 
methodologies including the Structured Systems Analysis and Design, Rational Unified 
Process, Rapid Application Development, Sterling Software’s Enterprise Component-Based 
Development, etc. In addition, many companies develop their own or adapt existing 
methodologies or simply do not use one at all.  The Software Engineering Institute’s (SEI) 
Capability Maturity Model (CMM) identifies five levels of maturity for an organisation in 
terms of its software development maturity.  At level-1 no methodology is in place, while at 
level-2 there is the beginning of a methodology, and so on up the scale.  The arguments for 
using a methodology are persuasive but many organisations are resistant to change, either to 
using any methodology or to changing methodology and only one-half of organisations 
follow any methodology (for example, Fitzgerald 1998; Glass 1999; Roberts et al. 1998). 
 
According to Fitzgerald (1998), practitioners have been reluctant to adopt Software/System 
Development Methodologies (SDMs), with more than 60% of them abstaining. Furthermore, 
he noted that nearly 80% of the non-adopters intended to stay that way.  While there is a 
strong belief in their potential intrinsic value to the processes and quality of output of system 
development projects, SDMs have largely failed to deliver and this is reflected in the 
adoption rates. Fitzgerald (1998) identified a number of ‘arguments’ from practitioners 
against the use of methodologies, and ‘pressures’ preventing their adoption.  It has been 
argued that the so-called Agile methodologies may provide a solution. 
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Extreme Programming (XP) (Beck 1999) is perhaps the most well known Agile SDM 
(Fowler and Highsmith 2001).  There are now at least two major international conferences 
annually (XP 2004, XP Agile Universe 2004) and there have been several special issues of 
journals on the topic (for example IEEE Software, November/December 2001, Journal of 
Defense Software Engineering, October 2002, IEEE Computer, June 2003, Journal of 
Database Management, April 2004).  The Giga Information Group has predicted that by 
2004, Agile processes will be incorporated in two-thirds of corporate IT departments (Barnett 
2002).  Also, with software development luminaries such as Tom DeMarco (cited in Beck 
2001) making statements such as: 

“XP is the most important movement in our field today. … it will be as essential to 
the present generation as the SEI and its Capability Maturity Model were to the last” 

there can be little doubt this is no passing fad, but in fact a topic worthy of serious research 
from the information systems (IS) community.  
 
The Agile Manifesto (Manifesto, n.d.) is based on four main tenets, where the items on the 
left are valued more than the items on the right, viz: 

1. Individuals and interactions over processes and tools; 
2. Working software over comprehensive documentation; 
3. Customer collaboration over contract negotiation; and 
4. Responding to change over following a plan.  

 
XP is centred on twelve core practices, also known now as Xp Xtudes, which guide the 
software development process (XP Core Practices n.d.).  These practices reflect the 
sentiment/intent of the twelve principles underpinning the Agile Manifesto (Manifesto n.d.).  
Most of these practices are not new but the way they are presented as a package in XP 
represents to many software developers how they really develop software systems (Sleve 
2002) or, in some cases, desire to develop software for clients. 
 
XP has been successfully adopted in many projects although it is still not widely known or 
taught at the tertiary level.  Many case-studies have been published that demonstrate the 
wide variety of situations that have been considered suitable to trial Agile methods. These 
studies fall into several categories including academic teaching (Mugridge et al. 2002; Lappo 
2002), tertiary student projects (Karlstrom 2003), small-scale industry developments (Bossi 
and Cirillo 2001), and large-scale industry developments (Schuh 2001; At Chrysler, Objects 
Pay 1998; Elssamadisy 2001, Grenning 2001, Pedroso et al. 2002).  However, there has 
been no attempt to grapple with the factors affecting the adoption of this new methodology. 
 
Rogers (1995) defined the adoption process as ‘the process through which an individual or 
other decision making unit passes from first knowledge of an innovation, to forming an 
attitude toward the innovation, to a decision to adopt or reject, to implementation of the new 
idea, and to confirmation of this decision’.  Thus, the adoption process is characterised by a 
sequence of stages through which a potential adopter of an innovation passes before 
accepting the innovation.  Various models including for example the Technology 
Acceptance Model (TAM, TAM2), Perceived Characteristics of Innovating (PCI), Theory of 
Planned Behaviour (TPB), and the Model of Personal Computer Utilization (MPCU) have 
been proposed to model individual intentions to adopt various information technology 
artefacts.  However, the suitability or otherwise of these models, or indeed the reporting of 
new models, for examining the intention to adopt system/software development 
methodologies has received relatively little research (Roberts et al. 1998; Johnson 1999; 
Roberts et al. 1999).  Riemenschneider et al. (2002) in fitting the five models above noted 
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that although the models were resilient, there were important differences in relation to the 
pattern of significant factors affecting adoption of tools versus adoption of methodologies. 
 
Clearly there is still scope for further investigation of the driving factors in methodology 
adoption including identification of factors not already considered in existing models and, 
indeed, potentially new models of adoption.  This research is contributing to this by 
examining adoption of a relatively new methodology in a specific environment.  The extent 
to which Agile methodologies might address the shortfalls in methodology uptake is 
examined as are the characteristics that influence adoption of a particular methodology.  It is 
intended to discover express and implicit preliminary factors influencing the adoption of XP 
as a software development methodology, and hence support propositions that give added 
value to practitioners planning to embark on a similar action. 
 
The paper is structured as follows.  The next section outlines the background to the case 
study.  This is followed by a description of the methodology used in this study, then the 
results and discussion and finally future research directions and conclusion. 
 
2. Situation Background 
NextEd Limited is a Hong Kong based provider of web-based software infrastructure. It 
services mainly tertiary education providers in the Asia-Pacific region, including the 
University of Southern Queensland, by providing platforms for delivery of study materials 
and communication services to students who study, principally, in online modes. 
 
The project discussed in this paper required the development of a suite of tools for a scalable, 
flexible, and efficient continuous publishing system. The tools facilitated the generation of 
print and web-based study materials provided by content experts.  The target operating 
system was Windows NT and the languages used included Delphi, XSLT and XML.  Visual 
Source Safe was used for configuration management and although not ideal, proved effective. 
 
The newly formed project team felt that an iterative methodology was most suited, and 
according to one of the informants it was fundamental to the project to produce ‘a constant 
stream of outputs and engage the customer on a regular basis’.  Initially made aware of XP 
by the organisation’s Chief Technical Officer, the team took on the initiative to study this 
approach to software development and considered the project a suitable candidate for its use.  
No particular development methodology for this type of project was in place in the 
organisation. There was also recognition that management’s requirements of the project were 
not well defined, and that the project size was not expected to be large (a few thousand lines 
of code), and its development time was expected to be relatively short (about six months).  
XP provided an alternative to a traditional heavyweight approach since there was a small 
team and less need to follow a process-oriented methodology.  Being a small team meant 
members had multiple roles (project leader, proxy customer, system architect, and 
programmer). Management was not particularly concerned with the product development 
approach adopted but was concerned with the outcome and monitored the progress 
accordingly.  They did not put limitations on the trial of XP but noted that XP required the 
developers to regularly deliver software which could be trialled and tested by the customer.  
 
3. Research Methodology 
A combination of two research techniques was employed in this study, viz. a case study 
based on in-depth interviews and a focus group. Cavaye (1996) points out that a single case 
can enable researchers to examine a phenomenon more deeply, resulting in richer information. 
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Furthermore a single case approach may be used to test a theory, and this has been done in 
this study as a useful start to examining the efficacy of various adoption models in explaining 
the adoption of Agile methodologies (Cavaye 1996).  Case-studies provide a mechanism by 
which trialled methods and ideas can be observed.  Other organisations or individuals, in 
particular practitioners considering the adoption of such methods, are provided with a view of 
an implementation through which they can make their own assessment of the advantages and 
disadvantages.  Although the success or otherwise of a project and the application of the 
new method may be subjectively assessed by the report’s authors, case-studies still provide 
insights not otherwise available.  In fact the importance and merit of case-studies has been 
openly recognised by the editorial board of IEEE Software, with its decision to expand the 
space made available to them (IEEE Software, November/December 2001). The details 
presented in this paper are unique in that most reported industry case-studies are written from 
within the development team, and therefore inherently subjective. In contrast, this report is an 
objective analysis undertaken with the express purpose of furthering research on the use of 
Agile methods and by researchers who were external to the development. 
 
The use of qualitative methods to study software development issues allows the researcher to 
study selective issues, without the pre-determined constraints of ‘categorised’ analyses.  To 
develop a deeper understanding of the complexities associated with the relatively new 
concepts of Agile methodologies, and XP in particular, in-depth interviews were conducted 
with all members of the case study project team.  The software house was chosen because it 
was considered to be an early adopter of this software development approach.  The 
interviews formed the main source of evidence for the case study.  While an interview 
guideline was used as a basis, the interviewees were allowed to digress when other interesting 
issues surfaced.  Interviews were transcribed and reviewed for accuracy by the interviewees, 
thus enhancing the internal validity of the researchers’ accounts of the interview in 
accordance with Yin (1994).  Quotations or indented text presented throughout the rest of 
this paper are either verbal or written statements from these primary data sources (denoted in 
the text as N1, N2, and N3).  
 
A focus group was also conducted as part of this study. The use of focus groups is an 
exploratory technique that is usually quick, inexpensive and flexible (Zikmund 2003). Many 
of the issues raised by Healy and Perry (1998) (such as site selection, collection of 
preliminary information and problem definition) which relate to the establishment and 
conduct of the session were addressed during this study.  As in Healy and Perry’s 1998 
study it was useful to test the appropriateness of the theoretical framework arising from the 
literature review.  The twenty members of the focus group participated on the basis of their 
experience and interest in software development, and the use of software development 
methodologies. One of the authors facilitated the session, while another recorded proceedings 
and detailed notes.  The session explored the characteristics of Agile system development 
methodologies in terms of the five theoretical constructs arising from Rogers’s (1995) work 
on adoption theory. Statements attributed to the focus group are denoted in the text as F1. 
 
The adoption of a multi-method approach as described by Creswell (1994) has enabled this 
study to take advantage of triangulation to counteract any individual method’s bias. In this 
situation the focus group data acted as a balance to the case study interview data when 
examining Rogers’s (1995) adoption theory. 
 
4. Results and Discussion 
The project undertaken by NextEd had several distinguishing features: 
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 the system under construction was not a typical business application, but a software 
infrastructure development with difficult to define, abstract requirements;  

 the complexity of the system development environment required the use of multiple 
software products for development;  

 much of the current debate on using Agile methods centres on whether it is developers or 
management who resist their adoption. The situation under review was notable in that the 
impetus initially came from management, but the development team were also very keen 
to trial the XP methodology; 

 this trial was conducted without any expenditure on mentoring, training, etc. – it was all 
based on internal research; 

 the implementation of XP (according to the developers) was a ‘success story’. 
Table 1 shows a summary of the level of adoption of the XP core practices for this project. 
 
Table 1 XP core practices experience summary:  Full=full adoption, Partial=partial adoption, Nil=not 
adopted. 
XP CORE 
PRACTICES 

IMPLEMENTATION COMMENT 

The Planning Game Full Worked well for both developers and client 
Small Releases Full Successful 
System Metaphor Nil Developers would like this 
Simple Design Full Successful 
Test Driven 
Development 

Full Very beneficial for development 

Design Improvement  
(was Refactoring) 

Partial No tools and not regular 

Pair Programming Partial Useful for developers to cross-train 
Collective Code 
Ownership 

Full Very successful for developers – aided skill transfer 

Continuous Integration Full Successful – infrastructure can be reused 
Sustainable Pace  
(was 40-Hour Work 
Week) 

Nil Would be desirable for developers 

Whole Team  
(was On-site 
Customer) 

Full At least during business hours 

Coding Standards Full Worked well 
 
The discussion that follows is an analysis of both the case study and the focus group within 
the framework of the relevant adoption theories. 
 
4.1 Inhibitors to Adoption of System Development Methodologies 
According to Fitzgerald (1998), practitioners have been reluctant to adopt SDMs resulting in 
more than half of them abstaining. Furthermore, it was noted that 79% of the non-adopters 
intend to stay that way. While there is a strong belief in their potential value, SDMs have 
largely failed to deliver and this is reflected in the adoption rates. Fitzgerald (1998) also 
identified a number of ‘arguments’ from practitioners against the use of methodologies, and 
detailed the ‘pressures’ preventing SDM adoption. A discussion on the extent to which these 
shortfalls have been addressed by the Agile methodologies follows.   
 
One of the problems of SDMs is that they treat the process of software development as an 
orderly, rational process. Fowler (2003) challenges the notion of the engineering metaphor as 
a basis for ‘predictive’ software development and proffers an alternate view of it as an 
‘adaptive’ process that recognizes the reality of uncertainty as part of the requirements and 
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design processes.  One of the highlights of the case study experience was that with the 
customer choosing the functionality (user stories) to be developed, as well as setting the 
priority of each cycle, flexibility became a positive for both the developers and the clients.  
A further problematic aspect identified was that SDMs traditionally focus on technical rather 
than social issues. Agile methodologies address this issue in one of the aforementioned tenets 
where individuals and their interactions are more valued than processes and tools (Manifesto 
n.d.). This sentiment was reflected in the case study: 

N1:  ‘…it’s about … right mix of people so you can change the tone of your team’. 
N3: ‘a very human-oriented process … in the end you are selling a belief system’. 

Another argument against the adoption of SDMs is that the importance of the actual system 
being developed is often subjugated by the processes of the methodology (Fitzgerald 1998).  
Again, this is countered by another of the Agile tenets where working software is valued over 
documentation. In the case study situation, processes were changed when they were seen to 
be hampering the process of delivering production software, as seen in the decision to modify 
the gathering and publication of requirements.  
 
Traditional SDMs are seen to be developer-unfriendly (Fitzgerald 1998).  On the other hand, 
Agile methodologies are people-centric, as evidenced in one of the Manifesto’s 
aforementioned twelve principles, which encourages motivation of individuals to build 
projects with appropriate environments and support. This notion of Agile methods 
embodying practitioner-focussed ideals was reinforced by the case study experience where 
there was a surge of interest by other local developers in the case study project. 
 
It is also claimed that many SDMs have been put forward without sufficient empirical 
evidence to support their efficacy (Fitzgerald 1998).  This issue was well understood by the 
architects of XP, who basically founded the methodology on what highly regarded, 
experienced developers identified as a proven collection of ‘practices’ that would support the 
timely delivery of quality software, ‘We are uncovering better ways of developing software 
by doing it and helping others do it.’ (Manifesto n.d.). However, none of the interviewees felt 
that empirical evidence was central to their decision to adopt, rather that the benefits of XP 
appeared to be obvious and that it was a commonsense approach: 
 N2: ‘I simply found the explanation of XP sensible and fit for the purpose…’. 
 N3: ‘… the tools and techniques seemed to make good sense on their own’. 
The inability of traditional methods to deliver production software in a timely manner is 
another serious concern raised by Fitzgerald. Agile methodologies focus on working software, 
and this is exemplified in many of the XP practices such as in the planning game, and in the 
practice of small releases. It is also well illustrated in the case study where regular releases 
built higher levels of trust and credibility between the client and the development team: 

N1: ‘…they’re happy because you always deliver on time’.  
N2: ‘This aspect was absolutely critical to the success of the project. … a real 
customer using the system within months of beginning the project’. 

 
4.2 XP Adoption Stages at NextEd 
Theories of innovation and innovation diffusion seek to explore and explain why some new 
technologies/processes diffuse quickly and widely, while others do not.  As a socially 
constructed process involving the development and implementation of new ideas, Rogers’s 
(1995) innovation theory is a useful model to examine the adoption and diffusion of XP.  
Rogers (1995) defined the adoption process as having certain stages.  His model’s five 
‘Stages of Adoption’ adequately supports the experience within the subject case study: 
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• Knowledge/awareness – the team had been informed about XP from the 
organisation’s Chief Technical Officer. 

• Persuasion/interest - the team consequently read about and examined the Agile 
approach to software development. 

• Decision/evaluation - no particular development methodology for this type of project 
was in place in the organisation:  

N1: ‘… they didn’t seem to have any kind of formal (methodology) … Every 
job was basically working from scratch …’. 

• Implementation/trial – the team considered this project to be a suitable candidate for 
its use, also because development time was expected to be relatively short (about six 
months). 

• Confirmation/adoption – any decision relating to the further adoption of XP at NextEd 
will depend on the nature of the project and the development team structure. However, 
in response to the question ‘Do you see the adoption of extreme programming in the 
industry?’ N1 echoed Tom DeMarco’s sentiment: ‘I can in my career’. 

 
In Rogers’s categories of adopters, based on degree of innovativeness, the subject case study 
could be regarded as an ‘early adopter’; early adopters are typically pilot users who bring a 
novel technology to a realistic and strategic context. 
 
4.3 Contextualizing XP As An Innovation 
Rogers (1995) identified a framework of five characteristics of an innovation or change that 
would influence the adoption decision or encourage adoption viz. the relative advantage, 
complexity, compatibility, trialability and observability of an innovation. In this section the 
twelve core practices of the XP methodology are mapped (see Table 2) against this 
framework along with supporting evidence drawn from the case study and focus group as a 
means of exploring the adoption potential of XP.  
 
Table 2 Roger's (1995) Innovation Characteristics and XP Core Practices. 
Characteristics XP Core Practices 
Relative Advantage Small Releases; Design Improvement; Pair Programming; Collective Code 

Ownership; Continuous Integration; Sustainable Pace 
Complexity The Planning Game; Simple Design; System Metaphor 
Compatibility Small Releases; Continuous Integration; Simple Design; Coding Standards 
Trialability All practices 
Observability Whole Team; Test Driven Development; The Planning Game 
 
Relative advantage refers to the extent to which the potential adopter perceives that an 
innovation is superior to alternative products, services or concepts (Rogers 1995, p.212). In 
terms of SDMs, developers would have to view XP as a superior alternative to the traditional 
methodologies. This will give them a competitive edge by responding to customers’ 
constantly changing requirements and improving software quality. The adoption of XP was 
seen to be an advantage in the case study: 

N2: ‘… an agile development methodology made it run much more smoothly. 
However these ingredients would go a long way in the success of any project’. 

Overall, the members of the focus group considered that XP offered relative advantages over 
traditional methodologies. 

F1: ‘I think it’s very important to a manager. .......if they can track where they’re 
going in the project and then being able to make a decision at the end of each cycle as 
to whether to continue on or stop.  I think it is very important’.  

There are several XP practices that demonstrate a relative advantage, such as: 
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 Small Releases whereby working software is released to customers regularly, usually 
weekly, but potentially daily. In the case study, after the initial build process (of about 
three months), the release cycle was fortnightly. This was considered advantageous 
because it was much easier to identify whether the project was on schedule. This is in 
contrast to traditional SDMs which tend to focus on delivering larger chunks of 
functionality much later in the development schedule:  

N2: ‘Incremental progress and updates ensured everyone who was interested knew 
where we were and why completed or failed to complete certain tasks’. 
N3: ‘… the key is regular releases of working software and along with that getting 
people using a product from as early as possible….’. 
N3: ‘… it is better to get [sic] the bugs out early than to release all the bugs at once’. 

 Design Improvement (was Refactoring) is the process of continual improvement of the 
code as the developer’s understanding of the system grows.  Since functionality is not 
altered during refactoring, all tests should still operate effectively. Refactoring was 
applied in the case study, but not using automated tools.  It was a manual process of 
identifying and rectifying areas of code that had potential for improvement and removal 
of duplication. This was advantageous because it encouraged developers to improve their 
system designs. There is no such equivalent practice in traditional methodologies that tend 
to indulge in ‘big upfront design’ setting the application architecture early, making it 
relatively inflexible. 

 Pair Programming is where developers work in pairs using one machine, continually 
reviewing code.  Pairs rotate throughout the project. This practice was sometimes 
followed in the case study: 

N1: ‘A lot of the time we did operate this way but there were many times when we 
worked alone’.   

Pair programming was used to address particular problems, and to aid other developers’ 
understanding of certain procedures or parts of the system.  It also acts as a contingency 
for the loss of key development staff. Traditional methodologies do not support this type 
of productive exchange and review of coding, and the nearest process is that of code 
walkthroughs, a form of Quality Assurance. Unfortunately walkthroughs only identify 
problems after the code has been developed, and are typically abandoned as soon as 
schedules become tight. Furthermore there is no risk management explicit in traditional 
methodologies to defray the exposure to the loss of key technical staff. 

 Collective Code Ownership means that code is not owned by individuals. Any code may 
be changed provided it is done by pairs of developers, complying with coding standards 
and subject to a satisfactory run of all tests.  In the case study, all developers were free to 
work on any code.  This assisted in building the expertise of all involved in the project 
and was a particularly successful aspect of the project from a developer’s perspective. 
This approach is not consistent with the traditional methodologies, and as such there is a 
much greater likelihood that individual styles would result in inconsistencies across the 
system. Also, the inherent characteristics of the Object Oriented (OO) software 
development methodology facilitates code sharing and component reuse, and as the OO 
paradigm becomes more pervasive the need for such mutual co-operation should become 
even more compelling.   

 Continuous Integration is the process of adding unit tested code to a repository where 
the system is rebuilt and all tests are run.  This may occur several times a day so that the 
team has access to the most up-to-date version of the system. Within the development 
environment of the case study the integration of new code into the project was a natural 
process, with system builds and all automated unit tests conducted every time code was 
checked into the source repository.  A batch system controlled the build process 
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including compilation and testing, and notified the developers, by email, if errors occurred.  
In the traditional methodologies, the usual trend is to conduct integration testing during 
the latter phases of the project resulting in problems being detected much later, and 
resulting in more severe project impacts (the later a problem is detected the higher the 
cost of addressing it). While some initial effort was required by the development team to 
create an environment supportive of XP the view taken was that once established it would 
form the basis for other systems and make maintenance much simpler. 

 Sustainable Pace (was 40-hour Work Week).  To avoid burnout so common in the IT 
industry, developers are restricted to about 40 hours of work per week.  This also 
improves the accuracy of time and resource estimates for the development effort required.  
The developers in the case study did not comply with this practice. Traditional 
methodologies have not explicitly addressed this issue, and realistic resource allocation is 
another persistent problem with traditional approaches.  

 
Complexity refers to the extent to which an innovation is perceived as difficult to understand 
and use (Rogers 1995, p. 242). In terms of SDMs, this means that developers would have to 
view XP as more easily understood than the traditional methodologies. There were mixed 
responses from the focus group: 
 F1: from ‘I found the whole thing very sensible and easy to understand, you know, get 

the major concept behind it very quickly’ to ‘More complex to manage’. 
There are several XP practices that relate to the issue of complexity: 
 The Planning Game.  System requirements are developed and decisions about which 

functionality to implement happen each cycle in what is ‘metaphorically’ described as a 
game.  The customer decides on the functionality to be implemented while the 
developers estimate the time required, and through negotiation, work for the next cycle is 
planned. In the case study, the customer was involved in selecting the business 
functionality required for implementation. The customer knew what would be provided, 
the project team provided it, and management could see the progress being made.  Hence 
the customers (and management) were able to drive the system development but through 
the process of setting priorities, the project team felt it had some control too: 

N1: ‘…which meant that we are driving the development of it, we are forcing our 
company to drive…. The other advantages are when you have this prioritised, your 
customers are going to say well I really only need that, I did need it ten minutes ago 
but it is not that important now …’. 
N3: ‘Yes, it is less complex. Mainly in the area of planning. Typical planning 
processes for software development are pure fiction. A lot of upfront effort goes into 
creating charts and dependencies graphs, but I have never seen a plan like this 
actually followed up or kept up-to-date’. 

 Simple Design emphasises only implementing features indicated as important by the 
customer.  Keeping the design simple means that change, as and when it is required, is 
less problematic. At all times throughout the case study, the developers avoided 
unnecessary complication with respect to software architecture and coding, staying with 
the stories agreed to each cycle with the customer.  In this way the team took a 
minimalist approach to the addition of functionality and ensured the customer received 
essential features in the order of priority requested. In traditional methodologies, design 
architecture is usually predefined, which does not offer the same flexible approach.  

 System Metaphor.  The team should have an overarching view or model of the system 
being developed.  At the very least a common vocabulary is required. In the case study, 
this was perhaps the least successfully implemented core practice of XP.  N1’s view was 
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that ‘… in hindsight that (a metaphor) would have been really helpful because we really 
struggled to get the idea/concept for the system out of the head of the customer’. 

 
Compatibility of an innovation refers to the extent to which an innovation conforms to the 
potential adopter’s existing values, previous experience and needs (Rogers 1995, p.224).  
This issue is addressed from two viewpoints. From the organisation perspective, any new 
change to job content and uncertainty of a new system will meet with organisational 
resistance (Hong and Kim 2001). Organisation and process changes induced by Agile 
methodologies are likely to be disruptive to existing practices, and such resistance has the 
power to inhibit infusion of a new process (Cooper and Zmud 1990). The adoption of agile 
methodologies runs counter to the traditional practices and resistance may be encountered:  

N3:  ‘There is still a culture in some of the managers and project staff that lists of 
features to be delivered at a series of dates are a valuable management tool.. … (but) 
as soon as they lock down a feature set they think they need, they introduce a lot of 
new risks in an ongoing process. They seem to think that using an agile methodology 
is some kind of con trick’. 

From the viewpoint of the developer, compatibility is identified as the extent to which 
developers, drawing from their practical experiences, considered XP as reflecting their own 
understanding of how systems should be developed in contrast to having to make 
accommodations for traditional methodologies. The focus group’s response affirmed this: 
 F1: ‘For me, yes it was quite natural’ and ‘I think for me it sort of summarises 

moreover what you probably already did without actually knowing everything’. 
Some of the practices such as small releases, continuous integration, and simple design, 
discussed earlier, also relate to the issue of compatibility in this context. Most of the XP 
practices are not new, but their presentation as a cohesive package reflects many software 
developers’ actual or desired approach to system development, for example: 
 Coding Standards must be rigorous and are essential since code may be worked on by 

any programmer at any time.  In the case study environment a coding standard was 
developed during the project and is used currently within the organisation.  It is largely 
language-independent.  Coding standards have also long been incorporated into projects 
run under traditional methodologies. 

 
Trialability is the extent to which an innovation can be tried on a limited scale (Rogers 1995, 
p. 243). In terms of SDMs, this means that XP must be suitable for pilot studies.  As 
reported earlier in this paper, XP has been successfully trialled in many projects, large and 
small, in industry settings and for academic study, as well as the currently described case 
study. Nevertheless, traditional methodologies have also demonstrated a capacity for trialling. 
In the focus group, the ability to trial XP was considered important: 

F1: ‘Essential. ....I had to do a trial before even considering. …presenting it in a pilot 
we were able to demonstrate how you’d work together, both management and the 
programmers..... to produce something’. 

 
Observability is the extent to which the results of an innovation are visible to others (Rogers 
1995, p. 244). With regard to SDMs, this means that the results of implementing XP must be 
visible to the stakeholders, a characteristic which can be observed via many XP practices 
including: 
 Whole Team (was On-site Customer) in an XP project gives developers continuous 

access thereby lessening the need for extensive requirements documents.  They can ask 
the customer about functionality, test cases, interfaces, etc, at any time. An on-site 
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customer was available in the case study project. This represents a very visible difference 
to the traditional methodologies where customers tend to play a background role.  

N2: ‘… our close contact with most clients requires a certain degree of structure(d) 
feedback and our version of XP helped us in this regard’. 

 Test Driven Development.  Customers develop acceptance tests while developers write 
test cases prior to writing code and implementing unit tests to focus on the required 
functionality.  All tests are automated and run whenever changes occur. The case study 
also implemented this practice. All Delphi code had tests included because a testing 
framework existed. An XSL testing framework had to be developed since none was 
available.  It was also noted that test development assisted in the code development: 

N1: ‘If you cannot write those (test) unit specs up front, then you will fail the test 
runner … so writing those sort of tests helps you map out your design in the first 
place and you get a much better design’.  

Nevertheless, writing tests prior to code was a significant change of ‘habit’ for the developers, 
generally, and was thus a visible difference for both them and customers who develop 
acceptance tests. Testing in a traditional setting is much less pervasive and has a much lower 
profile.  There are many other observable elements associated with the implementation of 
XP reflected in other practices, including the planning game, where the role of the customer 
is extended well beyond the bounds of a traditional project, to include responsibility for the 
choice of functionality for each release as well as to set the priorities. 
The observability of Agile methods was affirmed in the sentiments of the focus group: 

F1: ‘We wanted to make it as transparent as we could right (from the start). And that 
was part of the goal that the three of us worked on’. 

The rate of adoption of an innovation depends on the characteristics as defined above. The 
evidence from the case study and focus group suggests that Agile methods, as a new software 
development approach, exhibit all of the characteristics likely to foster their more widespread 
adoption and diffusion.  
 
4.4 Methodology Adoption Intention – Some Factors for Consideration 
Recent research (Riemenschneider et al. 2002) to explain intention to adopt a methodology 
includes a comparison of five models (TAM, TAM2, PCI, TPB, MPCU) previously used in 
modelling adoption of information technology tools.  Using these adoption models, their 
research found four significant determinants of usage intentions: usefulness, subjective norm, 
voluntariness and compatibility.  However none of the models contained all four factors.  
In addition, some factors found significant in tool studies (ease of use, perceived behavioural 
control – internal and external) were not significant for their study of methodologies and 
three of the four factors found significant in the study (voluntariness, compatibility and 
subjective norm) are sometimes found significant in tool studies and sometimes not.  These 
three significant factors are now considered in terms of the case study presented here. 
 
Riemenschneider et al. (2002) found that mandated adoption does not guarantee successful 
deployment.  In the case study, the use of XP was not mandated but suggested by 
management and then readily adopted.  They also found that when a methodology is 
compatible with developers’ work patterns, it is more likely to be adopted.  Many aspects 
of XP appeared compatible with the work practices of the developers in this case study.  
Indeed there was a view that several of the recommended XP practices mirrored their existing 
modus operandi.  Developers take into account the views of co-workers and superiors 
(subjective norm) when making SDM adoption decisions.  Staff at NextEd were aware of 
the positive views held by colleagues and proponents of Agile methods, and XP through 
personal contact, discussion lists, Special Interest Groups, etc. 

 468



 
The study in Riemenschneider et al. (2002) suggests differences between the domains of tool 
use and methodology with respect to adoption.  The tool adoption models are robust but 
statistical fits still only accounted for 50-60% of the variance.  The range and combination 
of factors influencing methodology adoption remains a question. 
 
5. Future Directions for Research  
There is a need to witness first-hand the use of Agile methods such as XP, if the soundness of 
these methodologies is to be assessed.  This is the also most effective means to mature the 
methodology. Experience is the litmus test of reality, but it needs to be conceptualised and 
reported to a wider audience to be of benefit to practitioners, researchers and academics.  
 
When examining any aspect of the software development process, anything other than actual 
experience is at best intelligent conjecture. Indeed, while there has been a great deal of 
interest and support from the developer ranks, the IS research community appears to have 
been a slow and/or reticent to embrace this new direction in software development 
methodologies. Our future research plans include experiments involving the use or otherwise 
of XP, further case-studies of several groups and projects implementing Agile methods, as 
well as the incorporation of Agile methods into the tertiary curriculum. 
 
This study focused on the characteristics of XP as perceived by the subject of our 
investigation and the process by which XP was communicated within the organisation.  
However, complete understanding of adoption behaviour requires a model that captures the 
adoption process across many different contexts (Plouffe et al. 2001).  Several models have 
been proposed to explain the adoption of various information technology tools but there is 
some question as to whether these models are comprehensive enough to explain adoption of 
SDMs which tend to be much more complex. 
 
Social psychological issues have been dealt with in a number of behavioural models of 
adoption. The relevance or otherwise of such antecedent attitudinal constructs as perceived 
ease of use and perceived usefulness (Davis 1989), visibility, ease of use and voluntariness of 
use (Moore and Benbasat 1991) as well as image and results demonstrability (Venkatesh and 
Davis 2000) will be examined in more detail through surveys and further qualitative analysis. 
 
6. Conclusions 
The project at NextEd was largely a success story which applied many of the core practices 
of the Agile methodology, XP.  From a developer’s perspective it delivered on the 
requirements, limited as they were in initial detail, to produce a publishing system for 
documents to print and the web.  While the opinion of NextEd management was not sought 
in relation to their perception of the success of this trial project, an appropriate product was 
delivered and used as a prototype for their current publishing system.  
 
There has been much debate about the type of projects that are suitable for Agile methods. 
Practitioner experience suggests that they are particularly suitable for projects where 
requirements are more abstract and difficult to define, as in this study. It is not surprising that 
such organisations have either not adopted or moved away from traditional approaches. 
 
This paper contextualised the results of a preliminary study into the adoption process of an 
early adopter of XP, and then triangulated those results with data from a focus group.  A 
small team successfully adopted XP for web publishing software tools for use in delivery of 
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education study materials.  Almost all XP practices were adopted, although some were 
adhered to more rigorously than others and some proved to be more successful than others. 
 
By showing they address many of the reported arguments and pressures against the use of a 
SDMs there is evidence to indicate that Agile methodologies, in conforming largely to 
Rogers’s theories, have significant potential for more widespread adoption and diffusion. 
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