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Abstract 
 

Most of the association rule mining algorithms suffer from the time-consuming elaboration 
on finding all candidates that fit the subjective conditions. We believe the most effective way 
is to develop parallel algorithms to promote the performance. However, prior parallel 
architectures and algorithms suffer from overhead in inter-site communications or requiring 
large number of space to maintain the local support counts of a large number of candidate 
sets. In this paper, we propose a parallel approach, which absolutely eliminates the inter-site 
communication cost for the most influential Apriori algorithm or its variations. The merit 
makes our approach to be easily deployed in a grid computing environment. Our work is 
based on the idea of data de-clustering, such that the transaction database is de-clustered into 
partitions for all participating sites. That guarantees all subgroups are not only quite similar to 
each other, but also quite similar to the original group. To balance the workload of the most 
time-consuming subtasks (i.e., the candidate itemsets generation process) of all participating 
sites, elements in the frequent 1-itemset are dispatched in row-prime order to each processor 
to execute in parallel. We have conducted experiments to show that the result obtained by our 
approach is almost the same as that obtained by running the Apriori algorithm on a single site. 
However, if there are m processors executed in our parallel approach, then the total speed up 
can be promoted up to m2, which makes our work a very efficient and effective approach. 
 
Keywords: Association Rule Mining, De-Clustering, Minimum Spanning Tree, Shortest 
Spanning Path. 

1.  Introduction 
Thanks to the progress of the Internet technology, most of the enterprise databases can 

collect huge amounts of data easily from daily transactions. The volume is expected to grow 
considerably in the future. Hence, to effectively utilize these data, an attractive task is to 
derive valuable patterns or collect profitable insights from the data to guide enterprises’ 
marketing strategies and management policies. That inspires data mining technologies being 
prolifically adopted in contemporary applications to explore versatile and previously 
untapped knowledge for supporting decision makers. 

Among the various data mining approaches, the association rule generation from vast 
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amounts of business transactional data has been extensively studied in this decade (Aggarwal 
and Yu 2001; 2002; 2003) and gained considerable prominence in the database community 
(Aggarwal et al. 2002; Agrawal and Srikant 1994; Brin et al. 1997; Han and Fu 1995; Rastogi 
and Shim 2002). However, owing to the huge target data volume, most of the algorithms 
suffer from the elaboration on finding all candidates that fit the subjective conditions, which 
is a process prone to time-consuming. Therefore, we believe the most effective way is to 
develop parallel algorithms to promote the performance. 

Although some parallel architectures and algorithms have been proposed, we found 
there are still some overhead exists in these approaches, which motivates our work. In this 
paper, we intend to develop a parallel algorithm that de-clusters the problem into subtasks 
and dispatches them to all participating sites. The purpose is to absolutely eliminate inter-site 
communications after distributing all subtasks. That is, communications occur only at the 
very beginning and ending of the whole process. As a result, there is no communication cost 
during the itemset generation process, which makes our framework a very efficient and 
effective approach. 

The idea of our approach is based on the concept of data de-clustering adopted from 
(Fang et al. 1986). Based on this approach, all the transaction data will be de-clustered into 
subgroups, such that all subgroups are not only quite similar to each others, but also quite 
similar to the original group. Then, the subgroups of itemset generation will be assigned to 
the participating sites by initially assigning elements in the frequent 1-itemset in row-prime 
order (Samet 1989). By such task assignment, the load of each site can be highly balanced 
and the frequent itemsets of each site can be quickly obtained independently. Finally, the 
complete frequent itemsets can be obtained by directly collecting all the locally obtained 
frequent itemsets. Although it seems that our approach may lose some of the frequent 
itemsets, we have conducted an empirical study on our approach and found that the obtained 
result is almost exactly the same as that obtained from Apriori. However, if there are m sites 
participating in the system, then the total task can be achieved in nearly 1/m2 of the original 
time complexity. 

This paper is organized as follows. Section 2 surveys some related works. Section 3 
addresses our approach in details. Section 4 presents an empirical study of our work. Finally, 
Section 5 concludes our work and proposes some future directions. 

2.  Related Works 

2.1 Association Rule Mining 
The basic problem of finding association rules as introduced by Argawal et al. (1993) is 

as follows. Let τ= {An-1, An-2, …, A0} be a set of literals, called items. Let D be a set of 
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transactions, where each transaction T is an itemset such that T ⊆τ. We say that a 
transaction T contains X, a set of some items inτ, if X ⊆ T. An association rule is an 
implication of the form X ⇒ Y, where X ⊂τ, Y ⊂τ, and X ∩ Y = ∅. The rule X ⇒ Y has 
support s in the transaction set D if s% of transactions in D contains X ∪ Y. This is taken to 
be the probability, P(X ∪ Y). The rule X ⇒ Y holds in the transaction set D with confidence c 
if c% of transactions in D that contain X also contain Y. This is taken to be the conditional 
probability, P(Y | X). 

Such problem can be decomposed into the following sub-problems: 

1. First, all sets of items that are contained in a number of transactions above the 
minimum support requirement are iteratively identified and referred to as frequent 
itemsets. 

2. Then, the desired association rules can be generated in a straightforward manner 
based on the finally obtained frequent itemsets. 

Much of the research has been focused on the first sub-problem, which can be reduced 
to finding frequent itemsets with respect to a given support threshold (Agrawal et al. 1993; 
Cheung and Xiao 1999). Our work also focuses on finding all frequent itemsets in parallel. 

We follow the notations used in Agrawal and Shafer (1996) to illustrate our approach, 
where we use superscripts to indicate processor id and subscripts to indicate the pass number 
(and the size of the itemset) as illustrated in Table 2.1. 

Table 2.1: Notations Used in the Apriori Algorithm. 
Notation Description 

Lk Set of frequent k-itemsets (those with minimum support threshold). 
Each member of this set has two fields:  
(a) itemset and (b) support count. 

Ck Set of candidate k-itemsets (potentially frequent itemsets). 
Each member of this set has two fields: 
(a) itemsets and (b) support count 

si The local support threshold of processor Pi. 
Pi Processor with id i. 
Di The dataset local to the processor Pi. 
Li

k Set of frequent k-itemsets (those with local minimum support threshold) in Pi. 
Each member of this set has two fields:  
(a) itemset and (b) support count. 

Ci
k The candidate set maintained with the Processor Pi during the k-th pass (there 

are k items in each candidate). 

In our approach, a transaction T will be represented as a bit string p, called pattern, 
which is defined as follows. 

Definition 2.1: For a transaction T ⊆τ= {An-1, An-2, …, A0}, the pattern of T is defined as a 
bit string p = an-1 an-2 … a0, where ai = 0 if Ai ∉ T, and ai = 1 if Ai ∈ T. 
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For a set of transactions D = {T1, T2, …, Tn}, it can be represented as a set of patterns G 
= {p1, p2, …, pn} by transforming all transactions into their corresponding patterns. 

2.2 Parallel Association Rule Mining 
The influential algorithm Apriori developed by Agrawal et al. (Agrawal et al. 1993) is 

simple and easy to implement. However, since the first step may need repeatedly scanning 
the database to generate exponential candidates for counting the support, there are so many 
disk I/O operations involved in the frequent itemset generation process, which becomes a 
severe bottleneck. 

Owning to the costs of computer peripherals are usually getting cheaper, but the speed 
performs higher, some parallel algorithms have been proposed. For instance, Park et al. (1995) 
generalized their DHP algorithm into a parallel version called PDM (Parallel Data Mining), 
Cheung et al. (1996) proposed FDM (Fast Distributed Mining) method, and Agrawal and 
Shafer (1996) presents three parallel algorithms, namely Count Distribution, Data 
Distribution, and Candidate Distribution methods. Cheung et al. (2002) have pointed out that 
most of the research activities fall into one of these paradigms. For an earlier comprehensive 
survey, readers are referred to (Zaki 1999). 

These approaches usually suffer from the inter-site communication overhead during the 
itemset generation process. When the data is skew, the performance may downgrade 
drastically. Therefore, the main objective of our work is to establish a parallel architecture for 
the Apriori method or its variations, and get rid of all the inter-site communications to 
maximize the speed of the frequent itemset generation process in parallel. Such merit 
supports a high-performance parallel and distributed grid computation over a wide-area 
network (Fox 2003). 

2.3 Data De-Clustering 
The concept of de-clustering is just the opposite effect of clustering analysis. By the 

definition of (Fang et al. 1986), for a set of data S, a de-clustering analysis divides S into n 
groups G1, G2, …, Gn, such that 

(1) All groups G1, G2, …, Gn will be quite similar to the original set S. 

(2) G1, G2, …, Gn should be quite similar to each others. 

In (Fang et al. 1986), two approaches have been proposed to de-cluster a set of data, namely 
the minimal spanning tree approach and the shortest spanning path approach. To explain 
these approaches easily, the original group will be divided into two subgroups, which are 
similar to each other. We briefly describe them as follows. 
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(1) Minimal Spanning Tree (MST) approach: For a set of transactions, construct a minimal 
spanning tree (Graham and Hell 1985; Kruskal 1956; Yao 1975) by regarding each 
transaction as a node, and finally alternatively separate the nodes in odd levels and even 
levels into two similar subgroups. 

(2) Shortest Spanning Path (SSP) approach: For a set of transactions, a shortest spanning 
path (Lee 1981) is constructed with a unique ordering of nodes. Then, let the nodes be 
labeled according to their positions in the path. Finally we may put nodes with odd 
numbers into one subgroup and nodes with even numbers into another subgroup. 

From the research result shown in (Fang et al. 1986), the MST approach is superior to the 
SSP approach in regarding the similarity between the original group and the obtained 
subgroups. However, the SSP approach divides the node number in the original group more 
evenly. The SSP approach guarantees that the difference between the numbers of nodes in 
subgroups is only at most one. Although finding an SSP is generally NP-hard (Papadimitriou 
and Steiglitz 1976), in this paper, we employ a polynomial approximate algorithm to 
construct a spanning path for a set of transaction D = {T1, T2, …, Tn} with the summation of 
the weight of the affinity of all the consecutive neighbors being nearly minimum. In Section 4, 
we will conduct experiments to show that the performance of de-clustering by our 
approximate SSP algorithm is superior to that by the MST approach. 

3. Our Approach 
The architecture of our approach is depicted in Figure 3.1. The architecture assumes a 

shared-nothing parallel processing environment, where each participant has a private memory 
and a private disk. The participants are connected by a communication network and can 
communicate only by message passing. The whole process can be explained by the following 
three stages: 

(1) Data Transformation: In the first stage, the set of transactions D = {T1, T2, …, Tn} will be 
transformed and represented as a set of patterns G = {p1, p2, …, pn}, which will be used 
to generate the first global frequent 1-itemset L1. 

(2) Data De-clustering: Then, in the second stage, suppose there are m participants, then we 
may employ MST or SSP to de-cluster the set of transaction patterns G = {p1, p2, …, pn} 
into m groups G1, G2, …, Gm., which will be respectively copied from the original 
database to their corresponding participants. 

(3) Task Distribution: Finally, without loss of generality, suppose L1 = {An-1, An-2, …, A0}, we 
then use row-prime order to assign these elements to the participants, which will be 
regarded as Li

1, i = 1, .., m. For a participant Pi assigned with Li
1, it will be supposed to be 

responsible for generating those itemsets with leading items belong to Li
1. This is 



 

1076 

illustrated by the dotted lines in Figure 3.1.  
Such task assignment has a very important merit that the loading of all clients will be 
balanced and the communication among all clients is dispensable. That means the 
communication cost among all participants is zero, and all participants could be fully 
utilized to maximize the parallel processing performance. Therefore, the total data hold 
by each participant is only 1/m of the original data, if there are m participants executed in 
parallel. Besides, the workload of each participant is only 1/m of the total process. 
Theoretically, since there are m participants, the total speed up can be promoted up to m2. 
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Fig. 3.1: The System Architecture 

We further clarify these stages in the following subsections. 

3.1 Data Transformation Process 
To reduce the data size, all transactions will be transformed into their corresponding 

patterns, which are all represented as bit strings. For example, letτ= {An-1, An-2, …, A0} be a 
set of items, suppose there are k transactions in D = {T1, T2, …, Tk}, where T1 = {A1, A2}, T2 
= {A2, A3, A4,…, An}, …, and Tk = {A1, A4, An}. The data transformation process will 
transform them into a binary sparse matrix as shown in Figure 3.2. Based on the matrix and a 
given support threshold s, we can obtain the first frequent 1-itemset L1. 

Tid Items  Tid A1 A2 A3 A4 … An 
T1 {A1, A2}  T1 1 1 0 0 … 0 
T2 {A2, A3, A4,…, An} ⇒ T2 0 1 1 1 … 1 
… …  … … … … … … … 
Tk {A1, A4, An}  Tk 1 0 0 1 … 1 

Original Transactions  Binary Sparse Matrix 

Fig. 3.2: An Example to Illustrate Data Transformation Process 

3.2 Data De-Clustering Process 
To de-cluster data records, according to Liu et al. (1997), nominal attribute values 
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should be ordered and assigned with different weights to differentiate their differences. 
Therefore, we define the weight of an item and a transaction in Definitions 3.1 and 3.2, 
respectively. 

Definition 3.1: For any item Ai ⊆τ= {An-1, An-2, …, A0}, 0 ≤ i ≤ n-1, the weight of Ai is 
defined as 2i. 

Definition 3.2: For a transaction T with pattern p = an-1 an-2 … a0, T ⊆τ, the weight of T, 

denoted w(T), is defined as 
1

0

n

i

i

a

!

=

"# 2i. 

To compute the difference between two transactions, we define the affinity between two 
transactions and its corresponding weight in Definitions 3.3 and 3.4, respectively. 

Definition 3.3: For two transactions Ti and Tj ⊆τ, the affinity between Ti and Tj, denoted 
aff(Ti, Tj), is defined as a bit string pi ⊕ pj = bn-1 bn-2 … b0, where ⊕ represents the bit-wise 
exclusive-or operation. 

Definition 3.4: For the affinity between Ti and Tj, aff(Ti, Tj) = bn-1 bn-2 … b0 , the weight of 

aff(Ti, Tj), denoted w(aff(Ti, Tj)), is defined as 
1

0

n

i

i

b

!

=

"# 2i. 

Based on the work presented in (Liu and Setiono 1997) and the definitions presented 
above, the following situations can be assured: 

1. Uniqueness of any transaction weight: For any two transactions Ti and Tj containing 
different items, it is guaranteed that w(Ti) ≠ w(Tj). 

2. Uniqueness of any affinity: For any two transactions Ti and Tj containing different 
items, the weight of the affinity between Ti and Tj, i.e., w(aff(Ti, Tj)), will be unique. 

In (Fang et al. 1986), there are two approaches to de-cluster a set of records into disjoint 
sets. We rewrite it for our approach, and summarize them as follows. 

1. Minimal Spanning Tree approach (MST): For a set of transactions, derive the weight 
of the affinity between any two transactions, w(aff(Ti, Tj)). Then, based on the 
obtained result, construct a minimal spanning tree by regarding these w(aff(Ti, Tj)) as 
the edge weights, and finally separate the nodes in each level circularly into the 
desired number of similar subgroups. 

2. Shortest Spanning Path approach (SSP): For a set of transactions, derive the weight 
of the affinity between any two transactions, w(aff(Ti, Tj)). Then, based on the 
obtained result, construct an approximate shortest spanning path by regarding these 
w(aff(Ti, Tj)) as the edge weights, and finally separate the nodes in each level 
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circularly into the desired number of similar subgroups. 

3.3 Task Distribution Process 
After the original set of transaction patterns G is de-clustered into m subgroups, say G1, 

G2, …, Gi, …, Gm, they will be respectively copied from the original database to the 
databases of the corresponding participants, say D1, D2, …, Di, …, Dm. Besides, without loss 
of generality, by assuming L1 = {An-1, An-2, …, A0}, we then use row-prime order to assign 
these elements to the participants. For a participant Pi assigned with elements Aj’s, it will be 
supposed to be responsible for generating only those itemsets leaded by Aj’s for Ck

i, for all k 
> 1, by scanning their local database Di. Besides, if the minimum support count for the 
original problem is s, then processor Pi will use si = s/m as the local minimum support count, 
for all 1 ≤ i ≤ m, where m is the number of processors. 

This assignment has a very important merit that the communication cost among all 
participants is zero, and all participants could be fully utilized to maximize the parallel 
processing performance. The merit is obtained by an important observation explained as 
follows. 

Letτ= {An-1, An-2, …, A0} be a set of items. By the original Apriori algorithm, if L1 = 
{An-1, An-2, …, A0}, and suppose the elements in L1 are scanned from left to right to derive the 
next candidate itemset C2, then An-1, An-2, …, A0 will be accessed n-1, n-2, …, 0 times 
respectively. Repeatedly, if Lk-1 = {Al-1, Al-2, …, A0}, then Al-1, Al-2, …, A0 will be accessed l-1, 
l-2, …, 0 times respectively, to derive the next candidate itemset Ck. That means the load is 
quite unbalanced as Figure 3.3 illustrates. Therefore, if we dispatch these elements serially to 
all participants in a parallel processing environment, then the load of all clients is severely 
unbalanced and the computation cost will be time-consuming. 

Lk-1 Ck 
Al-1 Al-1 Al-2, Al-1 Al-3, Al-1 Al-4, …, A1 A0 
Al-2 Al-2 Al-3, Al-2 Al-4, …, Al-2 A0 
Al-3 Al-3 Al-4, …, Al-3 A0 
Al-4 …, Al-4 A0 
… … 
A0 ∅ 

Fig. 3.3: Unbalanced scanning of Lk-1 to derive the next candidate itemset Ck. 

By our approach, we assign the task to generate a next candidate itemset Ck by row-prime 
order to balance the load. If there are m participants executed in parallel, then the total data 
hold by each participant is only about 1/m of the original data and their loads are balanced as 
Figure 3.4 depicts. Besides, the workload of each participant is only 1/m of the total process. 
Theoretically, since there are m participants, the total speed up can be up to m2. 

Participants Number of Task Assignments Total Number of 
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of L1 Elements Task Assignments 
P1 n – 1 n – 2m … 2n – 2m – 1 
P2 n – 2 n – 2m + 1 … 2n – 2m – 1 
P3 n – 3 n – 2m + 2 … 2n – 2m – 1 
… … … … 2n – 2m – 1 
Pm n – m n – m – 1 … 2n – 2m – 1 

Fig. 3.4: Load Balancing of Each Participant. 

3.4 The Revised Algorithm 
Based on the above discussions, we revise Apriori into a parallel version, such that it is 

executed in any participant Pi by scanning its local database Di using the minimum support 
threshold si = s/m, where s is the original minimum support threshold, and m is the number of 
participants. All participants will execute independently. Finally, the complete frequent 
itemsets can be obtained directly by collecting all of the result derived in all participants.  

As the elements in L1 are partitioned and distributed to different processors (in row-prime 
order), the Apriori property─all nonempty subsets of a frequent itemset must also be 
frequent─used in each participant should be relaxed to avoid losing frequent itemsets when 
reducing the search space. We call the relaxed property as Anti-Apriori property─all 
nonempty subsets of a local frequent itemset is supposed to be frequent globally, but it may 
not be supposed to be frequent locally. This relaxed property is based on the following 
observation. During calculating a candidate itemset Ci

k for some k > 2 in processor Pi, by 
joining Li

k-1 with itself, an itemset l with l ∈ Li
k-1, l[1] ∉ Li

1, and is not satisfying the local 
minimum support threshold si does not mean l is not frequent globally. This is because there 
may exist another processor Pj, which is responsible for generating l as a frequent itemset and 
l[1] ∈ Lj

1. Therefore, if an item A is added to the itemset l, then the resulting itemset (i.e., l ∪ 
A) may be also as frequent as l from global point of view. Therefore, l ∪ A should not be 
discarded in Ci

k. Since Di and Dj are two databases with similar characteristics (i.e., they have 
the same probability containing l), if l is not frequent globally (i.e., when scanning the 
database D by support threshold s), then it will not be expected frequent in Di or Dj and will 
be discarded eventually. 

Our parallel algorithm mainly revises the join and prune process of Apriori to find the 
result, which will be explained as follows. Note that we also assume items within a 
transaction or itemset are sorted into lexicographic order. 

1. The join step: It is easily to realize that the result of the join step in the original Apriori 
algorithm in a single processor, which joins Lk-1 with itself (i.e. Lk-1 �  Lk-1 for k > 2), 
should be preserved when these tasks are accomplished by multiple processors. If 
there are m processors, then it is straightforward to realize that Lk-1 �  Lk-1 can be 
decomposed into (∪1≤ i ≤ m L

i
k-1)�  Lk-1 = (L

1
k-1 �  Lk-1) ∪ (L

2
k-1 �  Lk-1) ∪ … ∪ (L

m
k-1 �  
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Lk-1). To guarantee any possible frequent itemsets being properly handled, the join 
step will be distinguished into the following two cases.  

(a) To find L
i
2, according to the decomposition formula, we perform L

i
1 �  L1 to 

produce the candidate set C
i
2 in Pi, for all 1≤ i ≤ m. This makes items in L1 − L

i
1 

be taken into account for generating a candidate set in any processor Pi. If they 
are discarded in the first place, then according to the Apriori property, none of its 
supersets will be included in the forthcoming candidate sets, which implies some 
frequent itemsets will be lost in later iterations. Let l1 be an itemset in L

i
1 and l2 

be an itemset in L1 (i.e., l1 and l2 both contain only one element), then they are 
joined if (l1[1] < l2[1]). The result 2-itemsets formed by joining l1 and l2 is l1[1] 
l2[1]. 

(b) To find L
i
k in Pi, for k > 2, a set of candidate k-itemsets, denoted C

i
k, is generated 

by L
i
k-1 �  L

i
k-1. The process is absolutely analogous to the join step in the Apriori 

algorithm. Let l1 and l2 be itemsets in L
i
k-1. When the first (k-2) items in members 

l1 and l2 are in common, then they are joined if (l1[1] = l2[1]) ∧ (l1[2] = l2[2]) 
∧…∧ (l1[k-2] = l2[k-2]) ∧ (l1[k-1] < l2[k-1]). The last condition l1[k-1] < l2[k-1] 
simply ensures that no duplicates are generated. The result k-itemsets formed by 
joining l1 and l2 is l1[1] l1[2]… l1[k-1] l2[k-1]. 

2. The prune step: All candidates in C
i
k having a count no less than si are locally frequent 

and therefore belong to L
i
k. For any (k-1)-subset of a candidate k-itemset not in L

i
k-1, 

the candidate cannot be frequent locally. However, according to the Anti-Apriori 
property discussed above, those itemsets l with l ∈ Li

k-1, but l[1] ∉ Li
1 may be 

frequent globally and should be retained in C
i
k to avoid losing frequent itemsets. 

4. Experimental Results 
To verify and assess the effectiveness of our approach, we have implemented the 

algorithms and conducted some experiments on different sample databases. We use four 
IBM-compatible personal computers to run on Windows 2000 Server with Microsoft SQL 
Server 2000 as our database engine. The test data are generated from a program provided by 
IBM Data Mining Research Group (Intelligent Information Systems Research department) in 
IBM Almaden Research Center 
(http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html), which has 
been widely adopted by many data mining research works (Agrawal and Shafer 1996; 
Agrawal et al. 1993; Park et al. 1995; Savasere et al. 1995). The program simulates 
customer-purchasing behaviors and generates transactions data according to the Poisson 
distribution. The parameters we have used to generate the test databases are listed in Table 
4.1. Based on these parameters, we have generated five different databases as Table 4.2 
illustrates. 
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Table 4.1: The Parameters Used for Generating the Test Databases 

Parameters Description 
| D | Total number of transactions in the database 
| T | Average number of items per transaction (i.e., transaction length) 
| I | Average number of attributes in the candidate itemsets 
| L | The largest number of attributes in the candidate itemsets 
N Number of attributes in the database 

Table 4.2: The Test Databases 
Database Id | D | N | T | | I | 

N30.T7.I5.D01K 100 30 7 5 
N30.T7.I5.D05K 500 30 7 5 
N30.T7.I5.D1K 1000 30 7 5 
N30.T7.I5.D2K 2000 30 7 5 
N30.T7.I5.D3K 3000 30 7 5 

We have tested these databases to run the Apriori algorithm on a single site and obtained 
the result as shown in Figure 4.1. The times needed in testing different databases are raised 
exponentially when the sizes of the databases are increased. 

Besides, the costs needed for constructing a minimal spanning tree (MST) and the 
shortest spanning path (SSP) for each test database are illustrated in Figure 4.2. The cost for 
constructing an MST using Kruskal’s algorithm is dominated by the edge sorting process, 
which takes O(mlogm) time complexity, where m is the number of edges in the graph. In the 
worst case, m = n2, where n is the number of nodes in the graph. That is, it takes O(n2logn) 
time complexity to generate an MST. In contrasts, the time complexity of our 
divide-and-conquer method takes only O(nlogn) time. 
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Fig. 4.1: The Single Site Test Result Fig. 4.2: The Costs for Constructing MST and SSP 

Finally, after conducting the performance test of generating Lk in parallel, we obtain the 
result as Figure 4.3 depicts. Obviously, the performance can be greatly improved by 
multi-sites execution in parallel and there are only slightly differences among the cases using 
two, three, and four sites to accomplish the tasks. Based such derivations, we obtain the 
precision and recall rates are all greater than 0.9, which support that our parallel method can 
be effective and feasible to be applied to a very large database for mining association rules. 
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Fig. 4.3: Conducting the Performance Test of Generating Lk in Parallel. 

5. Conclusions and Future Work 
The association rule mining is useful in selective marketing, decision analysis, and 

business intelligence. However, most of the algorithms suffer from its time-consuming 
process. In this paper, we have presented a parallel approach that de-clusters the transaction 
database into partitions and dispatches the task to all participating sites. The purpose is to 
absolutely eliminate inter-site communications after distributing all subtasks. Such merit can 
be employed to support a high-performance parallel and distributed grid computation over a 
wide-area network. 

Based on this approach, all the transaction data will be de-clustered into partitions, such 
that all partitions are not only quite similar to each others, but also quite similar to the 
original group. Then, the subtasks of itemset generation will be assigned to the participating 
sites by initially assigning elements in L1 in row-prime order to highly balance the workload 
of each site. 

We have conducted an empirical study on our approach and found that the obtained 
result is almost exactly the same as that obtained from Apriori when the dataset is large 
enough. Besides, we have also shown the Apriori property employed in the original Apriori 
algorithm should be relaxed to retain some locally infrequent but may be globally frequent 
subsets of a candidate itemset to avoid information loss. 

The inaccurate results produced by our approach are caused from unbalanced partitions 
produced by the de-clustering process and the round-off error on computing the local support 
count si = s/m, where s and m are the original support count and the number of processors, 
respectively. 

Based on different criteria, association rules can be further classified into several 
categories such as the following categories summarized in (Han and Kamber 2001): 

1. Based on the types of values handled in the rule, associations can be classified into 
Boolean versus quantitative. 
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2. Based on the dimensions of data involved in the rules, associations can be classified 
into single-dimensional versus multi-dimensional. 

3. Based on the levels of abstractions involved in the rule, associations can be 
classified into single-level versus multi-level. 

4. Based on various extensions to association mining, association mining can be 
extended to correlation analysis, and the mining of maximal frequent patterns and 
frequent closed itemsets. 

All of the categories have their corresponding algorithms been proposed. How to 
parallelize these algorithms by employing the concept of data de-clustering and the 
row-prime order task distribution will be further investigated in the future. 
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