
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2005 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

December 2005

Parallel Association Rule Mining by Data De-
Clustering to Support Grid Computing
Frank Tseng
National Kaohsiung First University of Science and Technology

Pey-Yen Chen
National Kaohsiung First University of Science and Technology

Follow this and additional works at: http://aisel.aisnet.org/pacis2005

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Tseng, Frank and Chen, Pey-Yen, "Parallel Association Rule Mining by Data De-Clustering to Support Grid Computing" (2005).
PACIS 2005 Proceedings. 89.
http://aisel.aisnet.org/pacis2005/89

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301340796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2005%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005?utm_source=aisel.aisnet.org%2Fpacis2005%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2005%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2005%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005?utm_source=aisel.aisnet.org%2Fpacis2005%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005/89?utm_source=aisel.aisnet.org%2Fpacis2005%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1071

Parallel Association Rule Mining by Data De-Clustering
to Support Grid Computing∗

Frank S.C. Tseng† and Pey-Yen Chen

Dept. of Information Management
National Kaohsiung First University of Science and Technology

1, University Road, YenChao, Kaohsiung County, Taiwan, 824 R.O.C.
imfrank@ccms.nkfust.edu.tw

Abstract

Most of the association rule mining algorithms suffer from the time-consuming elaboration
on finding all candidates that fit the subjective conditions. We believe the most effective way
is to develop parallel algorithms to promote the performance. However, prior parallel
architectures and algorithms suffer from overhead in inter-site communications or requiring
large number of space to maintain the local support counts of a large number of candidate
sets. In this paper, we propose a parallel approach, which absolutely eliminates the inter-site
communication cost for the most influential Apriori algorithm or its variations. The merit
makes our approach to be easily deployed in a grid computing environment. Our work is
based on the idea of data de-clustering, such that the transaction database is de-clustered into
partitions for all participating sites. That guarantees all subgroups are not only quite similar to
each other, but also quite similar to the original group. To balance the workload of the most
time-consuming subtasks (i.e., the candidate itemsets generation process) of all participating
sites, elements in the frequent 1-itemset are dispatched in row-prime order to each processor
to execute in parallel. We have conducted experiments to show that the result obtained by our
approach is almost the same as that obtained by running the Apriori algorithm on a single site.
However, if there are m processors executed in our parallel approach, then the total speed up
can be promoted up to m2, which makes our work a very efficient and effective approach.

Keywords: Association Rule Mining, De-Clustering, Minimum Spanning Tree, Shortest
Spanning Path.

1. Introduction
Thanks to the progress of the Internet technology, most of the enterprise databases can

collect huge amounts of data easily from daily transactions. The volume is expected to grow
considerably in the future. Hence, to effectively utilize these data, an attractive task is to
derive valuable patterns or collect profitable insights from the data to guide enterprises’
marketing strategies and management policies. That inspires data mining technologies being
prolifically adopted in contemporary applications to explore versatile and previously
untapped knowledge for supporting decision makers.

Among the various data mining approaches, the association rule generation from vast

∗ This Research was supported by the National Science Council, Taiwan, ROC, under contract no. NSC
93-2416-H-327-007.

† To whom all correspondence should be sent. Tel: +886-7-6011000 Ext. 4113, Fax: +886-7-7659541

1072

amounts of business transactional data has been extensively studied in this decade (Aggarwal
and Yu 2001; 2002; 2003) and gained considerable prominence in the database community
(Aggarwal et al. 2002; Agrawal and Srikant 1994; Brin et al. 1997; Han and Fu 1995; Rastogi
and Shim 2002). However, owing to the huge target data volume, most of the algorithms
suffer from the elaboration on finding all candidates that fit the subjective conditions, which
is a process prone to time-consuming. Therefore, we believe the most effective way is to
develop parallel algorithms to promote the performance.

Although some parallel architectures and algorithms have been proposed, we found
there are still some overhead exists in these approaches, which motivates our work. In this
paper, we intend to develop a parallel algorithm that de-clusters the problem into subtasks
and dispatches them to all participating sites. The purpose is to absolutely eliminate inter-site
communications after distributing all subtasks. That is, communications occur only at the
very beginning and ending of the whole process. As a result, there is no communication cost
during the itemset generation process, which makes our framework a very efficient and
effective approach.

The idea of our approach is based on the concept of data de-clustering adopted from
(Fang et al. 1986). Based on this approach, all the transaction data will be de-clustered into
subgroups, such that all subgroups are not only quite similar to each others, but also quite
similar to the original group. Then, the subgroups of itemset generation will be assigned to
the participating sites by initially assigning elements in the frequent 1-itemset in row-prime
order (Samet 1989). By such task assignment, the load of each site can be highly balanced
and the frequent itemsets of each site can be quickly obtained independently. Finally, the
complete frequent itemsets can be obtained by directly collecting all the locally obtained
frequent itemsets. Although it seems that our approach may lose some of the frequent
itemsets, we have conducted an empirical study on our approach and found that the obtained
result is almost exactly the same as that obtained from Apriori. However, if there are m sites
participating in the system, then the total task can be achieved in nearly 1/m2 of the original
time complexity.

This paper is organized as follows. Section 2 surveys some related works. Section 3
addresses our approach in details. Section 4 presents an empirical study of our work. Finally,
Section 5 concludes our work and proposes some future directions.

2. Related Works

2.1 Association Rule Mining
The basic problem of finding association rules as introduced by Argawal et al. (1993) is

as follows. Let τ= {An-1, An-2, …, A0} be a set of literals, called items. Let D be a set of

1073

transactions, where each transaction T is an itemset such that T ⊆τ. We say that a
transaction T contains X, a set of some items inτ, if X ⊆ T. An association rule is an
implication of the form X ⇒ Y, where X ⊂τ, Y ⊂τ, and X ∩ Y = ∅. The rule X ⇒ Y has
support s in the transaction set D if s% of transactions in D contains X ∪ Y. This is taken to
be the probability, P(X ∪ Y). The rule X ⇒ Y holds in the transaction set D with confidence c
if c% of transactions in D that contain X also contain Y. This is taken to be the conditional
probability, P(Y | X).

Such problem can be decomposed into the following sub-problems:

1. First, all sets of items that are contained in a number of transactions above the
minimum support requirement are iteratively identified and referred to as frequent
itemsets.

2. Then, the desired association rules can be generated in a straightforward manner
based on the finally obtained frequent itemsets.

Much of the research has been focused on the first sub-problem, which can be reduced
to finding frequent itemsets with respect to a given support threshold (Agrawal et al. 1993;
Cheung and Xiao 1999). Our work also focuses on finding all frequent itemsets in parallel.

We follow the notations used in Agrawal and Shafer (1996) to illustrate our approach,
where we use superscripts to indicate processor id and subscripts to indicate the pass number
(and the size of the itemset) as illustrated in Table 2.1.

Table 2.1: Notations Used in the Apriori Algorithm.
Notation Description

Lk Set of frequent k-itemsets (those with minimum support threshold).
Each member of this set has two fields:
(a) itemset and (b) support count.

Ck Set of candidate k-itemsets (potentially frequent itemsets).
Each member of this set has two fields:
(a) itemsets and (b) support count

si The local support threshold of processor Pi.
Pi Processor with id i.
Di The dataset local to the processor Pi.
Li

k Set of frequent k-itemsets (those with local minimum support threshold) in Pi.
Each member of this set has two fields:
(a) itemset and (b) support count.

Ci
k The candidate set maintained with the Processor Pi during the k-th pass (there

are k items in each candidate).

In our approach, a transaction T will be represented as a bit string p, called pattern,
which is defined as follows.

Definition 2.1: For a transaction T ⊆τ= {An-1, An-2, …, A0}, the pattern of T is defined as a
bit string p = an-1 an-2 … a0, where ai = 0 if Ai ∉ T, and ai = 1 if Ai ∈ T.

1074

For a set of transactions D = {T1, T2, …, Tn}, it can be represented as a set of patterns G
= {p1, p2, …, pn} by transforming all transactions into their corresponding patterns.

2.2 Parallel Association Rule Mining
The influential algorithm Apriori developed by Agrawal et al. (Agrawal et al. 1993) is

simple and easy to implement. However, since the first step may need repeatedly scanning
the database to generate exponential candidates for counting the support, there are so many
disk I/O operations involved in the frequent itemset generation process, which becomes a
severe bottleneck.

Owning to the costs of computer peripherals are usually getting cheaper, but the speed
performs higher, some parallel algorithms have been proposed. For instance, Park et al. (1995)
generalized their DHP algorithm into a parallel version called PDM (Parallel Data Mining),
Cheung et al. (1996) proposed FDM (Fast Distributed Mining) method, and Agrawal and
Shafer (1996) presents three parallel algorithms, namely Count Distribution, Data
Distribution, and Candidate Distribution methods. Cheung et al. (2002) have pointed out that
most of the research activities fall into one of these paradigms. For an earlier comprehensive
survey, readers are referred to (Zaki 1999).

These approaches usually suffer from the inter-site communication overhead during the
itemset generation process. When the data is skew, the performance may downgrade
drastically. Therefore, the main objective of our work is to establish a parallel architecture for
the Apriori method or its variations, and get rid of all the inter-site communications to
maximize the speed of the frequent itemset generation process in parallel. Such merit
supports a high-performance parallel and distributed grid computation over a wide-area
network (Fox 2003).

2.3 Data De-Clustering
The concept of de-clustering is just the opposite effect of clustering analysis. By the

definition of (Fang et al. 1986), for a set of data S, a de-clustering analysis divides S into n
groups G1, G2, …, Gn, such that

(1) All groups G1, G2, …, Gn will be quite similar to the original set S.

(2) G1, G2, …, Gn should be quite similar to each others.

In (Fang et al. 1986), two approaches have been proposed to de-cluster a set of data, namely
the minimal spanning tree approach and the shortest spanning path approach. To explain
these approaches easily, the original group will be divided into two subgroups, which are
similar to each other. We briefly describe them as follows.

1075

(1) Minimal Spanning Tree (MST) approach: For a set of transactions, construct a minimal
spanning tree (Graham and Hell 1985; Kruskal 1956; Yao 1975) by regarding each
transaction as a node, and finally alternatively separate the nodes in odd levels and even
levels into two similar subgroups.

(2) Shortest Spanning Path (SSP) approach: For a set of transactions, a shortest spanning
path (Lee 1981) is constructed with a unique ordering of nodes. Then, let the nodes be
labeled according to their positions in the path. Finally we may put nodes with odd
numbers into one subgroup and nodes with even numbers into another subgroup.

From the research result shown in (Fang et al. 1986), the MST approach is superior to the
SSP approach in regarding the similarity between the original group and the obtained
subgroups. However, the SSP approach divides the node number in the original group more
evenly. The SSP approach guarantees that the difference between the numbers of nodes in
subgroups is only at most one. Although finding an SSP is generally NP-hard (Papadimitriou
and Steiglitz 1976), in this paper, we employ a polynomial approximate algorithm to
construct a spanning path for a set of transaction D = {T1, T2, …, Tn} with the summation of
the weight of the affinity of all the consecutive neighbors being nearly minimum. In Section 4,
we will conduct experiments to show that the performance of de-clustering by our
approximate SSP algorithm is superior to that by the MST approach.

3. Our Approach
The architecture of our approach is depicted in Figure 3.1. The architecture assumes a

shared-nothing parallel processing environment, where each participant has a private memory
and a private disk. The participants are connected by a communication network and can
communicate only by message passing. The whole process can be explained by the following
three stages:

(1) Data Transformation: In the first stage, the set of transactions D = {T1, T2, …, Tn} will be
transformed and represented as a set of patterns G = {p1, p2, …, pn}, which will be used
to generate the first global frequent 1-itemset L1.

(2) Data De-clustering: Then, in the second stage, suppose there are m participants, then we
may employ MST or SSP to de-cluster the set of transaction patterns G = {p1, p2, …, pn}
into m groups G1, G2, …, Gm., which will be respectively copied from the original
database to their corresponding participants.

(3) Task Distribution: Finally, without loss of generality, suppose L1 = {An-1, An-2, …, A0}, we
then use row-prime order to assign these elements to the participants, which will be
regarded as Li

1, i = 1, .., m. For a participant Pi assigned with Li
1, it will be supposed to be

responsible for generating those itemsets with leading items belong to Li
1. This is

1076

illustrated by the dotted lines in Figure 3.1.
Such task assignment has a very important merit that the loading of all clients will be
balanced and the communication among all clients is dispensable. That means the
communication cost among all participants is zero, and all participants could be fully
utilized to maximize the parallel processing performance. Therefore, the total data hold
by each participant is only 1/m of the original data, if there are m participants executed in
parallel. Besides, the workload of each participant is only 1/m of the total process.
Theoretically, since there are m participants, the total speed up can be promoted up to m2.

Source

DB

Post-DB

D 1

D 2

D 3

D m

Merge A
2
, A

2m-1
, A

2m+2
,...

Merge A
3
, A

2m-2
, A

2m+3
,...

Merge A
1
, A

2m
, A

2m+1
,...

Merge A
m
, A

m+1
, A

3m
,...

: ...

D i Data = 1/m Source DB

Workload = 1/m Original Workload

(3) Task Distribution(2) Data De-Clustering

(1) Data

Transformation

D i Data = 1/m Source DB

Workload = 1/m2 Original Workload

...

...

Site 1

Site 2

Site 3

Site m

...

Fig. 3.1: The System Architecture

We further clarify these stages in the following subsections.

3.1 Data Transformation Process
To reduce the data size, all transactions will be transformed into their corresponding

patterns, which are all represented as bit strings. For example, letτ= {An-1, An-2, …, A0} be a
set of items, suppose there are k transactions in D = {T1, T2, …, Tk}, where T1 = {A1, A2}, T2
= {A2, A3, A4,…, An}, …, and Tk = {A1, A4, An}. The data transformation process will
transform them into a binary sparse matrix as shown in Figure 3.2. Based on the matrix and a
given support threshold s, we can obtain the first frequent 1-itemset L1.

Tid Items Tid A1 A2 A3 A4 … An
T1 {A1, A2} T1 1 1 0 0 … 0
T2 {A2, A3, A4,…, An} ⇒ T2 0 1 1 1 … 1
… … … … … … … … …
Tk {A1, A4, An} Tk 1 0 0 1 … 1

Original Transactions Binary Sparse Matrix

Fig. 3.2: An Example to Illustrate Data Transformation Process

3.2 Data De-Clustering Process
To de-cluster data records, according to Liu et al. (1997), nominal attribute values

1077

should be ordered and assigned with different weights to differentiate their differences.
Therefore, we define the weight of an item and a transaction in Definitions 3.1 and 3.2,
respectively.

Definition 3.1: For any item Ai ⊆τ= {An-1, An-2, …, A0}, 0 ≤ i ≤ n-1, the weight of Ai is
defined as 2i.

Definition 3.2: For a transaction T with pattern p = an-1 an-2 … a0, T ⊆τ, the weight of T,

denoted w(T), is defined as
1

0

n

i

i

a

!

=

"# 2i.

To compute the difference between two transactions, we define the affinity between two
transactions and its corresponding weight in Definitions 3.3 and 3.4, respectively.

Definition 3.3: For two transactions Ti and Tj ⊆τ, the affinity between Ti and Tj, denoted
aff(Ti, Tj), is defined as a bit string pi ⊕ pj = bn-1 bn-2 … b0, where ⊕ represents the bit-wise
exclusive-or operation.

Definition 3.4: For the affinity between Ti and Tj, aff(Ti, Tj) = bn-1 bn-2 … b0 , the weight of

aff(Ti, Tj), denoted w(aff(Ti, Tj)), is defined as
1

0

n

i

i

b

!

=

"# 2i.

Based on the work presented in (Liu and Setiono 1997) and the definitions presented
above, the following situations can be assured:

1. Uniqueness of any transaction weight: For any two transactions Ti and Tj containing
different items, it is guaranteed that w(Ti) ≠ w(Tj).

2. Uniqueness of any affinity: For any two transactions Ti and Tj containing different
items, the weight of the affinity between Ti and Tj, i.e., w(aff(Ti, Tj)), will be unique.

In (Fang et al. 1986), there are two approaches to de-cluster a set of records into disjoint
sets. We rewrite it for our approach, and summarize them as follows.

1. Minimal Spanning Tree approach (MST): For a set of transactions, derive the weight
of the affinity between any two transactions, w(aff(Ti, Tj)). Then, based on the
obtained result, construct a minimal spanning tree by regarding these w(aff(Ti, Tj)) as
the edge weights, and finally separate the nodes in each level circularly into the
desired number of similar subgroups.

2. Shortest Spanning Path approach (SSP): For a set of transactions, derive the weight
of the affinity between any two transactions, w(aff(Ti, Tj)). Then, based on the
obtained result, construct an approximate shortest spanning path by regarding these
w(aff(Ti, Tj)) as the edge weights, and finally separate the nodes in each level

1078

circularly into the desired number of similar subgroups.

3.3 Task Distribution Process
After the original set of transaction patterns G is de-clustered into m subgroups, say G1,

G2, …, Gi, …, Gm, they will be respectively copied from the original database to the
databases of the corresponding participants, say D1, D2, …, Di, …, Dm. Besides, without loss
of generality, by assuming L1 = {An-1, An-2, …, A0}, we then use row-prime order to assign
these elements to the participants. For a participant Pi assigned with elements Aj’s, it will be
supposed to be responsible for generating only those itemsets leaded by Aj’s for Ck

i, for all k
> 1, by scanning their local database Di. Besides, if the minimum support count for the
original problem is s, then processor Pi will use si = s/m as the local minimum support count,
for all 1 ≤ i ≤ m, where m is the number of processors.

This assignment has a very important merit that the communication cost among all
participants is zero, and all participants could be fully utilized to maximize the parallel
processing performance. The merit is obtained by an important observation explained as
follows.

Letτ= {An-1, An-2, …, A0} be a set of items. By the original Apriori algorithm, if L1 =
{An-1, An-2, …, A0}, and suppose the elements in L1 are scanned from left to right to derive the
next candidate itemset C2, then An-1, An-2, …, A0 will be accessed n-1, n-2, …, 0 times
respectively. Repeatedly, if Lk-1 = {Al-1, Al-2, …, A0}, then Al-1, Al-2, …, A0 will be accessed l-1,
l-2, …, 0 times respectively, to derive the next candidate itemset Ck. That means the load is
quite unbalanced as Figure 3.3 illustrates. Therefore, if we dispatch these elements serially to
all participants in a parallel processing environment, then the load of all clients is severely
unbalanced and the computation cost will be time-consuming.

Lk-1 Ck
Al-1 Al-1 Al-2, Al-1 Al-3, Al-1 Al-4, …, A1 A0
Al-2 Al-2 Al-3, Al-2 Al-4, …, Al-2 A0
Al-3 Al-3 Al-4, …, Al-3 A0
Al-4 …, Al-4 A0
… …
A0 ∅

Fig. 3.3: Unbalanced scanning of Lk-1 to derive the next candidate itemset Ck.

By our approach, we assign the task to generate a next candidate itemset Ck by row-prime
order to balance the load. If there are m participants executed in parallel, then the total data
hold by each participant is only about 1/m of the original data and their loads are balanced as
Figure 3.4 depicts. Besides, the workload of each participant is only 1/m of the total process.
Theoretically, since there are m participants, the total speed up can be up to m2.

Participants Number of Task Assignments Total Number of

1079

of L1 Elements Task Assignments
P1 n – 1 n – 2m … 2n – 2m – 1
P2 n – 2 n – 2m + 1 … 2n – 2m – 1
P3 n – 3 n – 2m + 2 … 2n – 2m – 1
… … … … 2n – 2m – 1
Pm n – m n – m – 1 … 2n – 2m – 1

Fig. 3.4: Load Balancing of Each Participant.

3.4 The Revised Algorithm
Based on the above discussions, we revise Apriori into a parallel version, such that it is

executed in any participant Pi by scanning its local database Di using the minimum support
threshold si = s/m, where s is the original minimum support threshold, and m is the number of
participants. All participants will execute independently. Finally, the complete frequent
itemsets can be obtained directly by collecting all of the result derived in all participants.

As the elements in L1 are partitioned and distributed to different processors (in row-prime
order), the Apriori property─all nonempty subsets of a frequent itemset must also be
frequent─used in each participant should be relaxed to avoid losing frequent itemsets when
reducing the search space. We call the relaxed property as Anti-Apriori property─all
nonempty subsets of a local frequent itemset is supposed to be frequent globally, but it may
not be supposed to be frequent locally. This relaxed property is based on the following
observation. During calculating a candidate itemset Ci

k for some k > 2 in processor Pi, by
joining Li

k-1 with itself, an itemset l with l ∈ Li
k-1, l[1] ∉ Li

1, and is not satisfying the local
minimum support threshold si does not mean l is not frequent globally. This is because there
may exist another processor Pj, which is responsible for generating l as a frequent itemset and
l[1] ∈ Lj

1. Therefore, if an item A is added to the itemset l, then the resulting itemset (i.e., l ∪
A) may be also as frequent as l from global point of view. Therefore, l ∪ A should not be
discarded in Ci

k. Since Di and Dj are two databases with similar characteristics (i.e., they have
the same probability containing l), if l is not frequent globally (i.e., when scanning the
database D by support threshold s), then it will not be expected frequent in Di or Dj and will
be discarded eventually.

Our parallel algorithm mainly revises the join and prune process of Apriori to find the
result, which will be explained as follows. Note that we also assume items within a
transaction or itemset are sorted into lexicographic order.

1. The join step: It is easily to realize that the result of the join step in the original Apriori
algorithm in a single processor, which joins Lk-1 with itself (i.e. Lk-1 � Lk-1 for k > 2),
should be preserved when these tasks are accomplished by multiple processors. If
there are m processors, then it is straightforward to realize that Lk-1 � Lk-1 can be
decomposed into (∪1≤ i ≤ m L

i
k-1)� Lk-1 = (L

1
k-1 � Lk-1) ∪ (L

2
k-1 � Lk-1) ∪ … ∪ (L

m
k-1 �

1080

Lk-1). To guarantee any possible frequent itemsets being properly handled, the join
step will be distinguished into the following two cases.

(a) To find L
i
2, according to the decomposition formula, we perform L

i
1 � L1 to

produce the candidate set C
i
2 in Pi, for all 1≤ i ≤ m. This makes items in L1 − L

i
1

be taken into account for generating a candidate set in any processor Pi. If they
are discarded in the first place, then according to the Apriori property, none of its
supersets will be included in the forthcoming candidate sets, which implies some
frequent itemsets will be lost in later iterations. Let l1 be an itemset in L

i
1 and l2

be an itemset in L1 (i.e., l1 and l2 both contain only one element), then they are
joined if (l1[1] < l2[1]). The result 2-itemsets formed by joining l1 and l2 is l1[1]
l2[1].

(b) To find L
i
k in Pi, for k > 2, a set of candidate k-itemsets, denoted C

i
k, is generated

by L
i
k-1 � L

i
k-1. The process is absolutely analogous to the join step in the Apriori

algorithm. Let l1 and l2 be itemsets in L
i
k-1. When the first (k-2) items in members

l1 and l2 are in common, then they are joined if (l1[1] = l2[1]) ∧ (l1[2] = l2[2])
∧…∧ (l1[k-2] = l2[k-2]) ∧ (l1[k-1] < l2[k-1]). The last condition l1[k-1] < l2[k-1]
simply ensures that no duplicates are generated. The result k-itemsets formed by
joining l1 and l2 is l1[1] l1[2]… l1[k-1] l2[k-1].

2. The prune step: All candidates in C
i
k having a count no less than si are locally frequent

and therefore belong to L
i
k. For any (k-1)-subset of a candidate k-itemset not in L

i
k-1,

the candidate cannot be frequent locally. However, according to the Anti-Apriori
property discussed above, those itemsets l with l ∈ Li

k-1, but l[1] ∉ Li
1 may be

frequent globally and should be retained in C
i
k to avoid losing frequent itemsets.

4. Experimental Results
To verify and assess the effectiveness of our approach, we have implemented the

algorithms and conducted some experiments on different sample databases. We use four
IBM-compatible personal computers to run on Windows 2000 Server with Microsoft SQL
Server 2000 as our database engine. The test data are generated from a program provided by
IBM Data Mining Research Group (Intelligent Information Systems Research department) in
IBM Almaden Research Center
(http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html), which has
been widely adopted by many data mining research works (Agrawal and Shafer 1996;
Agrawal et al. 1993; Park et al. 1995; Savasere et al. 1995). The program simulates
customer-purchasing behaviors and generates transactions data according to the Poisson
distribution. The parameters we have used to generate the test databases are listed in Table
4.1. Based on these parameters, we have generated five different databases as Table 4.2
illustrates.

1081

Table 4.1: The Parameters Used for Generating the Test Databases

Parameters Description
| D | Total number of transactions in the database
| T | Average number of items per transaction (i.e., transaction length)
| I | Average number of attributes in the candidate itemsets
| L | The largest number of attributes in the candidate itemsets
N Number of attributes in the database

Table 4.2: The Test Databases
Database Id | D | N | T | | I |

N30.T7.I5.D01K 100 30 7 5
N30.T7.I5.D05K 500 30 7 5
N30.T7.I5.D1K 1000 30 7 5
N30.T7.I5.D2K 2000 30 7 5
N30.T7.I5.D3K 3000 30 7 5

We have tested these databases to run the Apriori algorithm on a single site and obtained
the result as shown in Figure 4.1. The times needed in testing different databases are raised
exponentially when the sizes of the databases are increased.

Besides, the costs needed for constructing a minimal spanning tree (MST) and the
shortest spanning path (SSP) for each test database are illustrated in Figure 4.2. The cost for
constructing an MST using Kruskal’s algorithm is dominated by the edge sorting process,
which takes O(mlogm) time complexity, where m is the number of edges in the graph. In the
worst case, m = n2, where n is the number of nodes in the graph. That is, it takes O(n2logn)
time complexity to generate an MST. In contrasts, the time complexity of our
divide-and-conquer method takes only O(nlogn) time.

!
"!!
#!!
$!!
%!!
&!!!
&"!!

N
3
0
.T
7
.I
5
.D
0
1
K

N
3
0
.T
7
.I
5
.D
0
5
K

N
3
0
.T
7
.I
5
.D
1
K

N
3
0
.T
7
.I
5
.D
2
K

N
3
0
.T
7
.I
5
.D
3
K

'
()
*+
,-
*.
/

!
"
#
$
%
&
'
(

N
3

0
.T

7
.I

5
.D

0
1

K

N
3

0
.T

7
.I

5
.D

0
5

K

N
3

0
.T

7
.I

5
.D

1
K

N
3

0
.T

7
.I

5
.D

2
K

N
3

0
.T

7
.I

5
.D

3
K

)
*+
,-
."
!!
!-
/,
01

Cost for

Constructing

MST

Cost for

Constructing

SSP

Fig. 4.1: The Single Site Test Result Fig. 4.2: The Costs for Constructing MST and SSP

Finally, after conducting the performance test of generating Lk in parallel, we obtain the
result as Figure 4.3 depicts. Obviously, the performance can be greatly improved by
multi-sites execution in parallel and there are only slightly differences among the cases using
two, three, and four sites to accomplish the tasks. Based such derivations, we obtain the
precision and recall rates are all greater than 0.9, which support that our parallel method can
be effective and feasible to be applied to a very large database for mining association rules.

1082

!
"!
#!
$!
%!
&!
'!
(!
)!

*$
!+
,(
+-&
+.
!"
/

*$
!+
,(
+-&
+.
!&
/

*$
!+
,(
+-&
+.
"/

*$
!+
,(
+-&
+.
#/

*$
!+
,(
+-&
+.
$/

,
01
23
45
26
+7 "35802

#350829

$350829

%350829

Fig. 4.3: Conducting the Performance Test of Generating Lk in Parallel.

5. Conclusions and Future Work
The association rule mining is useful in selective marketing, decision analysis, and

business intelligence. However, most of the algorithms suffer from its time-consuming
process. In this paper, we have presented a parallel approach that de-clusters the transaction
database into partitions and dispatches the task to all participating sites. The purpose is to
absolutely eliminate inter-site communications after distributing all subtasks. Such merit can
be employed to support a high-performance parallel and distributed grid computation over a
wide-area network.

Based on this approach, all the transaction data will be de-clustered into partitions, such
that all partitions are not only quite similar to each others, but also quite similar to the
original group. Then, the subtasks of itemset generation will be assigned to the participating
sites by initially assigning elements in L1 in row-prime order to highly balance the workload
of each site.

We have conducted an empirical study on our approach and found that the obtained
result is almost exactly the same as that obtained from Apriori when the dataset is large
enough. Besides, we have also shown the Apriori property employed in the original Apriori
algorithm should be relaxed to retain some locally infrequent but may be globally frequent
subsets of a candidate itemset to avoid information loss.

The inaccurate results produced by our approach are caused from unbalanced partitions
produced by the de-clustering process and the round-off error on computing the local support
count si = s/m, where s and m are the original support count and the number of processors,
respectively.

Based on different criteria, association rules can be further classified into several
categories such as the following categories summarized in (Han and Kamber 2001):

1. Based on the types of values handled in the rule, associations can be classified into
Boolean versus quantitative.

1083

2. Based on the dimensions of data involved in the rules, associations can be classified
into single-dimensional versus multi-dimensional.

3. Based on the levels of abstractions involved in the rule, associations can be
classified into single-level versus multi-level.

4. Based on various extensions to association mining, association mining can be
extended to correlation analysis, and the mining of maximal frequent patterns and
frequent closed itemsets.

All of the categories have their corresponding algorithms been proposed. How to
parallelize these algorithms by employing the concept of data de-clustering and the
row-prime order task distribution will be further investigated in the future.

References
Aggarwal, C.C. and P.S. Yu, “A New Approach to Online Generation of Association Rules,”
IEEE Trans. Knowledge & Data Eng. (13:4), 2001, pp. 527-540.
Aggarwal, C.C. and P.S. Yu, “Mining Associations with the Collective Strength Approach,”
IEEE Trans. Knowledge & Data Eng. (13:6), 2001, pp. 863-873.
Aggarwal, C.C. and P.S. Yu, “Redefining Clustering for High-Dimensional Applications,”
IEEE Trans. Knowledge & Data Eng. (14:2), 2002, pp. 210-225.
Aggarwal, C.C., C. Procopiuc, and P.S. Yu, “Finding Localized Associations in Market
Basket Data,” IEEE Trans. Knowledge & Data Eng. (14:1), 2002, pp. 51-62.
Agrawal, R., and J.C. Shafer, “Parallel Mining of Association Rules,” IEEE Trans.
Knowledge & Data Eng. (8:6), 1996, pp. 962-969.
Agrawal, R., and R. Srikant, “Fast Algorithms for Mining Association Rules in Large
Databases,” Proc. the 20th International Conf. Very Large Data Bases－VLDB’94, Sep. 1994,
pp. 487-499.
Agrawal, R., T. Imielinski, and A. Swami, “Mining Association Rule between Sets of Items
in Large Databases,” Proc. the ACM SIGMOD International Conf. Management of Data－
SIGMOD’93, May 1993, pp. 207-216.
Brin, S., R. Motwani, J.D. Ullman, and S. Tsur, “Dynamic Itemset Counting and Implication
Rules for Market Basket Data,” Proc. the ACM SIGMOD International Conference on
Management of Data－SIGMOD’97, 1997, pp. 255-264.
Cheung, D., and Y. Xiao, “Effect of Data Skewness in Parallel Mining of Association Rule,”
Proc. 12th Pacific-Asia Conf. Knowledge Discovery & Data Mining, 1999, pp. 48-60.
Cheung, D.W., J. Han, V.T. Ng, A.W. Fu, and Y. Fu, “A Fast Distributed Algorithm for
Mining Association Rules”, Proc. 4th International Conf. Parallel & Distributed Information
Systems, 1996, pp. 31-42.
Cheung, D.W., S.D. Lee, and Y. Xiao, “Effect of Data Skewness and Workload Balance in
Parallel Data Mining,” IEEE Trans. Knowledge and Data Eng. (14:3), 2002, pp. 498-514.
Fang, M.T., R.C.T. Lee, and C.C. Chang, “The Idea of De-Clustering and its Applications”,
Proc. 12th International Conf. Very Large Data Bases－VLDB’86, Kyoto, Japan, Aug. 1986,
pp. 181-188.
Fox, Geoffrey, Education and the enterprise with the Grid, Grid Computing: Making the
Global Infrastructure a Reality, F. Berman, G. Fox, and T. Hey eds. John Wiley & Sons,
2003.
Graham, R. and P. Hell, “On the History of the Minimum Spanning Tree Problem,” Annals of
the History of Computing (7:1), 1985, pp. 43-57.
Han, E., G. Karypis, and V. Kumar, “Scalable Parallel Data Mining for Association Rules,”
Proc. ACM-SIGMOD Int’l Conf. Management of Data, 1997.
Han, J. and Y. Fu, “Discovery of Multiple-Level Association Rules from Large Databases,”
Proc. 21st Int’l Conf. Very Large Data Bases, 1995, pp. 420-431.

1084

Han, J. and M. Kamber, §6.2.1 in Data Mining: Concepts and Techniques, Morgan
Kaufmann Publishers, 2001.
Kruskal, J. B., Jr., “On the Shortest Spanning Subtree of a Graph and Traveling Salesman
Problem,” Proc. the American Mathematical Society, V. 7, 1956, pp. 48-50.
Lee, R.C.T., “Clustering Analysis and Its Applications,” Advances in Information System
Science, Ed. By J.T. Tou, Plenum Press, New York, Vol. 8, 1981, pp. 169-292.
Liu, H. and R. Setiono, “Feature Selection via Discretization,” IEEE Trans. Knowledge &
Data Eng. (9:4), July/Aug. 1997, pp. 642-645.
Park, J.S., M.S. Chen, and P.S. Yu, “Efficient Parallel Data Mining for Association Rules,”
Proc. the 1995 Int’l Conf. Infor. & Knowledge Management, 1995, pp. 31-36.
Rastogi R. and K. Shim, “Mining Optimized Association Rules with Categorical and
Numerical Attributes,” IEEE Trans. Knowledge & Data Eng. (14:1), 2002, pp. 29-50.
Samet, H., The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1989,
pp.13-15.
Savasere A., E. Oiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association
Rules in Large Databases,” Proc. the 20th Int’l Conf. Very Large Data Bases－VLDB’95,
1995, pp. 432-444.
Yao, A.C., “An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees,”
Information Processing Letters (4:1), 1975, pp. 21-23.
Zaki, M.J., “Parallel and Distributed Association Mining: A Survey,” IEEE Concurrency─
special issue on Parallel Mechanisms for Data Mining (7:4), December, 1999, pp14-25.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2005

	Parallel Association Rule Mining by Data De-Clustering to Support Grid Computing
	Frank Tseng
	Pey-Yen Chen
	Recommended Citation

	Microsoft Word - 211.doc

