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Abstract 
 
Drug-related problems have become a growing concern in clinical medicine. Particularly 
prevalent are problems surrounding sub- and over-therapeutic doses of high-alert 
medications. In this study, we use a model-tree based regression (namely M5) and an SVM 
technique to build systems that predict the regimen adequacy of vancomycin, a glycopeptide 
antimicrobial antibiotic effective for Gram-positive bacterial infections that has a narrow 
therapeutic index and considerable toxicity and adverse effects. We evaluate each system’s 
predictions of the patient’s peak and trough concentrations resulting from a vancomycin 
regimen, using a total of 1,099 clinical cases collected from a major tertiary medical center 
in southern Taiwan. We also examine the use of Bagging for enhancing the prediction 
accuracy of the respective systems and include in our evaluation a prevailing 
one-compartment model for performance benchmark purposes. Overall, our analysis results 
show that both M5 and SVM are significantly more accurate in predicting peak and/or trough 
concentrations than the one-compartment model, which approximates the current practice at 
the studied medical center. In addition, M5 appears to benefit considerably from Bagging, 
which also has a positive effect on SVM but seemingly to a lesser extent. Taken together, our 
findings suggest promising utilities of supervised learning techniques for improving the 
clinical use of vancomycin and similar high-alerting drugs, thus complementing clinicians’ 
current practices. 
 
Keywords: Decision Support in Medicine, Supervised Learning, Pharmacokinetic Data 
Mining, Management of Clinical Use of Vancomycin, Model-Tree Based Regression, 
Support Vector Machines, Bagging 
 
 
1. Introduction 
The fast-growing pharmaceutical drugs available for patient care have made the management 
of their clinical use increasingly important. Inadequate and erroneous medications and the 
resulting adverse patient reactions have been recognized as medical malpractices by the 
American Society Health System of Pharmacists since 1995. Problems surrounding 
inadequate medications and associated effects not only adversely affect the patient’s health 
and well-being but also demand enormous resources for corrections. In the United States 
alone, the cost of clinical drug-related problems amounted to $76.6 billion in 1995 (Johnson 
and Bootman 1995) and may exceed $177.4 billion in the new millennium (Ernst and Grizzle 
2001). Of particularly alarming prevalence are problems pertinent to sub- or over-therapeutic 
doses of high-alert medications, which have been identified by the Joint Commission on 
Accreditation of Healthcare Organizations as a major concern in the prevention of health care 
errors (Shirley et al. 2003). 
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Sub- and over-therapeutic dose problems result from inadequate regimen decision making1 
by clinicians and often have profound implications to clinical efficacy and safety. Such 
decision making is particularly critical when involving therapeutic drugs that have a narrow 
therapeutic index and high toxicity (impairments) for patients. A good case in point is 
vancomycin, a glycopeptide antimicrobial antibiotic effective for Gram-positive bacterial 
infections. Because of its advantages in bactericidal effects, sustained concentrations in 
serum achieved, and limited bacterial resistance (Michel and Gutmann 1997; Vincent et al. 
1995), vancomycin has been widely used for treating methicillin-resistant staphylococcal 
infections. This particular antibiotic is a popular choice among clinicians for treating 
staphylococcal aureus and methicillin-resistant staphylococcal epidermidis (Michel and 
Gutmann 1997; Vincent et al. 1995). Vancomycin is also commonly used for curing patients 
suffering from streptococcus phylogenies, streptococcus pneumoniae, enterococci, 
corynebateririum, and clostridium difficile as well as for patients allergic to penicillin or 
cephalosporin.  
 
Clinically, measures for reducing the likelihood of a clinician’s prescribing inadequate 
regimens are more effective and appealing for both patient care and economic considerations 
than retrospective methods for regimen corrections or adjustments. Most current practices 
greatly depend on the use of the nomogram or pharmacokinetic analysis for estimating or 
evaluating vancomycin regimens; however, these methods may not be effective. In general, 
the nomogram provides clinicians with a simplistic baseline for (initial) regimen estimations 
but does not allow predictions of a regimen’s adequacy with respect to the target (normal) 
range of peak and/or trough concentration2. Meanwhile, pharmacokinetic analysis uses 
statistical models derived from clinical pharmacokinetic data of patients. As Chow et al. 
(1997) summarized, building a population pharmacokinetic model requires understanding and 
selection of various mathematical/statistical models that include a pharmacokinetic structure 
model for relating dosage, sampling time, and pharmacokinetic parameters to plasma drug 
levels; regression models describing the relationships between patient characteristics and the 
pharmacokinetic parameters; a population model for inter-subject variability; and a variance 
model for random residual variation in the data (intra-patient variability). Moreover, the 
effectiveness of a pharmacokinetic model is greatly affected by the characteristics of the 
population pharmacokinetic data. Tolle et al. (2000) suggested that repeated measures (i.e., a 
patient contributing a series of clinical cases), imbalance (i.e., unequal number of clinical 
cases per patient), and confounding (a patient receiving specific dosages based on that 
patient’s prior reactions) problems inherent to the population pharmacokinetic data make it 
difficult to develop statistical analysis tools for predicting pharmacokinetic parameters.  
 
Thus, the motivation of this study is to investigate promising AI-based supervised learning 
techniques for pharmacokinetic analysis. Such AI-based pharmacokinetic analysis systems 
predict the patient’s peak/trough concentration levels and allow clinicians to assess regimen 
adequacy of vancomycin. From the perspective of clinical practice, they can enhance the 
efficacy of primitive regimen estimations based on the nomogram and, at the same time, 
complement the pharmacokinetic analysis. For example, a clinician could estimate an initial 
                                                             
1 Typically, a clinician’s regimen decision includes the daily dosage and the time interval between 
administrations for the therapeutic drug in question.  
2 Peak value refers to the concentration in serum detected “immediately” after the patient receives the 
medication, whereas trough value denotes the concentration detected “before” the next administration. In the 
case of vancomycin, peak value is often examined 30–60 minutes after the administration, and the trough value 
is taken right before the next administration. Although not universally agreed on, a peak concentration between 
20µg/ml and 40µg/ml and a trough concentration below 10µg/ml are commonly considered to be “appropriate” 
for vancomycin by clinicians (Leader et al. 1995). 
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regimen using the nomogram and then use the prediction system to verify its clinical 
adequacy.  
 
The specific supervised learning techniques examined in this study are the model-tree based 
regression (M5) and SVM. Our choice of techniques was mainly based on the interpretability 
of their prediction results and computational efficiency. We empirically evaluated the 
accuracy of each system using mean absolute error, calculated as the absolute value of the 
difference between the predicted and known concentration levels. For performance 
benchmark purposes, our evaluation included a prevailing one-compartment pharmacokinetic 
model which approximates the current practice in the studied medical center. We 
comparatively evaluated the systems independently as well as in conjunction with the use of 
Bagging. This study used a total of 1,099 vancomycin regimens clinically administered 
January 2000 and July 2004 at a major tertiary medical center in southern Taiwan. Overall, 
our analysis shows that both M5 and SVM are significantly more accurate in predicting the 
patent’s peak and trough concentrations (resulting from a vancomycin regime) than the 
benchmark one-compartment model. Judged by the predicted peak and trough concentrations, 
M5 is more effective than SVM and appears to benefit considerably from Bagging.  
 
The remainder of the paper is organized as follows. Section 2 provides an overview of the 
research background (vancomycin and its clinical use) and reviews relevant previous research 
to highlight our motivation. Section 3 describes our data collection and the particular 
supervised learning techniques examined. Section 4 details the design of the respective 
prediction systems and discuses our evaluation design, followed by important evaluation 
results in Section 5. We conclude in Section 6 with a summary and discussions of some 
future research directions.  
 
2. Background Overview and Literature Review 
In this section, we provide an overview of vancomycin and its clinical use, and then review 
relevant previous research. 
 
2.1 Vancomycin and Its Clinical Use  
Proper use of vancomycin in patient care has been a challenge to clinicians. This antibiotic is 
a popular choice among clinicians for treating Gram-positive bacterial infections, 
staphylococcal aureus, and methicillin-resistant staphylococcal infections primarily because 
of its advantageous bactericidal effects, sustained serum concentrations, and limited bacterial 
resistance. However, vancomycin has a narrow therapeutic index and, when inappropriately 
prescribed, can result in severe lasting adverse effects on the patient. Specifically, insufficient 
(i.e., sub-therapeutic) doses yield limited therapeutic effects and allow bacteria to become 
increasingly drug resistant. On the other hand, excessive (i.e., over-therapeutic) doses 
produce harmful deposits of vancomycin, which can lead to severe renal function 
impairments, kidney poisoning, ear poisoning, or combinations of such problems. The 
described adverse effects become even greater clinical threats when patients have impaired 
renal functions3 or are receiving other nephrotoxic drugs (Pea et al. 2002). According to the 
pharmacovigilance issued by the National Reporting System of Adverse Drug Reactions 
(http://adr.doh.gov.tw), vancomycin consistently has been identified as one of the top three 
adverse effect-producing pharmaceutical drugs in Taiwan between 1998 and 2003. 
                                                             
3 In general, patients can discharge 80%–90% of the injected vancomycin (in its original form) through 
urination. Patients who suffer from deteriorated renal function have a lower discharge rate and a longer half-life 
decay cycle and therefore are more likely to develop excessive vancomycin deposits, which further damages 
their renal function and can lead to kidney poisoning.  
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To cope with the constricted therapeutic index and potential toxicity (and impairments) of 
vancomycin, many clinicians follow general guidelines for prescribing this antibiotic. A 
particularly popular method is the nomogram (Moellering et al. 1981) for estimating adequate 
vancomycin regimens based on creatinine clearance (CLCR), which is a function of the 
patient’s age, gender, weight, and serum creatinine (SCR, a common renal function index). In 
general, clinicians should target an average vancomycin concentration at the 15 µg/ml level 
(Moellering et al. 1981); accordingly, the nomogram was developed based on the clinical 
efficacy observed from a large patient population. A similar clinical method uses an initial 
vancomycin regimen of 8 mg/kg and adjusts the time interval between administrations based 
on the estimated CLCR of the patient (Lake and Peterson 1988). Clinical guidelines drawn 
from the nomogram are intuitive and easy to use and can provide a reasonable baseline for 
(initial) vancomycin regimen estimations (Matzke et al. 1985). However, the nomogram is 
primitive and therefore may not be sophisticated or effective enough to meet the clinical need 
of individual patients. As a result, clinicians usually have to supplement the nomogram with 
their own clinical experiences and patient condition assessments to adjust recommendations 
by the nomogram. 
 

2.2 Literature Review and Motivation 
Prior research has suggested the use of pharmacokinetic analysis to better support clinical use 
of vancomycin. A pharmacokinetic model represents a mathematical scheme that depicts 
complex physiologic spaces or processes. Accurate pharmacokinetic modeling is crucial for 
determining the elimination (or discharge) rate of an administered drug. Both one- and 
two-compartment pharmacokinetic models have been developed. An administered drug 
initially is distributed into a central compartment before diffusing into the peripheral 
compartment. When dealing with drugs that equilibrate with the tissue compartment quickly, 
clinicians, for practical purposes, usually choose a one-compartment model that involves only 
one volume term; i.e., volume of distribution. In a one-compartment model, the peak and 
trough concentration levels can be estimated using the following equations (Winter 2003): 
 

CPSS(max) (predicted peak concentration) = 

S×F×Dosage
Vd

1- e-Kd×τ  and 

CPSS(min) (predicted trough concentration) = CPSS(max)×(e-Kd×τ) 
 
where S (salt form parameter) is assumed to be 1 for vancomycin, F (bioavailability 
parameter) is assumed to be 1 for vancomycin because orally administered vancomycin is 
poorly absorbed (such as less than 5%) and parenteral administrations are necessitated, 
Dosage is the dosage (in mg), Vd (volume of distribution) = 0.17×age + 0.22×weight + 15, Kd 

(elimination rate constant) depicts the rate at which vancomycin is discharged from the 

patient body and is estimated as 
clearance for vancomycin

Vd
 where clearance for vancomycin 

is estimated as creatinine clearance (CLCR), τ is the dosing interval (in hour), and CLCR = 



(140 - age)×weight

72×SCR  if patient is male

(140 - age)×weight
72× SCR  × 0.85  if patient is female.
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When a drug equilibrates slowly with the peripheral tissues, clinicians often describe its 
distribution in the human body by a two-compartment pharmacokinetic model. Overall, 
pharmacokinetic analyses based on two-compartment models can considerably reduce biases 
and therefore are more likely to improve the prediction accuracy for peak and trough 
concentrations (Jelliffe et al. 1993; Jelliffe et al. 1994). To derive reliable estimates for 
pharmacokinetic parameters commonly required by a two-compartment model, additional 
concentration-in-serum values are needed to fully characterize the patient’s serum 
concentration–time profile. When using a nonlinear least squares regression analysis of a 
two-compartment model, a minimum of four concentrations for each clinical case included in 
the population pharmacokinetic dataset is required to construct the model. These stringent 
requirements greatly reduce the clinical practicality and value of two-compartment models, 
which therefore are not commonly used by clinicians in their patient care (Hurst et al. 1990). 
Previous research has also examined the Bayesian approach to combining both population 
and patient-specific information (such as serum-level data) to predict serum concentrations. 
Clinical evaluations show Bayesian methods capable of achieving greater predictive power 
than conventional one- or two-compartment models (Hurst et al. 1990; Jelliffe et al. 1994). 
However, as with two-compartment models, Bayesian methods require considerably more 
serum samples from patients, which seriously limit their clinical practicality and value. 
 
Whereas pharmacokinetic analyses based on one-compartment models are more feasible or 
affordable clinically; however, their accuracy in predicting vancomycin peak and trough 
concentrations is constrained (Jelliffe et al. 1993; Jelliffe et al. 1994). To improve accuracy of 
concentration prediction, AI-based supervised learning techniques are promising and have 
been examined by prior research. A review of extant literature suggests the prevalence of 
neural network. In one investigation of population pharmacokinetic data, the neural network 
appeared capable of capturing the relationships between plasma drug levels and 
patient-related prognostic factors from routinely collected pharmacokinetic data (Chow et al. 
1997). Tolle et al. (2000) compared the effectiveness of a feed-forward backpropagation 
neural network and NONMEM (popular software based on a one-compartment 
pharmacokinetic model) for predicting the serum concentration levels of administered 
tobramycin in patients suffering from pediatric cystic fibrosis and hemotologic-oncologic 
disorders. According to the evaluation results, the neural network approach appears to be a 
cost-effective approach that provides clinicians and pharmacists with timely analysis results 
that complement those of NONMEM. In another related study (Yamamura et al. 2003), a 
neural network was developed to identify intensive-care patients whose drug concentrations 
were likely to fall below therapeutic levels. The evaluation results show that the neural 
network outperformed multivariate logistic regression analysis. 
 
While demonstrating encouraging clinical efficacy, neural networks are computationally 
demanding and often offer limited (if any) interpretability of the prediction results. 
Alternative supervised learning techniques are largely ignored by previous research. For a 
perspective of both research and clinical practice, it is important to compare the effectiveness 
of other promising supervised learning techniques by examining their predictions of the 
patient’s peak and/or trough concentrations. Such evaluations are particularly important for 
vancomycin and other antibiotics with a narrow therapeutic index and significant toxicity or 
probable impairments. In the current study, we used a model-tree based regression 
(specifically, M5) (Quinlan 1992) and a SVM technique (Smola and Schölkopf 2004; Vapnik 
1995) to develop prediction systems for estimating vancomycin peak/trough concentration 
levels and evaluated their respective clinical efficacy using data collected from a tertiary 
medical center in southern Taiwan.   
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3. Data and Investigated Supervised Learning Techniques 
In this section, we describe our data collection and the particular AI-based supervised 
learning techniques investigated; i.e., M5 and SVM as well as Bagging. 
 
3.1 Data Collection 
We collected a total of 1,099 clinical vancomycin cases administered between January 2000 
and December 2004 at a tertiary medical center in southern Taiwan. Typically, clinicians at 
this medical center use the nomogram to estimate initial vancomycin regimens and depend on 
a one-compartment pharmacokinetic model for making subsequent regimen adjustments. 
Each case consisted of the patent’s gender, age, weight, SCR, the vancomycin regimen he or 
she received (i.e., dosage and time interval between administrations), and the resulting peak 
and trough concentrations detected by TDM. Clinically, the attending clinician used the 
recorded peak and trough concentrations to evaluate the adequacy of the regimen previously 
prescribed and make regimen adjustments accordingly. Table 1 summarizes the specific 
variables included in each vancomycin case and their descriptive statistics.  
 

Table 1: Summary of Variables of Clinical Cases and Descriptive Statistics 

Variables Range Descriptive Statistics 
Gender  Male or Female Male: 739 (67.24%); Female: 360 (32.76%) 
Age (in years) 18 to 96 µ (mean) = 61.08; σ (standard deviation)= 16.26 
Weight (in kilograms) 31.1 to 121 µ = 63.19; σ = 13.90 
Serum creatinine (SCR)  0.22 to 11.3 µ = 1.55; σ = 1.54 
Dosage (in mg) 50 to 1500 µ = 706.82; σ = 253.60 
Dosing interval (in hours) 6, 8, 12, 24, 48, 

72, 96, or 168  
6 hours: 205 (18.65%) 
8 hours: 200 (18.20%) 
12 hours: 397 (36.12%) 
24 hours: 200 (18.20%) 
48 hours: 73 (6.64%) 
72 hours: 20(1.82%) 
96 hours: 2 (0.18%) 
168 hours: 2 (0.18%) 

Trough concentration level 0.9 to 99.5 µ = 18.03; σ = 12.56 
Peak concentration level 8.8 to 220.4 µ = 34.54; σ = 16.79 
 

The specific inputs to each investigated prediction system were gender, age, weight, serum 
creatinine (SCR), dosage, and dosing interval. In this study, we did not include the variables 
of the time of blood drawn for examining peak and trough concentrations because, for each 
clinical case collected, the patient’s peak concentration was obtained approximately 30 
minutes after the administration and his or her trough concentration was recorded 
immediately before the next administration (i.e., the time of blood drawn for examining the 
trough concentration was equal to the dosing interval of the target case). We used a 1-of-N 
coding scheme to represent dosing interval because its values are of ordinal rather than 
continuous nature. Together, each prediction problem comprised of 13 independent input 
variables. In our evaluation, each system predicted peak and trough concentrations 
independently; i.e., two dependent output variables. 
 

3.2 Investigated Supervised Learning Techniques: M5, SVM, and Bagging 



925 

In a nutshell, the use of a supervised learning technique for prediction is to build an 
automated prediction model that captures important relationships between a set of input 
variables and a dependent variable, commonly of numeric value. That is, a selected learning 
technique uses a set of training instances (with known values for independent and dependent 
variables) to build a prediction model. The resulting model is then applied for predicting the 
dependent variable of a new (unseen) instance, based on its input variable values. Different 
techniques have been proposed and empirically examined in various application contexts, 
including standard regression, neural network, model-tree-based regression, and SVM. In 
general, standard regression may not be robustly potent because its prediction function 
representation explicitly demands linear relationships among the independent variables. 
Neural network has been shown to be reasonably effective and robust across different 
applications but it is computationally demanding and provides limited, if any, interpretability. 
Model-tree based regression and SVM techniques are also popular and have demonstrated 
satisfactory effectiveness in different prediction applications. Accordingly, we adopted a 
model-tree based regression technique (namely, M5) and a SVM technique to build 
prediction models for the patient’s peak and trough concentrations resulting from a particular 
vancomycin regimen. 
 
Quinlan (1992) proposed M5, a model-tree based regression technique for prediction analysis. 
M5 combines a conventional decision tree with the possibility of linear regression functions 
at leaf nodes. Structurally, a model tree resembles a decision tree but has linear regression 
functions at its leaf nodes rather than discrete (output) classes common to decision trees. 
Constructing a model tree involves tree building and tree pruning (Quinlan 1992; Wang and 
Witten 1997). In the tree building stage, a decision tree induction algorithm is applied to 
build the tree. Unlike such classical decision tree induction algorithms as ID3 (Quinlan 1986) 
and C4.5 (Quinlan 1993) that maximize the information gain (or ratio) at each intermediate 
node, M5 employs an attribute-selection criterion that minimizes the intra-subset variation of 
the dependent variable at each branch. This selection criterion measures the error of a target 
node using the dependent variable’s standard deviation of those instances pertaining to the 
node and calculates the expected standard deviation reduction that results from splitting the 
target node according to a chosen attribute. As a result, M5 selects the attribute that yields the 
greatest standard deviation reduction and uses it for branching the target node in the decision 
tree. For each child node, the described attribute selection and tree building process continues 
recursively until all the instances that reach the node show trivial variations or contains only a 
small number of instances.  
 
In the tree pruning stage, M5 uses an estimate for the expected error at each node T. First, the 
absolute difference (error) between the predicted and actual value of the dependent variable is 
calculated for each training instance and then averaged across all training instances that reach 
T. The resulting average error is likely to underestimate the expected error for unseen 

instances. To compensate, the average error is multiplied by 
n+v
n−v, where n is the number of 

training examples pertaining to T and v is the number of independent variables used for 
representing the prediction model at T. M5 computes a standard linear regression model for 
each intermediate node of the un-pruned tree. Each resulting linear model can be simplified 
by removing selected independent variables, thus minimizing the estimated error calculated 
using the above multiplication factor. Removal of an independent variable reduces the 
multiplication factor, which may offset the inevitable increase in the average error over all 
training instances. Such independent variable removals proceed following a greedy strategy; 
i.e., one by one until the compensated error estimate decreases. Once a linear regression 
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model is determined for each intermediate node, the tree is pruned reversed starting from the 
leaf nodes, terminated when the expected estimate of error decreases.  
 

Developed by Vapnik (1995), Support Vector Machine (SVM) creates from a set of training 
instances a classification function for the targeted classification problem or a general 
regression function for the intended prediction analysis. SVM is applied to the regression 
setting maintaining all the features of the maximal margin concept. The capacity of the 
system is controlled by the regularization parameter C. The regression setting is about finding 
a function that approximates the mapping between the input domain and the real-number 
domain. The difference between the actual and the estimated output of a training instance is 
the residual for the instance, which, in turn, shows the accuracy of the mapping. 
Fundamentally, SVM minimizes large residuals but tolerates small residuals, and determines 
their balancing based on ε-insensitive loss function. 
 
In ε-SVM regression, the objective is to find a function f(x) that has at most ε deviation from 
the actually output yi for all the training instances. SVM strives for minimizing the loss 
function as well as the Euclidean norm of linear parameters (||w||2), which resembles a 
problem of convex optimization. A soft-margin concept is used by introducing non-negative 
slack variables, ξ and ξ2, that measure the deviation of training instances outside the 
ε-insensitive tube. Thus, SVM can be formulated as the minimization of the following 
function. 

1
2(||w||2) + C ∑

i=1

n
(ξi+ξ i

*) 

subject to 
 yi – wt xi – b ≤ ε + ξi  
 –yi + wt xi + b ≤ ε + ξ i

* 
 ξ i

*, ξi ≥ 0 
 
This optimization problem can be solved as a quadratic programming problem. The constant 
C > 0 determines the tradeoff between empirical error and the structural error (i.e., error on 

the training instances versus generalization error). The 
1
2(||w||2) term controls the complexity 

of the regression function. 
 

We also investigated the use of the ensemble approach for enhancing the predictive power of 
M5 and SVM. This approach creates a learning setting in which a finite set of prediction 
models (hereafter, base predictors) are constructed (i.e., trained) and used together to arrive at 
an overall prediction for a new (unseen) instance. Prevailing ensemble techniques include 
Bagging (Bauer and Kohavi 1999; Breiman 1996; Quinlan 1996; Zhou et al. 2002) and 
Boosting (Bauer and Kohavi 1999; Freund 1996; Freund and Schapire 1996; Quinlan 1996; 
Schapire 1990). Results from several empirical studies showed that Bagging is capable of 
reducing the classification variances significantly, and that the effectiveness of Boosting may 
be unstable (Quinlan 1996; Zhou et al. 2002). Therefore, we chose Bagging to improve the 
performance of the respective prediction models primarily because of its relative stability and 
the favorable empirical support for its prediction accuracy enhancements. 
 
Bagging employs bootstrap sampling to generate multiple training data sets from the original 
overall training data set. Each resulting training data set is the used to construct a base 
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predictor. In each iteration, Bagging randomly samples the original overall training data set 
with replacements to create a distinct data set that has the same number of training instances 
as in the original data set. Each resulting data set provides training cases to constructing a 
prediction model based on a specific learning technique; in our case, M5 or SVM. This 
process terminates after a pre-specified number of iterations. To predict the output value for a 
new (unseen) instance, an overall prediction is made using the averaged predictions made by 
all base predictors constructed. 
 
4. Prediction System Development and Evaluation Design 
In this section, we describe the design of the prediction systems under evaluation, detail our 
evaluation design (including the procedure and performance measurements), and discuss our 
parameter tuning experiments required by the Bagging-based extensions. 
 
4.1 Design of Prediction Systems 
We used Weka open-source machine learning software (www.cs.waikato.ac.nz/ml/weka/) to 
construct prediction systems based on M54 and SVM. We extended each investigated system 
using Bagging, hereafter referred to as Bagged M5 and Bagged SVM. The use of both 
Bagged M5 and Bagged SVM requires an additional parameter (i.e., number of iterations) 
that corresponds to the number of base predictors to be constructed. We conducted 
parameter-tuning experiments to experimentally determine an optimal number of iterations 
for each bagged extension (of which details are discussed in Section 4.3). 
 
4.2 Evaluation Design 
We followed an 80/20 training/testing strategy, hereby randomly dividing the overall cases 
into two subsets: training (80% of the overall cases) and testing (20%). We used the training 
cases to construct the respective prediction systems, each of which was then evaluated using 
the testing cases. To reduce potential biases from a single randomization, we performed the 
randomization 30 times, each involving different training and testing subsets. In this study, 
we report system performance using the average effectiveness across the 30 trials examined. 
Specifically, we evaluated each prediction system in terms of prediction accuracy that was 
measured using the average of absolute differences between predicted and actual peak (or 
trough) concentration levels; i.e., mean absolute error (MAE).  
 
4.3 Parameter Tuning Experiments for Bagged M5 and Bagged SVM 
For each bagged extension, we experimentally determined an optimal number of iterations by 
performing a series of parameter-tuning experiments. Following the evaluation design 
described in the previous section, we assessed prediction accuracy of each Bagging-based 
system over the range between 2 and 100 iterations. As shown in Figure 1, the MAE of peak 
concentration predictions by Bagged M5 decreased considerably over the range of 2 to 30 
iterations and then leveled off. The bagging-induced accuracy improvement to SVM also 
appeared relatively noticeable between 2 and 30, but to a much less extent than that of M5. 
Analysis of the standard deviation of absolute errors showed similar patterns; both systems 
exhibiting considerable reductions in MAE between 2 and 30 iterations and becoming stable 
beyond 30 iterations.  
 

                                                             
4 In WeKa, this technique is named M5P rather than M5.  
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Figure 1: MAE of Concentration Predictions 
 
Similar patterns were observed with the trough concentration predictions. As shown in Figure 
1, the MAE of trough concentration predictions by Bagged M5 decreased considerably 
between 2 to 30 iterations and leveled off beyond this range. The prediction accuracy of SVM 
appeared to increase with the use of Bagging in the range of 2 and 30 iterations and then 
become stable. The bagging-enabled accuracy improvement was considerably larger with M5 
than with SVM. Analysis of the standard deviation of absolute errors suggested that systems 
experienced more prominent reductions in MAE between 2 and 30 iterations than beyond that 
range. Overall, our tuning results suggest the use of 30 iterations to be appropriate. We 
therefore set the number of iterations at 30 for both bagged systems, each of which had 30 
base predictors. 
 
Bagged SVM appeared to be relatively insensitive to the number of iterations. The 
differential prediction improvements resulting from the use of bagging may in part be 
explained by the learning strategy used by the respective systems. In general, M5 adopts a 
divide-and-conquer strategy in the model tree building process and, thus, marginal variation 
in training datasets may generate noticeably different model trees characterized by their (tree) 
structures and the specific regression functions in leaf nodes. As mentioned, Bagging uses a 
random sampling process to generate multiple data subsets and, in the case of M5, is likely to 
result in different base predictors from the iterations examined. The non-identical base 
predictors of bagged M5 collectively could result in noticeable predictive accuracy 
improvements. The relative insensitivity of SVM to Bagging might also be reasoned by its 
learning strategy; that is, SVM does not employ a similar divide-and-conquer strategy and 
therefore its incorporation with bagging would likely generate a set of highly homogeneous 
base predictors. Consequently, Bagged SVM is not likely to benefit considerably from this 
particular ensemble approach.  
 
5. Comparative Evaluation Results and Discussions 
In this section, we report results from our comparative evaluations of M5, SVM, and their 
bagging extensions (based on iterations of 30). The one-compartment pharmacokinetic model 
depicted in Section 2.2 was included in our evaluation for performance benchmark purposes. 
Overall, as shown in Table 2, our comparative analysis showed both M5 and SVM 
significantly outperforming the benchmark one-compartment model in predicting the 
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patient’s peak and trough concentrations. Particularly, the use of M5 or SVM reduced MAE 
of peak concentration by nearly 50% and resulted in an even greater reduction in the MAE of 
trough concentration. The dispersion of prediction errors for peak and trough concentrations 
(measured by the standard deviation of absolute errors) also decreased when using M5 or 
SVM as opposed to the one-compartment model. Judged by the observed mean absolute 
errors, M5 appeared to benefit considerably from Bagging of which effect on SVM seems 
marginal at best.  
 

Table 2: Overall Evaluation Results 
Peak Concentration Trough Concentration  

MAE σ(AE)* MAE σ(AE) 
One-Compartment Model 17.277 16.388 18.021 12.484 
M5 9.639 12.341 6.489 6.772 
SVM 9.731 13.164 7.321 8.437 
Bagged M5† 9.281 12.126 6.393 6.640 
Bagged SVM† 9.740 13.154 7.314 8.426 

 †: Number of iterations = 30 
 *: Standard deviation of absolute errors 
 
We performed a series of t-tests to assess the statistical significance of the differences in 
peak-concentration prediction accuracy among the investigated systems, including the 
benchmark one-compartment model. As summarized in Table 3, the prediction accuracy of 
the one-compartment model was significantly lower than that of M5, SVM, or their 
respective bagging extensions, as suggested by a p-value less than 0.01. M5 appeared more 
effective than SVM but the difference was not significant statistically. The use of Bagging 
significantly improved the prediction accuracy of M5 but not that of SVM. In effect, Bagged 
M5 appeared the most effective for predicting the patient’s peak concentration, significantly 
outperforming all the other systems investigated.      
 

Table 3: Comparative Analysis of Peak-Concentration Predictions by Investigated Systems 
 One-Compartment 

Model M5 SVM 
Bagged 

M5 
Bagged 
SVM 

One-Compartment Model      
M5 0.000***     
SVM 0.000*** 0.193    
Bagged M5 0.000*** 0.000*** 0.000***   
Bagged SVM 0.000*** 0.147 0.122 0.000***  

***: Significant at p < 0.01 on a two-tailed t-test. 
 
We performed similar t-tests on the trough-concentration predictions by the respective 
systems. As shown in Table 4, the one-compartment model was significantly less accurate 
than M5, SVM, and their respective bagging extensions; i.e., p-value less than 0.01. M5 was 
more effective than SVM and the difference was statistically significant, as suggested by a 
p-value less than 0.01. The use of Bagging significantly improved the prediction accuracy of 
M5 but not that of SVM. Bagged M5 was significantly more accurate in predicting the 
patient’s trough concentration than Bagged SVM. Jointly, according to comparative analysis 
results, M5 is more effective than SVM and the one-compartment model in predicting the 
patient’s peak and trough concentrations and is likely to be benefit considerably from 
Bagging. The use of M5 and its bagging extension is particularly appealing in light of the 
clinical importance of the patient’s trough concentration that is more critical to clinicians’ 
regimen decision-making than the peak concentration (Herman 2003). 
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Table 4: Comparative Analysis of Trough-Concentration Predictions by Investigated Systems 

 One-Compartment 
Model M5 SVM 

Bagged 
M5 

Bagged 
SVM 

One-Compartment Model      
M5 0.000***     
SVM 0.000*** 0.000***    
Bagged M5 0.000*** 0.000*** 0.000***   
Bagged SVM 0.000*** 0.000*** 0.136 0.000***  

***: Significant at p < 0.01 on a two-tailed t-test. 
 
Overall, our evaluation results suggest the followings. First, prediction systems constructed 
using supervised learning techniques would offer considerable clinical value for assessing the 
adequacy of a vancomycin regimen. Based on our findings, both M5 and SVM are 
significantly more accurate in predicting patients’ peak and trough concentrations than the 
one-compartment model that approximates the current practice. In turn, this suggests 
promising utilities of such supervised learning techniques for addressing the problems 
surrounding the clinical use of vancomycin. Second, our analysis shows that Bagging may 
enhance the accuracy of prediction systems based on supervised learning techniques, 
particularly those adopting a learning strategy inherently benefiting from the heterogeneous 
base predictors generated by Bagging. As highlighted in our study, the Bagging-enabled 
accuracy improvement is more prominent with M5 than with SVM because of its use of a 
divide-and-conquer strategy likely to benefit from the differences in base predictors. Both M5 
and SVM are not demanding computationally and have shown reasonable robustness to the 
size of training dataset. These characteristics make their clinical use for predicting or 
assessing the adequacy of high-alerting medications increasingly appealing, as compared to 
pharmacokinetic models. Taken together, our analysis results suggest building prediction 
systems using M5 (or similar supervised learning techniques) as well as considering the use 
of Bagging to enhance its prediction accuracy. 
 
6. Conclusion   
Mitigating the drug-related problems in patient care is critical. Using promising supervised 
learning techniques, the current research responds to the challenge of managing the clinical 
use of vancomycin, a popular antibiotic effective for Gram-positive bacterial infections but 
having a narrow therapeutic index and considerable toxicity and adverse effects. Specifically, 
we used M5 and SVM to build systems for predicting the patient’s peak and trough 
concentrations resulting from a vancomycin regimen. We extended each system using 
Bagging and included a prevailing one-compartment model for performance benchmark 
purposes. Our overall results are encouraging and suggest the efficacy and value of M5 and 
SVM techniques for managing the clinical use of vancomycin, with or without Bagging. 
According to our analysis, both systems achieve a prediction accuracy significantly higher 
than that by the one-compartment model that approximates the current clinical practice at the 
studied medical center. The reported systems can complement existing practices. For instance, 
a clinician can use our systems to verify the adequacy of an initial regimen suggested by the 
nomogram as well as to re-evaluate the adequacy of a regimen adjustment suggested by the 
pharmacokinetic analysis result, before administering the suggested regimen on the patient or 
performing a tedious therapeutic drug monitoring.              
 
The current research can be extended in several directions. First, we considered all regimens 
homogeneous in this study; further research should distinguish between, for example, initial 
versus follow-up regimens. With this differentiation, we can further scrutinize and compare 
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the effectiveness of the reported systems in different regimen categories. Similarly, assessing 
the systems’ performance for different patients is also important, particularly for those 
patients with normal versus deteriorated renal functions (or kidney diseases), because of 
vancomycin’s considerable potential impairments to renal functions. Second, whereas we 
evaluated the systems using archival vancomycin cases (which captured the clinical practices 
at the studied medical center), our continued investigations target direct performance 
comparisons between the systems and the nomogram and the pharmacokinetic analysis, 
particularly that based on a two-compartment model. Conducting similar evaluations 
involving clinicians and vancomycin cases from other healthcare institutions is also desirable 
and can enhance the systems’ clinical efficacy or increase the validity of our evaluation 
results. Third, evaluations of the reported systems can be expanded. Of particular importance 
is predicting the likelihood that a regimen will produce adverse effects, which are of great 
concern in clinicians’ use of vancomycin. In addition, our reported approach, including the 
automated construction of prediction systems and evaluation designs, can be and should be 
applied to other high-alert medications. 
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