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Abstract  

Advancements in information technologies offer opportunities for designing and deploying 
innovative market mechanisms. For example, combinatorial auctions, in which bidders can bid on 
combinations of goods, can increase the economic efficiency of a trade when goods have 
complementarities. However, lack of real-time bidder support tools has been a major obstacle 
preventing this mechanism from reaching its full potential.  This study uses novel feedback 
mechanisms to aid bidders in formulating bids in real-time to facilitate participation in continuous 
combinatorial auctions. Laboratory experiments examine the effectiveness of our feedback 
mechanisms; the study is the first to examine how bidders behave in such information-rich 
environments. Our results indicate that feedback results in higher efficiency and higher seller’s 
revenue compared to the baseline case where bidders are not provided feedback. Furthermore, 
contrary to conventional wisdom, even in complex economic environments, individuals effectively 
integrate rich information in their decision making. 

Keywords: Auctions, combinatorial auctions, information feedback, bidder behavior, experimental 
economics. 
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DESIGN AND EFFECTS OF INFORMATION FEEDBACK IN 
CONTINUOUS COMBINATORIAL AUCTIONS 

Introduction 

Recent advancements in information technologies (IT) present the potential for redesigning market 
mechanisms to achieve gains for all stakeholders involved (Kambil and Van Heck 1998). Electronic trading 
institutions can have lower transaction costs and, despite the liquidity advantages of established markets, it is 
possible for new market institutions to attract a significant amount of trading volume (Clemons and Weber 1996). In 
addition to cost advantages, new IT-enabled trading mechanisms offer the opportunity to overcome some of the 
limitations of traditional markets. A prime example is the use of institutional feedback technologies that facilitate 
buyer-seller transactions by fostering buyer’s trust through increased transparency of seller’s history (Pavlou and 
Gefen 2004).  Combinatorial auctions (Rothkopf et al. 1998), in which bidders can bid on combinations of goods, 
embody an innovative new market mechanism that promises to become more practical as IT reduces the costs of 
computation and information processing that these auctions require.   

A combinatorial auction is an auction in which bidders are allowed to bid on combinations of items 
(frequently referred to in the literature as packages or bundles) as well as on individual items.  The primary 
advantage of combinatorial auctions is that bidders can more fully express their preferences. This is particularly 
important when some items are complements, i.e., a set of items has greater utility than the sum of the utilities for 
the individual items. In such cases, economic efficiency is enhanced when bidders are allowed to bid directly on 
combinations of different assets instead of bidding only on individual items (Hudson and Sandholm 2002). 

Combinatorial auctions have received a considerable amount of attention in recent years and have been 
used in a variety of applications, including the auctioning of the rights to use railroad tracks (Brewer 1999; Brewer 
and Plott 1996), delivery routes (Caplice 1996; Sandholm 2000), spectrum rights (Cramton 2002; Klemperer 2002; 
McAfee and McMillan 1996), airport time slots (Rassenti et al. 1982), and the procurement of school meals (Epstein 
et al. 2002).  In each case the compelling motivation for the use of combinatorial auctions was the presence of 
complementarities among the items that differ across bidders (Cramton et al. 2005).  

In spite of their many benefits, one barrier to practical implementations of combinatorial auctions has been 
the complexity of bid evaluation.  Calculating the winning bids at any point even with a small number of items in 
the auction is a challenging task. In single-item iterative auctions (e.g., English auctions), if a bidder is not the 
highest bidder, she needs to bid an amount higher than the current highest bid to have a chance of winning the 
auction. However, in combinatorial auctions this is not necessarily the case. A bid that is not among the current 
winners can be among the future winners based simply on the combinations of later bids. For example, if we have a 
3-item combinatorial auction for selling items A, B, and C, and if the current bids are: (i) $10 for {A, B}; and (ii) $5 
for {A}, the second bid is not a current winner, assuming the auctioneer is maximizing her revenue (a standard 
assumption in the combinatorial auction literature).  However, if a new bid of $6 for {B, C} arrives, then Bid (ii) is 
now among the winning bids.   

In traditional single-item auctions, determining the auction’s winner and the winning price is a 
computationally tractable (if not straightforward) problem (Boutilier et al. 1999; Hausch 1986).  However, the 
winner determination problem in combinatorial auctions in general is computationally intractable, i.e., NP-hard 
(Andersson 2000; Fujishima et al. 1999; Rothkoph et al. 1998; Sandholm 2002; Tennenholtz 2000). 

One consequence of the complexity of the winner determination problem is that bidders in combinatorial 
auctions usually do not have real-time awareness of the current status of their bids, e.g., whether their bids are 
currently winning or not.  In response, researchers have tried to address the winner determination problem primarily 
in sealed-bid auction settings.  Research approaches in iterative combinatorial auctions have primarily focused on 
creating mechanisms that either handle specific applications or create rules and restrictions to allow several well-
defined rounds of bidding.  An example of a mechanism for a specific application is the BICAP mechanism created 
by Brewer and Plott (1996) for the rights to use railroad tracks.  Examples of creating specific rules to enable a 
multi-round computation of the winning bids include Parkes (1999), Ausubel and Milgrom (2002), and Rothkoph et 
al. (1998). Similarly, Pekeč and Rothkoph (2003) advocated the development of auction mechanisms that identify 
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discrete rounds with specific rules, making winner determination efficient.  However, they noted that, if it was not 
possible to create discrete rounds, then “bidtakers should take particular care in providing tools that help bidders in 
bid preparation” (pp. 1501). 

Such tools have not been available, however; only limited bidder support techniques have been developed.  
For example, Banks et al. (1989) created a mechanism in which it is the responsibility of the bidders to look at the 
existing bids and submit a new bid that makes the combined set optimal.  Other researchers, such as Nisan (2000), 
provided bidding languages so that bidders can represent their preferences (bid/item combinations) in sealed bid 
(non-iterative) auctions.  So, it is not surprising that Kwasnica et al. (2005) identified bidder support as the major 
obstacle for making combinatorial auctions reach their potential, since the availability of increased computing power 
permits a solution to the winner determination problem for a reasonably-sized problem using commercial software, 
such as CPLEX (see, for example, Andersson et al. 2000). Our research is focused towards developing meaningful 
bidder support systems that not only provide bidders with information regarding the status of their bids but also 
guide bidders in formulating bids in a continuous combinatorial bidding environment. 

One aspect of the combinatorial auction research literature is its focus on iterative combinatorial auctions 
where the auctions proceed for a series of rounds that last for a pre-specified period of time1. Several bidders place 
bids in the same round before the auctioneer ends the round, decides on the provisional set of current winning bids, 
and updates any information that is provided to bidders.  In contrast, we have focused on facilitating real-time bidder 
support in general continuous combinatorial auctions without limiting the scope to a specific application and without 
imposing restrictive bidding rules, such as discrete bidding rounds. A major difference between our approach and 
most of the existing approaches is that we provide real-time bid evaluation metrics to facilitate continuous auctions 
that mimic properties of English auctions for a single item.   

A major step in the real-time evaluation of combinatorial auctions was taken by Adomavicius and Gupta 
(2005) in classifying bids into categories and identifying theoretical relationships among them.  Based on these 
relationships, it became possible to define some novel constructs, such as live and dead bids, which help in 
developing efficient approaches towards providing answers to various bidding-related queries, e.g., is my bid 
currently winning? Does my bid stand a chance of winning in the future even if it is not currently winning?   

The availability of these constructs provides us the opportunity for conducting continuous combinatorial 
auctions in real time, similar to ascending English auctions and their counterparts prevalent on the Web.  English 
auctions have several desirable properties; for example, the auction requires minimal bidder sophistication and 
bidders have limited incentives to invest in acquiring information regarding other bidders’ values or strategies.  It 
also allows bidders to formulate simple bidding strategies where they can bid at the currently required bid amount, 
obtained simply by adding a minimum required bid increment to the standing bid (as long as it is within their 
valuation of the commodity).  Under the common value scenario, an English auction is also likely to produce higher 
revenues than a sealed bid (first or second price) auction (Banks et al. 2003). 

The construction of an information infrastructure for real-time bidder support also raises the issue of the 
impact of feedback upon bidder behavior.  Will bidders be able to properly interpret and synthesize the information 
available to them in order to formulate optimal bids? It is not often clear whether economic agents will be able to 
fully integrate all the available information in their decision making. So, another major goal of our research is to 
analyze the effects of real-time feedback on bidders in combinatorial auctions.  Such studies are absent in the 
literature, primarily because the capabilities have only now been developed to carry out such auctions in real-time 
and to provide potentially useful feedback, also in real-time, as discussed above. 

In order to understand the effect of feedback on bidder behavior in continuous combinatorial auctions, we 
conduct laboratory experiments with human subjects. We consider a hypothetical auction in which individuals bid 
on real-estate properties surrounding a lake.  Our experimental environment is scalable, allowing different number 
of items to be sold in an auction and different number of participating bidders.  It also provides a plausible scenario 
in which certain sets of items, e.g., adjacent properties, might have greater value as a set than the sum of their values 
individually.  This auction feature provides the opportunity for combinatorial bidding to offer advantages over 
traditional, non-combinatorial, single-item bidding. To construct the experimental setup, we relied on theoretical and 
empirical advances in experimental economics. 

 
1 Kwasnica et al. (2005) compare several such mechanisms. 
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Laboratory data forms an important means of analyzing and comparing complex auction mechanisms. We 
can test any auction, and with proper control we can calculate performance measures that are impossible in field 
studies. As Kwasnica et al. (2005) argue: “… test bed environments in the laboratory […] exhibit as much 
complexity or simplicity as one wishes.  In these environments, one can test any auction.” (pp. 421).  Several recent 
studies that have used experimental methodology to test various combinatorial auction designs, primarily in 
evaluating the design for FCC spectrum auctions, provide a starting point for our research.  For example, Ledyard et 
al. (1997), during the evaluation of proposals for the FCC spectrum auctions, explored whether multiple items 
should be auctioned sequentially or simultaneously; they also examined the question of whether package bidding 
should be allowed.  They found that simultaneous auctions were a better choice for heterogeneous items and that 
package bidding is only preferable when there are significant complementarities among items.   

Porter (1999) examined the effect of allowing bid withdrawals (at a penalty) to rectify the exposure 
problem in sequential or simultaneous single-item auctions.  The exposure problem occurs in situations where 
bidders have superadditive valuation for a package but are forced to bid on just the individual items constituting the 
package.  Expectedly, Porter (1999) found that withdrawal leads to higher efficiency and revenue but lower 
surpluses for bidders.  Banks et al. (2003) compared simultaneous multi-round auctions (SMA) with combinatorial 
multi-round auctions (CMA) and found that CMA outperforms SMA when individuals have superadditive 
preferences for packages from an efficiency perspective; however, SMA performs better from a revenue perspective 
while CMA takes more rounds to complete.  Kwasnica et al. (2005) proposed a new design called the Resource 
Allocation Design (RAD) and compared it to Banks et al.’s (1989) Adaptive User Selection Mechanism (AUSM) 
and the FCC’s Simultaneous Multiple Round (SMR) auction described in Milgrom (2004).  Kwasnica et al. reported 
that their design, which provides bidders with price guidance at the end of each round, performs better from the 
perspective of revenue, efficiency, and the duration of an auction in terms of the number of rounds. 

In this study we extend these findings to continuous versions of combinatorial auctions, i.e., we allow bids 
to be placed continuously and not just in discrete iterative bidding rounds. Using novel constructs we develop 
feedback mechanisms that make this complex trading environment more transparent to the participants. 
Furthermore, the feedback we provide can guide bidders towards formulating successful bids. We also empirically 
study the impact of three different kinds of feedback on several economic variables that have been used in the 
auction literature to compare different trading mechanisms.  

Real-Time Bidder Support 

We build upon the real-time bid evaluation metrics developed by Adomavicius and Gupta (2005) which 
can present bidders with price information whenever a bidder wants to explore her alternatives, thereby providing a 
continuous environment. Before describing the details of our modes of feedback, we first provide an overview of the 
computational real-time bidder support capabilities. 

 Let I be the set of distinct items to be sold in a combinatorial auction, and let N = | I |.  We use the terms 
auction set and auction size to refer to I and N, respectively.  In a combinatorial auction, participants (person, 
software agent, etc.) can place bids on any itemset, i.e., any non-empty subset of I.

An arbitrary bid b can be represented by the tuple b = (S, v, id).  Here S denotes the itemset the bid was 
placed on (∅ ⊂ S ⊆ I), also called the span of the bid; v denotes the value of the bid (v > 0), e.g., the monetary 
amount specified in the bid; and id denotes the bidder who submitted this particular bid.  Given bid b, S(b), v(b), and 
id(b) are used to refer to the span, value, and bidder of the bid, respectively.  We also use the notion of auction states 
(Adomavicius and Gupta 2005).  In particular, auction state k (where k = 0,1,2,…) refers to the auction after the first 
k bids are submitted.  The bid set is denoted as Bk, i.e., Bk = {b1,…,bk}.  Auction state 0 refers to the auction before 
any bids are made, i.e., B0 = ∅. Obviously, Bk ⊆ Bl, for any k and l such that k ≤ l.

Given an arbitrary set of bids B in a combinatorial auction, a bid set C (where C ⊆ B) is called a bid 
combination in B if all bids in C have non-overlapping spans, i.e., for every bx, by∈C such that bx ≠ by, we have S(bx)
∩ S(by) = ∅. Let Ck denote the set of all bid combinations possible at auction state k, or, more formally, Ck = { C ⊆
Bk | bx,by∈C, bx ≠ by ⇒ S(bx) ∩ S(by) = ∅ }. 

We assume that the winners of the auction are determined by maximizing the seller’s revenue, i.e., 

∑ ∈Cb
bv )(max , which is a standard assumption in the combinatorial auction research literature.  The bid 
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combination that maximizes this expression is called a winning bid combination and is denoted as WINk (for auction 
state k).  Moreover, given auction state k, bid b∈Bk is called a winning bid in Bk if b∈WINk. Furthermore, if bid 
b∈Bk is not a winning bid in Bk and cannot possibly be a winning bid in any subsequent auction state then b is called 
a dead bid in Bk. Formally, bid b∈Bk is dead if b∉WINk and (∀Bl ⊇ Bk)(b∉WINl).  The set of all dead bids in Bk is 
denoted as DEADk. On the other hand, if b∉DEADk then bid b∈Bk is called a live bid in Bk. The set of all live bids 
in Bk is denoted as LIVEk. Based on the definitions of WINk, DEADk and LIVEk, it is easy to see that:  

• DEADk ∩ LIVEk = ∅ and DEADk ∪ LIVEk = Bk, i.e., at any auction state k any bid b∈Bk can either be live 
or dead, but not both.   

• WINk ⊆ LIVEk, i.e., every winning bid is obviously live. 

• DEADk ⊆ DEADk+1, i.e., once a bid becomes dead, it can never become live again. 
 

Now, assume that an auction participant is interested in bidding on itemset X. It is important for a bidder to know 
how much she should bid on X at a given time (i.e., at any auction state k), in order to guarantee that her bid is either 
winning or at least stands a chance of winning in future (i.e., it is not dead).  For this purpose the following bid 
evaluation metrics are used: 

• Bid winning level (WL): for itemset X at auction state k, WLk(X) denotes the minimal value that auction 
participants have to bid on itemset X in order for this bid to be winning.  In other words, after k bids have 
already been submitted, any bid bk+1 on itemset X that has value above WLk(X) will be winning, i.e., bk+1 ∈
WINk+1.

• Bid deadness level (DL): for itemset X at auction state k, DLk(X) denotes the minimal value that auction 
participants have to bid on itemset X in order for this bid to be live.  Similar to above, after k bids have 
already been submitted, any bid bk+1 on itemset X that has value above DLk(X) will be live, i.e., bk+1 ∈
LIVEk+1.

We will explain these concepts with an example. Let us suppose that we have a 3-item auction with the 
items being A, B, and C. Table 1 shows the status of all the placed bids at an auction state k=5. Bids 1 and 4 form 
the winning bid combination at the current state of the auction, with total revenue of $25, which is greater than that 
of any other bid combination.2

Table 1.  Example of bid status 

Bid sequence [bundle; bid] Status after 5 bids 

1. [A; $10] Winning 
2. [AC; $20] Dead 
3. [C; $11] Live 
4. [BC; $15] Winning 
5. [AB; $13] Live 

Bid 2 is dead because the combined revenue from the bids on {A} and {C} is greater than that of package {A, C}, 
so this bid cannot win at any subsequent state of the auction. Bids 3 and 5 still have the chance to end up in winning 
combination depending on subsequent bids (e.g., a new bid of $13 on {C} would make bid 5 winning) and hence 
are still live. Now, suppose a bidder wants to bid on item {B}. The winning and deadness levels for this bid are 
shown in Table 2. Since no bid on {B} has been placed, the DL on that bundle is $1, assuming integer bid 
increments. The winning level of {B} is $5 because that is the minimum bid required to make it a winning bid along 
with bids on {A} and {C}. 

 
2 The reader might recall that “bid combination” by our definition refers to a set of bids with non-overlapping items. 
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Table 2. Example of bid evaluation metrics 

Bundle Deadness Level (DL) Winning Level (WL) 
{B} $1 $5 

These metrics provide the opportunity for conducting continuous combinatorial auctions in real time, 
similarly to ascending English auctions and their counterparts.  By analyzing how incoming bids affect the auction 
dynamics, Adomavicius and Gupta (2005) proved numerous theoretical properties of the above bid evaluation 
metrics.  For example, it was shown that in a combinatorial auction of size N it is possible to have up to 2N–1 live 
bids at the same time.  On the other hand, there can never be more than N winning bids at any auction state.  This 
illustrates the inherent complexity of combinatorial auctions, and emphasizes the need to have real-time support 
capabilities to help bidders sort through the existing bids as well as to provide guidance in formulating new bids. 

Types of Feedback 

The computational infrastructure derived from the concepts presented above allows us to provide different 
pieces of information to bidders that could potentially be useful in planning and executing their bidding strategies.  
This brings up the issue of the impact of providing different amounts of this information as feedback to the bidders.  
To the extent that the bidders can take advantage of this information, we would expect performance to increase, i.e., 
we expect more efficient bidding, better outcomes for the bidders, and greater satisfaction from the bidders with the 
process.  The one caveat is in terms of the bidders’ abilities to incorporate the information.  It is not readily apparent 
to what extent bidders will be able to exploit the information provided to them in formulating their bids. In addition, 
it is also not clear how the gains of trade will be distributed between the seller and the buyers as a function of the 
quantity of feedback provided. We propose to test the impact of three cumulative levels of feedback: 

• Level 1: Baseline feedback (control).  This represents the continuous combinatorial auction setup 
where all submitted bids are visible to all bidders, but no other feedback is provided.  

• Level 2: Outcome feedback. This level includes all feedback provided in Level 1 plus the currently 
winning bid combination, i.e., at every auction state the bidders will be aware of which bids would win 
if the auction ended right then.  The currently winning bid combination represents non-trivial feedback, 
since winner determination in combinatorial auctions is a very computationally complex problem, as 
mentioned earlier.   

• Level 3: Process feedback. This level includes all feedback provided in Level 2 plus deterministic bid 
evaluation metrics.  Such metrics include bid deadness levels (i.e., bid levels below which bids can 
never be part of a winning bid combination) and bid winning levels (i.e., bid levels above which bids 
become part of the set of currently winning bids) for every possible itemset.  This feedback is expected 
to direct the bidder toward formulating successful bids. 

Measuring the performance of bidders with progressively advanced levels of feedback is important because 
researchers across disciplines (see for example, Grise and Gallupe 2000; Jacoby 1984; Schick et al. 1990; Sparrow 
1999) have found that the quality of decisions (or reasoning in general) of an individual correlates positively with 
the amount of information he or she receives – up to a certain point. If further information is provided beyond this 
point, the performance of the individual will rapidly decline (Chewning and Harrell 1990). The individual will no 
longer be able to properly interpret, synthesize, and integrate the information into the decision making process 
(O’Reilly 1980). A diminished decision quality may result when supply of information exceeds the information 
processing capacity of an individual (Malhotra 1982). 

Performance Measures 

When choosing an auction design, a variety of criteria and measures may be used.  In general, there will be 
tradeoffs among these measures. For example, high efficiency may sometimes come at the cost of seller revenue and 
the time to complete the auction (Banks et al. 2003). We looked at a number of dependent variables for studying 
auction performance as well as the behavioral impacts of different levels of feedback.  Specifically, the following 
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variables, with definitions as appropriate, were among those measured, collected, or computed during the 
experimental auctions: 

• Allocative efficiency. The allocative efficiency of a mechanism measures the social welfare from the 
allocation using the mechanism as compared to the maximum social benefits that could have been 
achieved.  An auction is said to be 100% efficient when it assigns the set of offered items so that the 
total value that society obtains from the items is maximized. This happens when each bidder in the 
auction makes a purchase that is contained in her optimal allocation. Efficiency is the most obvious 
choice of a performance measure. It was, in fact, the original policy goal of the FCC PCS auction 
design (Ledyard et al. 1997). We compare the allocations of our various treatments as the percentage 
of the maximum possible gains that are realized by the allocation process.  

Note that the absolute value of efficiency is deceptive because it could be easily increased, for example, by 
increasing the valuation of the assets.  However, we are interested in comparing efficiency across treatments where 
everything else besides feedback is kept the same.  

• Seller’s Revenue. The seller’s revenue in an auction is of interest to an auctioneer. The amount of 
revenue generated from a particular auction mechanism partially depends on the distribution of the 
asset valuations across bidders. This distribution again changes when the number of bidders 
participating in the auction changes. However, in our experiments the number of bidders and the 
distribution of the valuations are held constant across treatments. Hence the generated revenue from all 
the treatments can be easily compared. While a more competitive environment may yield higher 
revenues, a less information-rich environment may yield higher revenues depending upon bidders’ risk 
preferences. 

• Bidder’s Profit. Each bidder’s profit from participating in the auction is another common performance 
measure. Bidders may be unwilling to participate in auctions where the entire surplus goes to the seller. 
We measured individual bidder surpluses in each of the auctions we conducted.  

Based on the literature concerning the general effects of different forms of feedback, it is expected that outcome 
feedback will not show an advantage over the control condition (Brehmer 1980).  With outcome feedback, the 
bidders would have knowledge of whether their bids are winning or not, and also which bids are currently winning 
but would have to figure out by themselves the amount that need to be bid in order for their bid to win. Simply 
providing outcome feedback is generally insufficient for decision makers, needed is more strategic feedback tied to 
the decisions being made.  The process feedback condition provides such cognitive feedback; in particular, the 
process feedback is task information, which has been shown to be effective in learning tasks (Balzer et al. 1989) and 
is expected to lead to improved performance. So, we believe that just providing outcome feedback will not help 
bidders move closer to their optimal allocation of goods. With process feedback, however, all dead bids are 
removed. So, bidders would have precise information regarding the set of bids that are live at any state of the 
auction. Consequently they can be expected to formulate bids that together with some other existing live bids can 
become winning. In addition, once a bidder chooses a bundle of interest, she would be provided with the exact 
amount that she needs to bid on her chosen bundle in order to win at that state of the auction. This, we believe will 
help the bidder to move closer towards her optimal allocation.  Therefore, we plan to test the following propositions: 

Proposition 1: The efficiency in the case of outcome feedback will be similar to that in the case of baseline 
feedback. 

Proposition 2: The efficiency in the case of process feedback will be higher than that in the case of baseline 
feedback. 

With outcome feedback the bidders are aware of whether any of their bids are currently winning or not. So, a utility 
maximizing bidder can be expected to iteratively increase her bid at least as long as none of her bids are winning or 
her maximum valuation is reached. We propose that such behavior will result in higher overall revenue of the 
auction compared to the baseline case. Similarly, process feedback is expected to yield higher revenues as well. This 
leads us to the following propositions: 

Proposition 3: The seller’s revenue in the case of outcome feedback will be higher than that in the case of 
baseline feedback. 
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Proposition 4: The seller’s revenue in the case of process feedback will be higher than that in the case of 
baseline feedback. 

In addition, since process feedback equips the bidders with information regarding the exact bid needed in order to 
win at the current state of the auction, the bidders can be expected to not overbid on any of the chosen itemsets. This 
is in contrast to the case of outcome feedback, where bidders are not provided the information regarding exactly how 
much to bid on the chosen combination. Consequently, we propose that the revenue in this case will be higher due to 
overbidding.  

Proposition 5: The seller’s revenue in the case of outcome feedback will be higher than that in the case of 
process feedback. 

Although outcome feedback alone is not expected to increase the efficiency of the auctions, for reasons stated 
earlier, it is expected to increase the total revenue. This increased revenue, we propose, will come at the expense of 
bidder profits. So, the bidders’ profits in the case of outcome feedback will be lower than in the case of process 
feedback. In the case of process feedback, equipped with information regarding deadness levels and winning levels, 
bidders can be expected to bid the minimum required to win, thus maximizing their profits. So, our final 
propositions are: 

Proposition 6: The bidders’ profits in the case of outcome feedback will be similar to those in the case of 
baseline feedback. 

Proposition 7: The bidders’ profits in the case of process feedback will be higher than those in the case of 
outcome feedback. 

We conducted experiments with human subjects to test these propositions. In the following section we describe our 
auction design. 

Auction Design 

To construct the experimental setup, we rely on theoretical and empirical advances in experimental 
economics.  One of the important issues is to create appropriate incentives for bidders to participate in the 
experiment with economic gains and/or losses in mind.  An economic experiment consists of agents (e.g., buyers 
and sellers) and market institutions (e.g., different types of auctions).  For an experiment that takes place in a 
controlled economic environment of a laboratory to have general theoretical implications, one cannot rely on 
deductive logic.  Instead we have to rely on the general principle of induction, which maintains that behavioral 
regularities will persist in new situations as long as the relevant underlying conditions remain substantially 
unchanged.   
 

We rely on Smith’s (1976) induced-value theory that identifies sufficient conditions for experimental 
control.  The key idea is that the proper use of a reward mechanism allows an experimenter to induce pre-specified 
characteristics in experimental subjects.  Proper use is further defined to consist of a monotonic non-satiable utility 
for the reward and that the incremental reward a person receives depends on her actions (and those of other agents) 
as defined by the institutional rules that she understands.  The use of real currency is known to satisfy these 
important conditions.  Furthermore, Jamal and Sunder (1991) find that such salient rewards tend to increase the 
reliability of results.  Smith and Walker (1992) provide a summary of evidence that further supports the use of real 
monetary rewards in experimental economics.  We borrow significant design aspects from researchers who have 
conducted experiments in the field of combinatorial auctions and use the information regarding the various 
treatments that have been used in prior literature summarized earlier (e.g., Banks et al. 2003).  
 

Hypothetical Auction Environment 

In our experimental environment, three bidders compete to acquire six property lots surrounding a lake.  
The lots are adjoining and successively labeled A through F, so that Lots A and F are also adjoining.  This is shown 
in Figure 1.  
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Figure 1.  Property lots surrounding a lake 
 

Each bidder has a preferred lot:  Bidder 1 prefers Lot A, Bidder 2 prefers Lot C, and Bidder 3 prefers Lot E.  
For each bidder, the valuation associated with the preferred lot is set at 100; the lot value decreases by 50% as the lot 
is further from the preferred position. This particular setup is symmetric, with each bidder facing similar valuations 
relative to the others, allowing them to be treated equivalently in the analyses.  Consequently, any consistent 
differences in behavior among auctions with differing levels of feedback can be reasonably attributed to varying 
responses to feedback.  The valuations of the individual lots for each bidder are as identified in Table 3. 

Table 3.  Valuations of individual lots for each bidder 

 Lot A Lot B Lot C Lot D Lot E Lot F 
Bidder 1 100 50 25 12.5 25 50 
Bidder 2 25 50 100 50 25 12.5 
Bidder 3 25 12.5 25 50 100 50 

The other key feature of this scenario is that having adjoining lots increases the combined value of the lots 
by 10% (for every additional adjoining lot) thereby creating superadditive valuations.  For example, suppose that 
Bidder 1 is interested in Lots A and B, and Bidder 2 is interested in Lots C, D, E, and F.  The resulting valuations 
are (100 + 50) * 1.10 = 165 for Bidder 1 and (100 + 50 + 25 + 12.5) * 1.30 = 243.75 for Bidder 2.  Some more 
examples of how the superadditive valuations will be generated for Bidder 1, whose valuations are presented in 
Table 3, are shown in Table 4. 

Table 4.  Examples of superadditive valuations for Bidder 1. 

 Lots Adjoining lots Valuations for Bidder 1 
Example 1 {AB} 2 adjoining (100 + 50) * 1.1 = 165.00 
Example 2 {AF} 2 adjoining (100 + 50) * 1.1 = 165.00 
Example 3 {CDE} 3 adjoining (25 + 12.5 + 25) * 1.2 = 75.00 
Example 4 {BEF} 1 separate; 2 adjoining 50 + (25 + 50)*1.1 = 132.50 

Note that this scenario is similar to the experimental environment of Banks et al. (2003).  The 
aforementioned example can be generalized with a set of parameters where the valuation of an itemset can be 
defined as: 

i ij i jk
j j k

k j

V v A sΩ
∈Ω ∈Ω ∈Ω

>

= +∑ ∑∑

where ViΩ is the value of itemset Ω for individual i. Here itemset Ω is represented by an ordered set of items; vij is 
the valuation of item j∈Ω by individual i; Ai is the maximum superadditivity factor for individual i; and sjk is the 
strength of relationship between two items of an itemset.  For example, if sjk = 1 (say, for adjacent items j and k), the 
total value of a package just consisting of these two items would be (vij + vik + Ai).  Such a setup allows both for a 
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compact description of the scenario that can be provided to bidders participating in the auction as well as for 
building a simulation of the auction environment. We conducted several simulation runs with computerized bidding 
agents as well as several pilot tests with human bidders to refine the parameters of our model before carrying out our 
main experiments. 

Auction Rules  

In the auctions, bidders were allowed to place any number of bids on single lots as well as any combination 
of lots.  They were able to update their previous bids by placing a higher bid on the same bundle. At the end of the 
auction, the bids that maximized the seller’s revenue were determined, and the participants were notified of the 
result along with their individual profits based on the final allocation. In addition to these general rules, we adopted 
the following specific rules: 

• Bid increments: The bid increment was set at $1. The auction interface ensured that only integer 
(dollar amount) bids could be submitted. 

• Bid withdrawals: As in most online auctions, participants were not allowed to withdraw their bids. 

• Stopping rule: A “soft” stopping rule was used, i.e., after an initial time period, the auction ended if no 
new standing bids were placed for x minutes. This rule of extending the auction was followed in order 
to eliminate “sniping,” i.e., placing bids in the last few seconds of the auction. The initial time period 
was chosen as 13 minutes, with x = 2 minutes. So, each auction lasted at least 15 minutes.   

A summary of the auction parameters is shown in Table 5. 

Table 5. Auction rules 

Number of items up for sale in each auction 6

Number of bidders competing in each auction 3

Duration of each auction Minimum of 15 minutes. After the first 13 minutes, 
two minutes from the last bid.  

Superadditive valuation 10% on top of the additive valuation of the adjoining 
lots for every additional adjoining lot. 

Bid withdrawals Not allowed. 

Bid increment $1 

Bidders were explained how the valuations were generated. The auction interface allowed them to find 
their individual valuations for any package. The bidders were not given any fixed budget but the final compensation 
scheme was based on their individual performances in terms of their retained surplus. Bidders were paid for the lots 
they won in proportion to their profits from the auction. Profit was calculated as the difference between their 
valuation of the item(s) and their winning bid(s). Consequently, their profits were positive, zero, or negative 
depending on whether their winning bid was less than, equal to, or greater than their valuation. Obviously, if they 
did not win any lot, their profit was zero. Each subject was paid an up-front sum of $10 for participation.  Freidman 
and Sunder (1994) recommend this practice for three reasons: (a) to reduce tardiness, (b) to establish ex ante 
credibility with the subjects that the rewards being promised to them will be paid to them promptly, and (c) to 
provide an initial cushion of wealth they can afford to lose in the actual experiment without dipping into their own 
wallets.  At the end of the auction, auction participants were paid 20 cents for every experimental dollar of their 
profit. Similarly, they were charged 20 cents from their participation fee for every dollar of loss they incurred by 
bidding above their valuation. The maximum amount that could be taken off was their participation fee. 

 Auction Interface 

The auction interface for all three treatments (i.e., feedback levels) was the same except for the type of 
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feedback provided. The interface for the Level 1 feedback is shown in Figure 2. In this case, all bids were displayed 
with the bidder’s own bids highlighted on her own screen. The bidders’ valuations for the individual lots were 
displayed on their screens at all times. The bidders could find their valuations for any possible combination of the 
lots by just clicking on the checkboxes corresponding to each lot.  For example, if a bidder clicked on the 
checkboxes corresponding to Lots B and C, the valuation of the package {B, C} ($165 in Figure 2) would display on 
the textbox in the center. Bids could be placed by selecting the lots, entering a bid amount, and then pressing the 
<Submit Bid> button. The total elapsed time of the auction and the time since the last bid was placed were also 
displayed.  

Figure 2. Auction interface for baseline feedback 

In our second treatment, in addition to displaying all the bids, the winning bids at any given state of the 
auction were identified. This interface is shown in Figure 3.  At any given point of the auction the bidders knew 
whether any of their bids were winning or not. Of course, the set of winning bids could change with every new bid. 
In Figure 3, Bids 3 and 5, identified in bold red, are the winning bids at the given state of the auction. 

Figure 3. Auction interface for outcome feedback 

 In our third treatment, we provided process feedback to bidders in order to help them formulate their bids. 
As mentioned earlier, this consisted of a specification of the: 1) deadness level – the minimum amount they needed 
to bid in order for their bid to stand a chance of winning in future given all the other bids at that state of the auction, 
and 2) winning level – the minimum they needed to bid in order for their bid to be winning at that state of the 
auction for any package that they chose to bid on. These two amounts provided a range of values for a utility-
maximizing bidder to bid on their selected packages. If they bid below the deadness level, that bid would lose in any 
future state of the auction. So, for any package, the deadness level provided a lower bound for a bidder to bid. In 
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addition, as in English auctions, the bidders had no incentive to bid above the winning level, which thus provided a 
likely upper bound. All dead bids, i.e., bids that stood no chance of winning at any subsequent state of the auction, 
were removed from display. The interface for this treatment is shown in Figure 4. 

Figure 4. Auction interface for process feedback 

A bidder could find these two bounds for any possible package by simply clicking on the lots constituting the 
package. In the snapshot of Figure 4, the deadness level for package {C} is $513 and the winning level for the 
package is $564, as displayed at the bottom left hand corner. In the bid history table of Figure 4, Bids 4 and 5 are not 
displayed because they are dead, i.e., they stand no chance of winning in any future state of the auction. 

Experimental Sessions 

We conducted a total of 53 auctions over 16 experimental sessions. Three to four auctions were 
simultaneously conducted in each session. The 159 unique participants in the 53 auctions were all undergraduate 
business students who responded to volunteer solicitation announcements throughout the campus. The average age 
of the subject pool was 20 years; 55% were male. The participants in each session were randomly assigned to a 
particular auction. They were not told how many other participants they were competing with, which is in keeping 
with practical online auctions where bidders are usually unaware of the number of people interested in the 
commodity.  Subjects were not allowed to participate in these experiments more than once. Each session lasted close 
to two hours on average.  In each session, prior to the beginning of the auctions, instructions explaining the rules of 
the auction were read out loud so that everyone could hear. The instructions were followed by short tests to ensure 
that the participants understood the rules of the auction as well as the bidding environment.  Although the 
mechanism to generate the valuations of the lots was common knowledge, the distribution of the preferred lots 
(shown in Table 3 above) was not disclosed.  So, each bidder in an auction knew what her preferred lot was but had 
no knowledge of what the preferred lots of the other bidders were. At the end of the auctions, participants were paid 
privately in sealed envelopes. 

 
3 It is actually anything greater than $50 but since we only allowed integer bids, i.e., bid increments of $1, it is $51. 
4 It is actually anything greater than $55 but since we only allowed integer bids, i.e., bid increments of $1, it is $56. 
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Results and Discussion 

Descriptive statistics for allocative efficiency, seller’s revenue, and bidder’s profits for the auctions are 
provided in Table 6. We have excluded 4 auctions from our initial analysis because in these at least one bidder 
mistakenly placed a bid significantly above her valuation.  They immediately notified us of the mistake but, since 
our design disallowed bid withdrawal, rectification of the user error was not possible. Two of those cases were in the 
control case, i.e., baseline feedback treatment, and one each in the other two treatments.   

Table 6. Descriptive statistics of the auctions 

 
Treatments 

Number of 
Auctions 
Conducted 

Mean 
Efficiency 

Mean Seller’s 
Revenue 

Mean 
Bidder’s 
Profit 

Baseline Feedback 16 84% $356.31 $22.74 
Outcome Feedback only 16 91% $410.50 $20.95 
Process Feedback  17 92% $380.71 $28.07 

The average efficiencies and the average revenues are both higher in the case of the auctions with feedback 
than in the baseline case. The mean auctioneer’s revenue is highest in the case of outcome feedback, while the mean 
profit generated by the bidders is highest in the process feedback case. The efficiencies of the outcome and process 
feedback cases appear to be comparable.  One interesting aspect is that, while process feedback (which provides the 
most amount of information to the bidders) maximizes efficiency and bidder’s profit compared to the other two 
treatments, seller’s revenue appears to be maximized through partial feedback (i.e., outcome feedback).  

In order to test the significance of our propositions, we conducted Mann-Whitney Rank Sum tests. This test 
is a non-parametric counterpart of the unpaired t-test.  It is preferred for smaller samples where the populations are 
not normally distributed. When comparing data generated from human subjects, it is typical to assume that the data 
do not meet the normality assumptions required for a t-test (see for example Kwasnica et al. 2005; Porter 1999). The 
rank sum test requires the two samples to be independent, and the observations to be ordinal  (Siegel and Castellan 
1988), which is exactly the case for the data we are comparing.  

Table 7. Mann-Whitney test results 

Performance measures

Treatments compared 

Efficiency Seller’s 
Revenue 

Bidder’s Profit 

Baseline Feedback vs 
Outcome Feedback 

z = 1.813 
p = 0.034 

z = 2.262 
p = 0.011 

z = 0.344 
p = 0.365 

Baseline Feedback vs 
Process Feedback 

z = 1.917 
p = 0.027 

z = 0.937 
p = 0.174 

z = 0.465 
p = 0.321 

Outcome Feedback vs 
Process Feedback 

z = 0.221 
p = 0.412 

z = 0.613 
p = 0.269 

z = 0.743 
p = 0.228 

The results from the Mann-Whitney tests are provided in Table 7.  The results show that either form of 
feedback – outcome or process – results in a significant improvement in auction efficiency.  Thus, our proposition 
regarding the positive impact of process feedback on efficiency (Proposition 2) is verified. However, even outcome 
feedback, which we did not expect to have a significant impact on efficiency (Proposition 1), had a significant 
positive effect on efficiency. The bidders evidently were able to use the information regarding the currently winning 
bids to formulate winning bids that were closer to their own optimal allocation. Consistent with Proposition 3, the 
seller’s revenue significantly increased with outcome feedback. However, contrary to Proposition 4, seller’s revenue 
did not significantly increase with process feedback. In addition, the difference in revenue between the two 
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treatments with feedback was not significant (Proposition 5). The reason that process feedback generates lower 
revenue than outcome feedback is because, with similar efficiency, the surplus in the former case is mostly extracted 
by the bidders. Therefore, bidder profits are higher in the case of process feedback.  

We further investigated why the difference in bidders’ profits does not appear to be statistically significant. 
Upon closer examination of bidding data, we found that there are nine auctions where bidders incurred losses, i.e., 
they bid above their valuations. This caused a large variance in the profit measure resulting in statistical 
insignificance. Since we provide fixed valuations (as opposed to a distribution of valuations) for all possible lots to 
the bidders, it might seem surprising that some bidders still bid above their valuation, especially because in our 
payoff scheme bidders lost a part or whole of their initial endowment (participation fee) if they bid above their 
valuation.  However, in addition to the fact that we did not allow bid withdrawal, violation of normative principles 
in competitive auctions is well documented in the literature (e.g., Budescu and Maciejovsky 2005). Therefore, we 
decided to remove these auctions from further analysis, attributing the irrational bids to bidding errors.  Out of the 
nine auctions that we excluded, four were in the baseline case, one in the outcome feedback case, and four in the 
process feedback case. Table 8 shows the descriptive statistics and Table 9 presents the results from statistical tests 
on this modified data set. 

Table 8. Descriptive statistics of the remaining auctions 

 
Treatments 

Number of 
Auctions 
remaining 

Mean Seller’s 
Revenue 

Mean Bidder’s 
Profit 

Baseline Feedback 12 $337.00 $36.38 
Outcome Feedback only 15 $407.53 $21.57 
Process Feedback 13 $346.69 $41.78 

Table 9. Mann-Whitney test results after excluding auctions with bidder losses 

 
Treatments compared 

Seller’s 
Revenue 

Bidder’s Profit 

Baseline Feedback vs Outcome Feedback z = 2.780 
p = 0.002 

z = 1.627 
p = 0.051 

Baseline Feedback vs Process Feedback z = 0.544 
p = 0.293 

z = 0.549 
p = 0.291 

Outcome Feedback vs Process Feedback z = 1.636 
p = 0.050 

z = 2.085 
p = 0.018 

The results after the exclusion of nine auctions indicate that providing outcome feedback results in 
significantly higher revenues for the seller as compared to process feedback, while process feedback results in 
significantly higher profits for the bidder as compared to outcome feedback (Proposition 7), even though contrary to 
Proposition 6, outcome feedback resulted in higher bidder’s profits.  We believe that these results shed valuable 
insights for mechanism designers regarding the choice of information revelation. Our results indicate that outcome 
feedback should be used when the goal is to maximize sellers’ profit while process feedback should be used when 
the overall goal is to maximize social welfare.  Note that the allocative efficiency is significantly higher in either 
case compared to the control case.  

Apart from the fact that the bidders with Level 3 feedback (maximum feedback) generate significantly 
higher surplus for themselves than those with the other types of feedback, various other statistics also indicate that 
the bidders were using the feedback provided to them.  For example, the percentage of dead bids in the case where 
we suggested the winning the deadness levels was significantly lower than the other two cases.  In addition, the 
amount the bidders bid above the minimum levels was significantly lower in the case where these levels were 
provided as feedback. 
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Conclusion 

IT is being increasingly used to automate existing market processes, but it also presents opportunities to 
design and deploy new, innovative market mechanisms. Combinatorial auctions, for example, represent such a class 
of sophisticated trading mechanisms that allow bidders to consider dependencies among the items.  Theoretically, 
this allows advantages over the classical single-item auctioning of multiple items via multiple auctions by ensuring 
that bidders can consider superadditive valuations, i.e., valuation(A + B) > valuation(A) + valuation(B).  However, 
the inability to provide meaningful feedback in real-time has resulted in limited application of such auctions as 
continuous mechanisms where bidders update their bids continuously and not just in discrete rounds.  One of the 
primary characteristics of most online auction institutions is that they are continuous.  A basic requirement for 
generating bidder participation in such auctions is the availability of information regarding the current state of the 
auction, e.g., identification of the currently winning bid(s).  While online auctioneers have implemented many 
different variations of classical single-item auctions (including auctions with multiple units – see, for example, 
Bapna et al. 2003), there have been no widespread implementations of continuous combinatorial auctions to sell 
multiple items to multiple bidders. This leads Kwasnica et al. (2005) to assert that supporting bidders in 
combinatorial auctions is the next big challenge in facilitating wider use of combinatorial auctions.  

The contributions of this paper are threefold: 1) we design novel feedback mechanisms that can aid bidders 
in formulating successful bids; 2) we empirically demonstrate the effectiveness of the feedback mechanisms in 
increasing social welfare, generating higher revenues for the seller, and in some cases, more profits for the buyer; 3) 
we build valuable insights for mechanism designers to choose an appropriate level of feedback for specific auction 
objectives. We studied the comparative benefits of each level of feedback with respect to traditional metrics of 
interest, such as efficiency, revenue, and bidder profits.  In order to study these features, we first developed a 
simulation testbed that facilitated the creation of a robust experimental environment, including the appropriate 
choice of parameter values so that relevant effects could be isolated with minimal noise due to experimental 
instrument bias. Using the experimental environment, we empirically examined real bidder behavior. The results 
from our study provide important theoretical contributions, advancing our knowledge of bidder behavior in 
combinatorial auctions and adding to the active experimental exploration and design of new combinatorial auction 
mechanisms. Our results provide mechanism designers the knowledge to choose a suitable level of feedback for 
specific auction objectives. For example, if the goal is to maximize allocative efficiency, then the designer should 
choose process feedback, whereas if the goal is to maximize seller’s revenue then outcome feedback should be 
preferred. Also, providing higher level of information is a preferable choice for all stakeholders because, even 
though with full information bidders are able to extract higher surplus, higher efficiency results in higher revenue for 
sellers as compared to the limited-information baseline case. 

 The spread of the Internet has led to an expansion of online auctions as a retail mechanism for both 
Business-to-Consumer (B2C) and Consumer-to-Consumer (C2C) commerce.  To date, such auctions have generally 
used non-combinatorial, single-item bidding mechanisms, having employed many different variations of this class of 
mechanism.  The use of continuous combinatorial auctions to sell multiple items to multiple bidders has only 
recently begun to be explored.  Our study is designed to enhance our knowledge concerning bidder behavior in 
combinatorial auctions. The study is also the first to examine how bidders use information richness in complex 
environments. Once these issues are better understood, it is expected that these mechanisms will become more 
widespread in B2C and in C2C commerce.  Therefore, our research has a potential to facilitate the introduction of a 
new class of auction mechanisms. Moreover, our bidder support tools are expected to make this complex trading 
mechanism more transparent to bidders, which may lead to higher acceptance of the mechanism thereby creating 
greater market liquidity. 
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