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Abstract

With the development of such technologies as the Business Process Execution Language, a business-process-centric
approach to the design of information systems has emerged. This approach calls for the modeling and design of the
business process, both to document it as well as to analyze its risk characteristics. In this paper, we introduce a math-
ematical model to analyze the risk characteristics of business processes using its graph-theoretic structure. This focus
on risk has been driven by recent legislative mandates, including the Sarbanes-Oxley Act on the integrity and relia-
bility of the data reported in the financial statements, as well as the reliability and documentation of the information
systems that produced those data. Our methodology considers the structural aspects of a process with respect to error
generation, propagation, and risk mitigation. It finds cost-effective ways of embedding control procedures in the pro-
cess that mitigate such risk exposure to meet desired risk thresholds. Our methodology lends itself to implementation
within process modeling workbenches that are offered by leading software vendors. We illustrate our work through a
case study regarding the order fulfillment process in a functioning online pharmacy.

1 Introduction
The importance of well designed business processes (BP) in organizations has long been recognized (Malone et al.,
1999; Anupindi et al., 2005). Recently, mandates such as the Sarbanes-Oxley Act have led to a focus on documentation
and analysis of the risk characteristics of processes (Krishnan et al., 2005). For example, according toCFOmagazine,
“Experts estimate that anywhere from 10 percent to 30 percent of the data flowing through corporate systems is bad...”
(Goff, 2003, pp. 97–98). The Sarbanes-Oxley Act requires a firm’s CEO and CFO to certify the reliability of the
data reported in the financial statements, as well as the reliability and documentation of the information system that
produced those data (Pasley, 2002). Similar concerns about data errors arise in other sectors, like the healthcare
industry, in which patient safety has been a major concern following a widely publicized report from theNational
Academy Press(Kohn et al., 2000).

In this paper, we propose an approach to BP design that incorporates risk management. The approach employs
decision theoretic methodology to analyze the risks associated with errors in the information flow used and generated
by a business process. The method accounts for process structure in error generation, propagation, and mitigation,
and is designed to determine the optimal manner in which controls – procedures that can find and fix errors – can
be embedded in the business process at the task level to mitigate risk. Our objective is to develop a well-founded,
quantitative approach to risk assessment and mitigation, which can be implemented and deployed as part of a tool kit
or workbench (e.g., IBM WebSphere Process Modeler) to facilitate an iterative approach to process-centric analysis
and design. The results from tests conducted using synthetic data from various BP structures show that our model
minimizes both the mean and the variance of the risk distribution.

The literature on business processes is large and diverse in the Information Systems field (Basu and Kumar, 2002;
van der Aalst, 2002; Kumar and Zhao, 2002; van der Aalst et al., 2003; Chakraborty and Lei, 2004). However, seldom
has research studied BP design problems from the risk management perspective in such a way that accounts for the
errors introduced by the process.Krishnan et al.(2005) developed a formal, task-level, process-oriented ontology of an
accounting information system. We extend their work by modeling the characteristics of information flow and errors
at the level of information transformation processes along with the effectiveness and cost of the controls designed to
detect and correct errors. This enables assessment of the risk associated with data errors and development of optimal
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control strategies that mitigate risks while minimizing cost. As a result, this study contributes to the literature on
ex-ante risk-based process design, as well as ex-post risk assessments of existing processes and control models. Since
the methods proposed can be implemented in process modeling software (e.g., IBM Business Integration Modeler), it
has the potential to be incorporated into tools for business process design.

The remainder of the paper is organized as follows: Section2 surveys relevant work; Section3 presents the models
for transforming BP into directed graphs with attributes; Section4 proposes a hierarchical probabilistic model of error
distribution and propagation through the process graph; Section5 illustrates the business control procedures and their
roles in risk mitigation; Section6 assesses the error associated risks, and proposes three optimization-based approaches
to tradeoff the cost of applying controls and the reduction in risks brought about by the use of controls. We illustrate
our model through the order fulfillment process in an online pharmacy in Section7, and conclude in Section8.

2 Relevant Work
We briefly survey in this section relevant work in organization, accounting, and information systems literature, and
describe how our work incorporates key concepts from this literature to develop a quantitative risk estimation and
management method for business process design.

Literature On Business Process (BP) Design and AnalysisThe literature on business processes is large and di-
verse from the organizational (Born, 1994; Hammer and Champy, 1993) and information systems perspectives.(Guha,
1997; Grant, 2002; Mansar and Reijers, 2005) Singhal et al.(1988) discussed the computational and organizational
issues in BP design, and argued that the compatibility among tasks of a business process is critical. An empirical
study conducted byMitchell and Zmud(1999) using data from forty-three process-redesign projects in the health care
industry, found that project performance improved when IT and work-process strategies were tightly coupled together.

Recent work in Information Systems includes work from the standpoint of process modeling (Basu and Kumar,
2002), process data reliability (Krishnan et al., 2005), implementation of processes using technologies for workflow
management (Basu and Kumar, 2002; Kumar and Zhao, 2002; van der Aalst et al., 2003) and on process-centric de-
sign of information systems using technologies that permit orchestration of web services (Chakraborty and Lei, 2004).
van der Aalst(2002) presented Petri nets as a tool for BP management.Bernstein et al.(1999) developed a tool for
generating new business process ideas by recombining elements from a richly structured repository of knowledge
about business processes. They demonstrate in their work that such a repository can be used automatically to generate
a wide range of innovative process designs.Smith and Fingar(2003) argue that process-centric thinking can mitigate
the business-IT divide and reduce the lag between management intent and execution.zur Muehlen and Rosemann
(2005) present a taxonomy of process-related risks and discuss how this taxonomy can be applied in the analysis and
documentation of business processes. They demonstrate how such process modeling methods as Architecture of In-
tegrated Information Systems (ARIS) and extensions of the embedded Event-driven Process Chain Notation (EPCs)
can be extended to document process-related risks and their relationships. Our work contributes to this literature by
focusing on risk management issues related to data errors, in business process design problems.

Literature On Risk Management Minimizing expected loss is a satisfactory objective in applications when the
loss can be viewed as normally distributed with a fixed standard deviation. Expected loss has been a widely used as
risk measure for managing risks in many disciplines. In cases where the loss distribution is skewed, minimizing the
expected loss is inadequate. We consider an alternative risk measure,Value-at-Risk(VaR) andConditional Value-at-
Risk(CVaR), in our risk management and optimal control structure-design model. The objective in using Value-at-Risk
and Conditional Value-at-Risk measurement is to manage the risk of high losses. In order to define the Conditional
Value-at-Risk, we first review the concept ofValue-at-Risk(VaR). Value-at-risk (VaR) was devised by the Risk Metric
group of the J.P.Morgan company (Morgan, 1996) as a methodology for credit risk assessment. Since then VaR has
become a widely used measure for market risk associated with an asset or a portfolio of assets (Duffie and Pan, 1997;
Jorion, 2003). VaR, in a financial context, is an estimate of the maximum potential loss with a certain confidence level,
which a dealer or an end-user of financial instruments would experience during a standardized period. However, VaR
does not provide any information about the amount of loss exceeding VaR. On the other hand, mathematically, VaR
has some serious limitations. For example, in the case of a finite number of scenarios, it is a nonsmooth, nonconvex,
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and multiextremum function with respect to positions (Mausser and Rosen, 1998; Duffie and Singleton, 2003). Given
these characteristics, solving an optimization with a VAR objective is difficult. Conditional Value-at-Risk (CVaR) has
recently been suggested as an alternative risk measure. CVaR quickly gained popularity because it has some desirable
properties that VaR does not have.Rockafellar and Uryasev(2000) gives a definition of CVaR that has been adopted
by other researchers.Acerbi (2002) gives a representation of CVaR in terms of an average VaRand has demonstrated
such important properties as the asymptotical convergence of statistical estimates to CVaR. CVaR is also proved by
Pflug(2000) to be a sub-additive measure of risk compared with VaR, which is not sub-addtive. CVaR is also shown
to be a coherent measure (Rockafellar and Uryasev, 2000; Pflug, 2000). Further, CVaR is a convex function under
quite general assumptions (Acerbi, 2002; Rockafellar and Uryasev, 2002). Therefore computationally, for continuous
distributions, CVaR-optimization leads to convex programming problems. For a finite discrete distribution, the optimal
solution can be computed by solving linear programming (LP) problems. Beside its applications to finance, CVaR
measure has gained increasing attention in other application areas, including facilities location problems (Chen et al.,
2005).

3 Business Processes (BP) as a Graph
For different modeling purposes, processes can be represented in different ways. Our study focuses on the information
flow perspective of a business process through graphical representation. A great deal of literature on graph-based
models of business processes exists.Basu and Blanning(1994, 1998) proposedmetagraphs, and demonstrated their
flexibility for modeling processes, workflows, and decision-support resources (Basu and Kumar, 2002). Zhao et al.
(2000) proposed a workflow-centric approach for organizational information distribution.Kumar and Zhao(1999)
described a general framework for implementing dynamic routing and control mechanisms in workflow management.
There is also literature that emphasizes well-formed workflows and analyzes their properties using Petri net models
(Russell et al., 2005). In this section, we introduce our graphical modeling representation of a process. The notation
we use throughout the paper is briefly summarized in Table1.

Table 1:Descriptions of the notation used in the paper.
Parameters Symbol Description
Process topology T theTask Precedencematrix. T is a binary matrix of size(N ×N). Its generic elementtij = 1

if task i directly precedes taskj. i, j: the task indices. N = the number of tasks in a process
Γ theerror propagation (EP)matrix.
γij the propagation potential of taski to taskj. γij is the entry at thei-th row andj-th column of

Γ.
Information flow ~u a single information unit in the business process.
Errors E the set of the error types that can possibly occur in a process,|E| = M .

m the single error types:m ∈ E .
ẽim random binary variable: the presence or absence of an error of typem created by taski.
eim random variable: the number of errors of typem at taski.

Error distribution ~pi aM -dimensional random vector of the probabilities of theM types of errors being introduced
by taski. ~pi = (pi1, . . . , piM )′.

pim the probability of an error of typem being introduced by taski .
Controls xi the control utilization level at taski : 0 ≤ xi ≤ 1.

αi(xi) theeffectivenessfunction of a control procedure at taski .
Cost factors cim the unit loss of an error of typem in an information unit at taski.

ωi(xi) the cost of applying controls to taski.
Risk management lim the monetary loss of taski introducing an error of typem to an information unit.

rβ(x) the Value-at-Risk at the significance levelβ
φβ(x) the conditional Value-at-Risk at the significance levelβ
R the total risk associated with data errors in the business process.

The BP Topology A business process model represents the flow of physical items or informational artifacts through
a sequence of tasks and sub-processes that operate them. The flow may be directed by different types ofgateways
that can diverge or converge flows using such constructs as branches, forks, merges, and joins. These elements form
a directed graph with the tasks as nodes and the gateways as arcs. A stylized graphical model of a business process
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Figure 1:A graph representation of a business process consisting of information sources (the gray node at the starting
point), error sources, and information repositories (the gray node at the end point) .

is shown in Figure1. Each node in the graph represents a task. A directed arc from task1 to task2 implies that task
1 precedes task2. The graph may be cyclic as well as hierarchical, where one of the nodes could be a sub-process
containing its own directed graph. Further, directed arcs convey the exchange of information units between the tasks.
Among the set of nodes that represent the tasks involved in a process, we identify two special sets to which we refer as
information sources(the gray node at the starting point) andinformation repositories(the gray node at the end point).
An information source is an origination point of data flows. It may be the starting event or initial task in a process.
Consider the example of an order management process: The information source is a client’s action of placing an order.
Information repositories represent locations (real or virtual) where the data can be stored and retrieved. An example
of this is a database containing business and financial data that is used by the company for decision-making, for the
evaluation of its strategy, or for the generation of quarterly and annual financial reports to external parties including
shareholders and regulatory agencies. Information sources and information repositories representinterfacesto the
business process in that information is fed to the process via sources and delivered to other processes via repositories.
Tasks operate on the incoming information flows, and may introduce errors. The set of nodes that represent such tasks
are callederror sources. The precise definition oferror is given in Section3.

This simple graph is extended to permit attributes of the nodes and the arcs – for example, the probabilities of
certain type of errors being introduced by the tasks, – and the types of gateways. Later, when control systems are
introduced, the model is further extended to include attributes of control procedures at each task location. For the sake
of exposition, we will represent the business process topology and its associated attributes as a set of matrices and
vectors through the rest of our paper.

Let T be theprecedencematrix. T is a binary matrix of size(N ×N) such that its generic elementtij = 1 if task
i directly precedes taskj, and0 otherwise.T encodes the topological structure of the process, and provides a map of
paths of the information flows in the process. For example, the “1”s in thei-th row of T identify the set of the tasks
that taski directly precedes. On the other hand, they imply that the information flow coming out of taski is fed to the
set of tasks that directly follow taski. The information flow patterns such as convergence, divergence and feedback
can be constructed using this basic matrix representation.

Information Flow in BP The information flow in the process is conceptualized as the flow of information units.
Typically, an information unit is multi-dimensional. Consider our order fulfillment process example in an online phar-
macy, where the information units in the process correspond to the orders for medication originating from the clients.
The information contained in each order has several dimensions, including the patient demographic information, the
patient history information, the patient credit history information, and the prescription information. The data in any
one dimension of an information unit can get corrupted or lost. For example, the titration or strength of the medica-
tion or the number of refills could be recorded incorrectly. We refer to such incorrect missing or spurious data in an
information unit as anerror. As a starting point, we treat different dimensions equivalently from a risk perspective.
Yet this constraint can be easily relaxed. Suppose an information unit is originated from an information source. The
data content of the information unit may change at each step of the process. Errors are potentially introduced during
the flow from a source to a repository. Later, we introduce controls that can be placed at each task capable of stochas-
tically detecting and correcting errors. Such controls may further affect the data content. Information units eventually
reach an information repository. Units in the repositories are used to generatereportsfor an organization’s internal or
external purposes, such as the key performance indicators (KPIs).
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4 The Error Model
As discussed above, tasks may introduce errors to the information flow. Errors may be caused by a number of reasons
including mistakes, omissions, delays, software glitches, and fraud. The probabilities of errors being introduced vary
from task to task due to the heterogeneity of operations and the sources they involve. One task can sometimes introduce
several types of errors. We discuss the error types we encountered in working with a functioning online pharmacy in
Section7. Furthermore, errors of different types are typically correlated at the same task since they are created by
the operational resources for a common operational task. For example, for tasks that are operated by humans, the
probabilities of errors being introduced are in general higher over all error types than the automated tasks.

Let pim be the probability of the occurrence of errors of typem generated by taski. In the pharmaceutical case
study in Section7, and in many other applications, thepim is either given or can be estimated from historical data. As a
starting, the risk analysis in this study is conditional on the knowledge of a given set:{pim}. In cases where{pim} are
not exogenously given, they may be estimated using historical data. Generating of a set of probability vectors with a
given correlation structure is of interest in and of itself. For example, it is useful for simulating and analyzing artificial
corporate settings, making predictions, and simulating what-if scenarios. While we do not address this topic in this
paper, our approach can work with probability density functions that are empirically or theoretically derived. Letẽim

denote the occurrence of errors of typem generated by taski. ẽim is assumed to follow a Bernoulli distribution with
parameterpim.

Path Relations and Error Propagation Errors introduced by tasks are propagated along paths in the process graph.
We assume that if an error is generated at taski, it will be carried along to the succeeding tasks ofi, unless it is detected
and fixed by controls. The error propagation model is specified as follows: Letp(T ) be theN ×N volume transition
matrix of information flow. Each element ofp(T ), p(tij) only represents the portion of the information flow that is
coming out of taski and fed into taskj. For example, in the case of order fulfillment process,p(tij) = 1 means that
all of the orders coming out of taski are sent to taskj; p(tij) = 0.5 means that half of the orders coming out of taski
go to taskj.

The expected sum of the adjacency matrices,

Γ =
K∑

k=1

p(T )k (1)

Γ is a matrix in which each cell,γij , represents the ratio of the volume that is transmitted from one task to another (K
represents the length of the longest path in the process graph). We callΓ the error propagationmatrix. γij is used
to measure the impact of propagation of an error that arises in taski and propagates to its downstream taskj. The
hypothesis behind is that if one error arises at taski with probabilitypim, γij copies of the error will be transmitted to
taskj, which can be reached from taski. We callγij the taski’s propagation potentialto taskj. The computational
complexity of computingγij is O (KN2).

5 The Control Model
Controls provide a means to mitigate risk. In auditing, control procedures are categorized into preventative, detective
and corrective controls (Wand and Weber, 1989; Spires, 1991). In typical BP settings, many different types of controls
are used at various locations to assure process performances. Control examples include the information processing
controls, physical controls, segregation of duties (SOD), and business performance reviews. Controls can be manual
or automated. A specific type of control is designed to find and fix a specific set of error types. Combinations of
many types of controls working together may be able to cover all the possible errors types and eventually achieve risk
mitigation.

For our purposes, we abstract the characteristics of different types and consider controls as classifiers that detect
and correct errors.1 We treat controls as a pooled resource. Allocations are made from this pooled resource to each

1An analysis that retains the identity of the type of the error and of the controls to address these types of error involves a probabilistic set covering
formulation which is the beyond the scope of this paper. The abstraction we employ permits an analytical treatment allowing us to focus on the role
that BP structure plays in risk assessment and mitigation
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task location, with larger allocations indicating larger investments in controls at that location. Further, controls can
be applied at different levels of utilization (i.e. effort) that have associated cost, and error-detection implications.
A concrete example of a control and its utilization is the sampling of such business documents as purchase orders,
receiving reports, and invoices to detect valuation, existence, and completeness errors. The larger the sample size
chosen, the greater is the cost to execute the control and the more likely the errors will be caught.

Error Detection Capabilities and Effectiveness of Control Suppose we have a set of control units available for
use in a process. A control unit is deemed applicable if it has the capacity to fix errors that might arise at a task. Every
task has a set of available control units to monitor and correct the performance of a task. Each control unit has its
utilization capacity, which may or may not be fully put to use. Combinations of the control units along with their
utilization levels represents a certain level ofcontrol effectiveness. The control effectiveness is measured by the error
reduction rate of the control system when applied to a task.

Relating Control Effectiveness to Utilization Assuming the effectiveness of control depends on how much control
is put into use (i.e. refer our sampling example) and false alarms only induce additional costs not additional errors to
the information flow, the control effectivenessα is a function of the utilization level of control at each task:0 ≤ xi ≤ 1
, wherei ∈ {1, . . . , N}. For example,xi = 0 means that there is no control at a taski; xi = 1 means that all available
controls are applied at taski; and0 < xi < 1 means that a portionxi of the controls are applied at taski. Let
x = [x1, ..., xN ]T denote the decision vector that is to be chosen from the set ofX of Rn. The decision vectorx
represents a control allocation strategy at the process level from the set of available strategiesX, subject to specific
constraints. Thexis satisfy the constraint

N∑

i=1

xi ≤ 1, 0 ≤ xi ≤ 1.2 (2)

The forms ofαi(xi) may be specified according to the application context. In this paper,α is formulated as power
functions ofxi with the powera between 0 and 1 scaled by a parametergi for task i. gi represents the maximum
effectiveness at which a control can perform at taski:

αi(xi) = gix
ai
i , 0 < ai < 1.3 (3)

Relating Control Costs to Utilization Extending the approach made byKrishnan et al.(2005), we require the cost
of control to be a function of the control utilization factor. Letωi(xi) be the cost of applying control to taski. We
impose the most commonly used conditions for cost functions from system engineering (Kuo et al., 2001): ωi(xi) is
a continuous, nonnegative, convex, and non-decreasing function ofxi. We assume that the average cost of catching
errors in the information flow is lower at a task with a highindegree. The intuition is that by collecting information
coming from multiple sources, it is easier for a control to detect errors. Hence, the average cost for a control to check
a single transaction at taski, ωi(xi), is specified as a power function ofxi scaled by an in-degree parameter for taski:

ωi(xi) =
di · xbi

i

t̂i
, bi ≥ 1, di ≥ 0. (4)

wheret̂i =
∑N

j=1 tjip(tji) is the product of value oftji (the entry at thejth row andith column in the adjacency
matrix (T) weighed byp(tji) (the volume transition factor between taskj andi).

6 Risk Measurement and Management
We consider three risk measures for optimal control design models: theExpected Loss, Value-at-Risk, andConditional
Value-at-Risk. Minimizing the Expected Loss is a satisfactory objective in applications in which the loss can be viewed
as normally distributed with a fixed standard deviation. As a matter of fact, the Expected Loss has been a widely used
measure for risk management in many disciplines.

2Our discussions with an online pharmacy management indicate that this is a reasonable assumption.
3As a starting point, we assume controls are equally effective for catching all types of errors. This assumption can be relaxed.
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Expected Loss Assuming the occurrence of errors follows a Bernoulli trail,ẽim|pim ∼ Bernoulli (pim) (m ∈
1, ...M is the error type), the expected number of the errors of typem at taski

ēim =
∑

pathwaysinto(i)

(
∑

j:inapathway(i)

γjipjm) + pim, (5)

then Equation5 can be rewritten as

ēim = pim +
N∑

j=1

γjipjm. (6)

By applying controls at taski, the number of errors reduced at taski is

ē′im = (pim +
N∑

j=1

γjipjm)gix
ai
i . (7)

The errors, if not caught, will propagate through the downstream tasks of the process, and incur certain business
costs because the tasks are operated on incorrect information. The cost reduced is registered as the potential loss
avoided:

∆lim = (pimcim +
N∑

j=1

γjipjmcjm)gix
ai
i (1 +

N∑

j=1

γik). (8)

The benefit of applying control for a company is the expected loss reduction by reducing the error rates of tasks. It is
measured as

∆L =
N∑

i=1

M∑
m=1

(
(pimcim +

N∑

j=1

γjipjmcjm)gix
ai
i (1 +

N∑

k=1

γik)
)

(9)

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) As noted above, minimizing the expected loss is a
satisfactory objective only in applications in which the loss can be viewed as normally distributed with a fixed standard
deviation. In cases where the loss distribution is skewed, optimization by minimizing the expected loss is inadequate.
In the context of loss associated with error rates in the information flows in business processes, the loss distributions
are, in general, skewed. Losses due to certain types of errors may be negligible, but may for other types be substantial.
On the other hand, the loss associated with errors beyond a threshold may be significantly larger than that associated
with errors below the threshold. In order to address these modeling challenges, we consider in this section two
alternative risk measurement –Value-at-Risk(VaR) andConditional Value-at-Risk(CVaR) – in our optimal control
structure design model formulation.

Background Knowledge:β-VaR and β-CVaR Let f denote the probability distribution function of the loss. When
the loss is continuous,f denotes the the probability density function; when the loss takes discrete values,f denotes
the probability mass function. Similarly, we usef(l|x) to denote the loss distribution function ofl for a given decision
vectorx. The cumulative distribution function of loss for a givenx, Ψ(l|x), is defined as

Ψ(l|x) =
∫ l

−∞
f(z|x)dz. (10)

Value at risk (VaR) at a significance levelβ for a givenx, rβ(x), is:

rβ(x) = min
l

{
l ∈ R : Ψ(x, l) ≥ β

}
. (11)

The CVaR at a significance levelβ is calledβ-CVaR. The value of theβ-CVaR of a loss associated with a decision
x is essentially the mean of theβ-tail distribution ofΨ(l|x), which we denote asfz≥rβ(x)(z|x). The average loss in
the tail is:
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φβ(x) =
1

1− β

∫ +∞

rβ(x)

f(z|x)dz (12)

φβ(x) denotes the value of theβ-CVaR.Rockafellar and Uryasev(2000) showed that theβ-CVaR value for the
loss random variable associated withx can be determined from the formula

φβ(x) = min
r∈R

Fβ(x, r), (13)

where
Fβ(x, r) = r + (1− β)−1

∫

z∈R
[f(z|x)− r]+dz (14)

Designing Optimal Control Procedures The optimal design of the control structure is the design that maximizes
the net benefit of applying controls. In this section, we formulate three optimization problems, the “Expected-Loss-
Optimal” model, which finds the optimal control structure by minimizing the expected loss; the “β-VaR-Optimal”
structure, which finds the optimal control structure by minimizing the VaR at theβ significance level; and the “β-
CVaR-Optimal” structure, which finds the optimal control structure by minimizing the CVaR at theβ significance
level:

max R−
N∑

i=1

ωi(xi) (15)

s.t.
N∑

i=1

ωi(xi) ≤ B;
N∑

i=1

xi ≤ 1; 0 ≤ xi ≤ 1; i = 1, ...N

whereR = ∆L for the “Expected-Loss-Optimal” formulation;R = rβ(x) for the “β-VaR-Optimal” formulation; and
R = φβ(x) for the “β-CVaR-Optimal” formulation.

7 Case Study: Pharmacy Order Fulfillment Process
We collected the data from a medium-sized online pharmacy that provides both pharmacy services and pharmaceu-
tical information system management services. In this section, we illustrate the preliminary application of our risk
management model to the order fulfillment process at this firm.

Figure2 shows the high-level business process model diagram. The process begins with the clients/patients or-
dering medication, and ends with the pharmacy recognizing revenue. After an order arrives at the pharmacy, it is
sent to the order management center. At the order management center, the order is processed and relevant contrasts
are updated. The valid orders are then sent to the in-house pharmacies where the orders are fulfilled. The bills are
sent out from the billing management center to the insurance companies or the clients/patients. At the same time, the
medicines are delivered from the in-house pharmacies by contracted carriers to the clients/patients. The payments are
collected at the end of each month at the billing center and recognized as revenue at the accounting department. Each
management center is a module that contains a subprocess. Within the subprocess, sequences of tasks are performed
to achieve the function of the module. The company interacts with other parties including clients, drug manufacturers,
and insurance companies. Controls in our study focus on intra-organizational tasks.

Tasks and Information Flow The order of medication is the information flow in the order fulfillment process.
The order of medication flows through the following tasks as shown in the diagram: 0) nurses/Doctors enter patient
order information; 1) stuff enter patient/order information into QS1 system; 2) stuff enter patients payer information
and check for insurance; 3) stuff create/update contracts; 4) pharmacist approves prescriptions; 5) orders are sent to
FDS/EXP dispensing system for dispensing or filled as a bulk item; 6) out of stock medicine need to be obtained from
alternate source for dispensing; 7) daily drug order is submitted to wholesaler; 8) medicines are sorted by facility
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Figure 2:The high-level process model diagram of the order fulfillment process.

and placed in totes for delivery along with a manifest; 9) a claim, if applicable, is sent to insurance companies; 10)
should a claim not be applicable, charges are entered on the bill sent to the patients’ respective responsible parties;
11) payments are received from responsible parties and insurance companies; 12) payments are posted to QS1 system,
voucher package is prepared; 13) end of month financial reports are run (a.k.a. updating ledgers); 14) insurance
companies or clients pay bills. Fifteen tasks are involved to fulfill the order. The scope of the process involves two
external players: the clients or patients, and insurance companies. task 0) interacts with clients or patients; task 14)
interacts with insurance companies. These two tasks are not considered as locations where the pharmacy can apply
controls. Our model focuses on designing optimal control allocations at the thirteen internal tasks. The maximum
number of steps in the process is eleven.

Model calibration on process topology First, we represent the process network using task precedence matrix (T)
and volume transition matrix (p(T)); then we calculate the propagation impact matrix (Γ). The volume transition
matrixp(T) for the complete process is calibrated as follows

p(T) =




0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 .9 .1 .1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 .8 .2 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0




,

and the resulting thepropagation impactmatrixΓ is calibrated as follows
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Γ =




0 11 21 19 17 13.5 1.5 1.5 14.3 14.3 24.2 19.8 15.4
0 0 11 10 9 7.2 0.8 0.8 7.7 7.7 13.2 11 8.8
0 0 0 11 10 8.1 0.9 0.9 8.8 8.8 15.4 13.2 11
0 0 0 0 11 9 1 1 9.9 9.9 17.6 15.4 13.2
0 0 0 0 0 9.9 1.1 1.1 11 11 19.8 17.6 15.4
0 0 0 0 0 0 0 0 11 11 20 18 16
0 0 0 0 0 0 0 0 11 11 20 18 16
0 0 0 0 0 0 0 0 11 11 20 18 16
0 0 0 0 0 0 0 0 0 0 11 10 9
0 0 0 0 0 0 0 0 0 0 11 10 9
0 0 0 0 0 0 0 0 0 0 0 11 10
0 0 0 0 0 0 0 0 0 0 0 0 11
0 0 0 0 0 0 0 0 0 0 0 0 0




Model calibration on occurrence and cost of errors We collected data on 47 different errors that occurred in the
order fulfillment process at the pharmacy, including the respective costs and frequencies of occurrences of errors.4 The
data provides the average cost per error per type (ĉim) and the frequency of error occurrences on a monthly basis. Note
that the errors of different types occur following a Bernoulli distributionẽim|pim ∼ Bernoulli (pim) trail. We use the
frequency of error occurrences to calculatep̂im, which is then used to sample error instances (ẽim) in the numerical
procedures.

Table 2:The cost factors of controls at each task and the parameter estimates.

Task The cost factors (/hr/person) Estimates (di, bi)
1, 2, 3, 9 $ 20/hr/person for trainees * 30 hr/person/month; (870, 1)

$ 40/hr/person for the trainers * 3 hr/person/month;
$ 50/hr/person of IT setup * 3 hr/person/month.

4 $ 40/hr/person for trainees * 30 hr/person/month; (1680, 1)
$ 160/hr/person for the trainers 3 hr/person/month;

5,6,7,8,10,11 $ 20/hr/person for trainees * 30 hr/person/month; (720, 1)
$ 40/hr/person for the trainers 3 hr/person/month.

12, 13 $ 40/hr/person for trainees * 30 hr/person/month; (1620, 1)
$ 40/hr/person for the trainers 3 hr/person/month;
$ 100/hr/person of IT setup * 3 hr/person/month.

The matrix that represents the error probabilitiespim and the error costscim are calibrated as in Equation7. In
both matric, the first column representsAccuracy, the second column represents “Completeness”, the third column
representsExistence, the fourth column representsOccurrence, the fifth column representsRights & Obligations,
the sixth column representsClassification, and the the seventh column representsCutoff. The rows represent task
locations.

Control methods and Cost of Control The controls chosen by the pharmacy are used to train the employees to
operate with less mistakes. The available methods to eliminate errors include 1) moving the message queue from
intranet tomPower; 2) reviewing medication errors with the staff as part of training; 3) pharmacist checks of all
medicine being put into the dispensing machine; 4) pharmacist checks of all medicine being put into the trays of the
dispensing machines; 5) double checking the cycle fills by two different staff members; 6) random checks throughout
the day of order entries; 7) checking the items on the delivery sheet against the items in the respective tote; 8) extra
training for new hires; and 9) automated procurement systems to eliminate incorrect manufacturers being ordered. the

4A complete table of error information is available.
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{pim} =




2.0% .1% .5% 1% 0 0 0
.3% 0 0 .1% 0 0 0
0 .1% 0 .1% 0 0 0
0 0 0 0 .2% 0 0

.3% 0 0 .1% 0 0 0

.3% 0 0 .1% 0 0 0
.02% 0 0 0 0 0

0 0 0 0 0 .5% 0
.2% .5% 0 0 0 0 0
7.5% .2% .02% 0 0 0 0
.02% 0 0 .02% 0 0 0

0 .1% .1% 0 0 .1% 0
.1% 0 0 0 0 .1% .1%




; {cim} =




250 100 100 100 0 0 0
100 0 0 250 0 0 0
0 100 0 250 0 0 0
0 0 0 0 500 0 0

100 0 0 100 0 0 0
100 0 0 100 0 0 0
1000 0 0 0 0 0 0

0 0 0 0 0 40 0
100 50 0 0 0 0 0
30 50 2500 0 0 0 0

1000 0 0 25 0 0 0
0 25 25 0 0 25 0
25 0 0 0 0 25 50




.

Figure 3:The error probabilities (pim) and error costs (cim), i = 1, ...13 andm = 1, ...7.

data on the cost of extra training we received includes $20 per hr for the cost of the trainer, $40 per hr for the cost of
IT to set up the equipment needed and $50 to $100 per hr for the pharmacy staff being trained.

Model calibration on cost and effectiveness of controls Better-trained employees are assumed to perform their
tasks more effectively at their respective tasks, i.e.,ai is consistent overi. Table2 lists the cost factors of the controls
provided by the pharmacy. The empirical estimates that the maximum effectiveness of the extra training on stuff
member can be achieved is

g1 = ... = g13 = 1 (16)

a1 = ... = a13 = 0.5, (17)

whereg1 = ... = g13 = 1 implies that through proper training and the best possible control performance, all errors can
be caught and corrected right where they are generated.a1 = ... = a13 = 0.5 implies the diminishing marginal effec-
tiveness of control. Having calibrated the parameters of our model, we present in the next section the computational
results.

7.1 Computational Results
The transaction history for 12,000 orders of medication (informational units) were simulated using the data on topol-
ogy, error probabilities, and costs provided by an online pharmacy. By performing this simulation we were able to
abstract the order fulfillment process, and to estimate the risk exposureex anteof the impact of the order management
process under optimal control strategies.

Amount of control allocated at individual BP tasksControl strategy
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 In Out

No Control 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Random 0.04 0.12 0.08 0.09 0.11 0.08 0.10 0.01 0.12 0.05 0.10 0.11 0.02 0.00 0.00
Prop. to~p 0.24 0.03 0.01 0.01 0.03 0.03 0.03 0.03 0.05 0.51 0.00 0.02 0.01 0.00 0.00
Prop. to~γ 0.31 0.15 0.15 0.14 0.04 0.04 0.04 0.04 0.03 0.01 0.01 0.01 0.00 0.00 0.00
Bai 07, analytical 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.50 0.34 0.00 0.00 0.00 0.00 0.00
Bai 07, min Loss 0.58 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.26 0.00 0.00
Bai 07, min VaR 0.59 0.08 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.03 0.00 0.00 0.18 0.00 0.00
Bai 07, min c-VaR 0.75 0.00 0.00 0.19 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Table 3:Task-specific control allocations suggested by different strategies for the order fulfillment process topology.

We observed from the results in Table3 and4 that the optimal levels of control allocation are positively correlated
to the costs and effectiveness of the controls. The optimal strategy for the pharmacy is to choose to apply more control
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Figure 4:Top: the topology for the order fulfillment process. Middle left: the pdfs of loss distribution of the benchmark
strategies. Middle right: the corresponding cdfs of loss distribution under the control strategies. Bottom left: pdfs of
loss distribution using different risk objectives. Bottom right: the corresponding cdfs of loss distribution using different
risk objectives.

resources where it is more effective or less expensive. For example, the tasks “enter order/patient information” and
“prove prescription” have been allocated with high levels of control effort in most strategies. This result confirms our
argument that the optimal level of controls is proportional to the frequency of error occurrence and the magnitude of
the consequence if an error occurs. We make the following four observations:

Observation 1The effort invested in control at a task is proportional to the frequency of the error occurrence and
the magnitude of the consequence (cost of errors) if an error occurs. As the error frequency or the unit cost of an error
increases, the amount of control resources applied increases. The results in Table3 shows that task 1), “staff enter
patient/order information into QS1 system”, is constantly allocated to the largest amount of control effort because,
compared with other tasks, it has the most types of errors, the frequency of occurrence of each type of error is among
the highest, and the magnitude of the consequence of errors is significant as well.

Observation 2Tasks that are earlier in the process are more critical because the errors generated have a greater
impact on risks due to propagation. Thus holding other factors constant, it is optimal to apply control at tasks that are
earlier in the process than later. This partially explains why task 1) is the most critical location in the process to apply
controls.

Observation 3The effort invested in control at a task is positively correlated to the connectivity of the task. This
is intuitive because by applying control to the task that is on most of the pathways of a process, the control is more
likely to detect errors and prevent them from being spread to the rest of the process. As shown in Table3, task 4)
“Pharmacist approves prescription,” has been allocated with control in all the optimization base strategies. the two
downstream branching tasks of task 4),which are task 5) “Orders are sent to dispensing systems for dispensing” and
task 6) “Out of stock medicine be obtained from alternate source for dispensing”, have no control applied in nearly all
the optimal control allocations.

Observation 4When the marginal effectiveness of each control is the same, the allocation of control effort is cost-
effective to be invested in task locations where the cost of control is less expensive to apply. Notice that the amount of
allocation at task 1) is significantly larger than that at task 4. This is partially because the cost of training a staff that
can perform control task 1 is one-third less expensive than training a pharmacist to perform control at task 4.

Table4 presents the resulting risk measures by different strategies for the order fulfillment process. The pattern
shows the trade-offs in the resulting risk measures for each risk management objective. For example, if the pharmacy
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Control strategy Loss VaR c-VaR Amount Cost
No Control 21544.10 44840.00 137402.00 0.00 0.00
Random 16967.66 36312.89 106907.83 1.00 80.23
Prop. to~p 14886.10 24264.64 88736.02 1.00 243.17
Prop. to~γ 14336.46 24053.74 80755.90 1.00 163.79
Bai 07, analytical 16635.01 30068.92 92665.59 1.00 124.51
Bai 07, min Loss 10580.36 16324.55 58600.20 1.00 426.09
Bai 07, min VaR 11905.24 14203.79 70544.43 1.00 365.08
Bai 07, min c-VaR 12227.32 17949.76 57533.92 1.00 556.25

Table 4:Computational results by different strategies for the order fulfillment process topology.

wishes to minimize the expected loss due to errors in the transaction information flow, the “Expected-Loss-optimal”
control strategy, which minimizes the expected loss plus the cost of applying control, results in the lowest Expected
loss, but with a higher VaR ($1045.67) than that of the strategy that aims to minimize VaR ($1005.68), and a higher
CVaR ($7828.06) than that of the strategy that aims to minimize CVaR ($7740.72). The “VaR-Optimal” solutions
presented in Table3 and4 are not guaranteed to be the “global” optimal. Similar pattern applies to the “VaR-Optimal”
and “CVaR-Optimal” strategies.

8 Concluding Remarks
This study has proposed a framework for identifying the control locations and amount of control effort at each location,
in order to minimize the risk exposure of the BP under budget constraints at the process design phase. This framework
establishes a risk-based approach to BP design that characterizes the impact of the errors in information flow to the
risk exposure of a business process and develops control strategies to minimize the risk exposure. Our perspective of
BP design is novel in the sense that we look at the risk aspect of a BP at the design phase. We argue that the structural
aspect of the BP is the key to assessing and managing risks due to errors. Our model accounts for the process structure
in error generation, propagation, and mitigation. In designing optimal control structures for a business process, we
have applied three risk measures: Expected Loss, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). We
demonstrate our method through an order fulfillment process in a functioning online pharmacy. Our model applies to
various levels of organizational processes. Further, our model lends itself to implementation within process modeling
workbenches offered by leading software vendors for both design and re-engineering purposes.
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