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AN EMPIRICAL STUDY OF NON-BINARY GENETIC
ALGORITHM-BASED NEURAL APPROACHES

FOR CLASSIFICATION

Parag C. Pendharkar
School of Business Administration
Penn State University at Harrisburg

U.S.A.

James A. Rodger
Eberly College of Business Administration

Indiana University of Pennsylvania
U.S.A.

Abstract

In this paper, we describe a genetic algorithm (GA) based approach for learning connection weights for an
artificial neural network (ANN).  We use simulated data sets to compare the GA based approach for learning
connection weights against the traditional back-propagation algorithm.  Our results indicate that GA based
training of ANN has a higher reliability (in terms of over-fitting the training data set) and predictive power than
the traditional back-propagation algorithm. 

Keywords: Neural networks, discriminant analysis, genetic algorithms

1. INTRODUCTION

The classification problem of assigning several observations into different disjoint groups plays an important role in business
decision making.  The binary classification problem, a sub-set of the classification problem, is a problem where the data are
restricted to one of two disjoint groups.  The binary classification problem (also called a two-group discriminant analysis problem)
has wide applicability in problems ranging from credit scoring, default prediction and direct marketing to applications in finance
and medical domains.  

Several approaches were proposed for solving the binary classification problem.  The approaches can be categorized as linear and
non-linear discriminant analysis approaches.  The linear approaches use a line or a plane to separate the two groups.  Among the
popular approaches for linear classification models are statistical discriminant analysis models (Fisher’s discriminant analysis,
LOGIT, PROBIT) and non-parametric discriminant analysis models such as genetic algorithm/artificial neural network based
linear discriminant models.  Non-linear approaches used for discriminant analysis fall into two categories: the connectionist
approaches employing some form of artificial neural network (ANN) learning algorithm and the inductive learning models where
the discriminant function is expressed in symbolic form using rules, decision trees, etc.  The back-propagation ANN is the most
commonly used connectionist scheme for non-linear discriminant analysis. Various induction algorithms have been suggested for
classification, popular among them are CART, ID3, and CN2.
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Among the popular supervised learning approaches for non-linear binary classification problems are ANN, genetic programming
and ID3/C4.5.  All of these approaches, however, have been criticized for over-fitting the training data set (Bhattacharyya and
Pendharkar 1998).  Recently, Pendharkar (1999) showed that adding random noise during the ANN training may alleviate the
problem of over-fitting the training data set at the expense of a lower learning performance on the training data set.  A few
researchers criticized the training algorithm used in training ANN and proposed several modifications and alternate algorithms
(Curry and Morgan 1997; Hung and Denton 1993; Sexton et al. 1998; Sexton, Dorsey and Johnson 1999).  The popular alternate
algorithm, GRG2, didn’t outperform the ANNs in terms of learning (on training cases) and prediction accuracy (on unseen cases)
(Hung and Denton 1993).  GRG2 did outperform the ANN in convergence time, however.

In the current paper, we use the principles of evolution to train an ANN.  Specifically, we use non-binary genetic algorithms (GAs)
to learn the connection weights in an ANN.  GAs are general-purpose evolutionary algorithms that can be used for optimization
(Goldberg 1989).  When compared to traditional optimization methods, GA provides heuristic optimal solutions.  Although
heuristic optimal solutions are less attractive when traditional optimization approaches are likely to find better solutions, they may
be attractive when finding an optimal solution has a chance of over-fitting the training data set (Moriarty and Miikkulainen 1998).
Further, the global and parallel nature of genetic search makes finding heuristic optimal solutions efficient when compared to the
traditional local search based hill climbing and gradient descent optimization approaches such as back-propagation (Sexton,
Dorsey and Johnson 1999).  For complex search spaces, a problem that is easy for GA may be extremely difficult for steepest
ascent optimization approaches (Wilson 1991).  GA based learning of connection weights for an ANN has received some attention
in the computer science and operations research literature (Miller, Todd and Hedge 1989; Moriarty and Miikkulainen 1998; Rooij,
Jain and Johnson 1998; Sexton, Dorsey and Johnson 1999; Whitley and Hanson 1989).  Most studies, however, used forecasting
and function learning domain as an application and many studies used binary GAs.  Binary GA representation has been criticized
for longer convergence times and lack of solution accuracy (Janikow and Michalewicz 1991; Rooij, Jain and Johnson 1998).  In
the current research, we use GA based learning of connection weights for an ANN for a binary classification problem.  Recent
studies have shown that GA based learning of connection weights is a promising approach when compared to gradient descent
approaches such as back-propagation and GRG2 and other heuristic approaches such as simulated annealing and tabu search
(Sexton et al. 1998; Sexton, Dorsey and Johnson 1999).  Unlike some of the previous studies, we use non-binary GA
representation.  We specifically investigate the impact of different types of design parameters (crossover operators), group
distribution characteristics and group dispersion on learning and predictive performance of GA based ANN.  The following are
contributions of our research.

1. We study the learning and predictive performance (with special interest in over-fitting) of GA based ANN on training and
unseen test cases under different data characteristics. Most other studies have focused on the training/learning performance
of GA based ANN for a forecasting and function approximation problems.  In this study, we investigate the predictive
performance of GA based ANN for classification problem that has received little attention in the literature.  Unlike the
previous studies, which used root-mean-square (RMS) as the performance metric, we use number of correctly classified cases
as our performance metric.

2. We investigate the performance of different crossover operators on the learning and predictive performance of GA based
ANN for classification. Most studies in the past used only one type of crossover and benchmarked the performance of GA
based ANN with other approaches. 

3. Unlike studies in the past that were limited with few data sets and functions, we conduct extensive experiments to increase
external validity of our study (limited by the characteristics of our data sets).

We use non-binary representation since there is evidence in the literature that non-binary GAs are intuitively appealing, and more
efficient (in terms of use of computer memory and convergence times) (Rooij, Jain and Johnson 1998).  The results of our study,
therefore, should be interpreted in the realm of non-binary GAs.

The rest of the paper is organized as follows: Section 2 consists of introductory concepts and describes our GA implementation.
Section 3 consists of a brief literature review and proposed hypotheses. Section 4 describes the data set used for our experiments.
Section 5 details the results of our experiments.  Section 6 concludes this paper with a summary and directions for future research.
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Figure 1.  A Three Layer (of Nodes)
Artificial Neural Network

2. INTRODUCTORY CONCEPTS AND DESCRIPTION
OF OUR GA IMPLEMENTATION

Artificial neural networks and genetic algorithms were invented to mimic some of the phenomenon observed in Biology.  The
biological metaphor for ANNs is the human brain and the biological metaphor for GAs is evolution of a species.  An ANN consists
of different sets of neurons or nodes and the connections between one set of neurons to the other.  Each connection between two
nodes in different sets is assigned a weight that shows the strength of the connection.  A connection with a positive weight is called
an excitatory connection and a connection with a negative weight is called an inhibitory connection.  The network of neurons and
their connections is called the architecture of the ANN.  Let A = {N1, N2, N3}, B = { N4, N5, N6}, and C= { N7} be three sets of
nodes for an ANN.  Set A is called the set of input nodes, set B is called the hidden set of nodes, and set C is called the set of
output nodes.  The cardinality of set A is equal to the number of input variables, the cardinality of set C is equal to number of
output variables.  Each connection can be view as a mapping from either an input node to a hidden node or from a hidden node
to an output node.  The general architecture of three sets of nodes is called a three-layer (of nodes) ANN.  Figure 1 illustrates a
three-layer ANN.  Notice that the property ANBNC=j always hold true and the network is called feed-forward network.  The
connections in a feed-forward network are in one direction and the connections from A to B and from B to C are forward.  The
wij are the weights that denote the strength of connection from node i to node j.

Information is processed at each node in an ANN.  For example, at hidden
node N4, the incoming signal vector (input) from the three nodes in the input
set is multiplied by the strength of each connection and is added up.  The
result is passed through an activation function and the outcome is the
activation for the node.  If x represents the sum of the product of incoming
signal vector and the strength of connection, then the activation, using logistic
sigmoid activation function, can be represented by 

In the back-propagation algorithm based learning, the strengths of connec-
tions are randomly chosen.   Based on the initial set of randomly chosen
weights, the algorithm tries to minimize the following root-mean-square error
(RMS):

where N is number of patterns in the training set, tn is the target output of the
nth pattern, and on is the actual output for the nth pattern.  In each subsequent

training step, the initial set of random connection weights (strength of connections) is adjusted toward the direction of maximum
decrease of E, which is scaled by a learning rate lamda.  Mathematically, an old weight wold is updated to its new value wnew using
the following equation:

where iE = 

One useful property of the sigmoid function is that
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This means that the derivative (gradient) of the sigmoid function can be calculated by applying a simple multiplication and
subtraction operator on the function itself.  This property simplifies the computation of new weights from initial random values.

Genetic algorithms (GAs) use a survival of the fittest strategy to learn connection weights in an ANN.  GAs are parallel search
techniques that start with a set of random potential solutions and use special search operators (evaluation, selection, crossover,
and mutation) to bias the search toward the promising solutions.  At any given time, unlike any optimization approach, GA has
several promising potential solutions (equal to population size) as opposed to one optimal solution.  Each population member in
a GA is a potential solution.  A population member (P1) used to learn the strength of connections for ANN shown in Figure 1 will
consist of a set of all the connections. P1 can be represented as:

P1 = Hw14, w15,w16, w24, w25, w26, w31, w35, w36, w47, w57, w67I

Where (w14, w15,w16, w24, w25, w26, w31, w35, w36, w47, w57, w67) M r

Any w M P1 is called a gene (connection weight) of a given population member P1.  A set of several population members is called
a population p.  The cardinality of the set of population members p (number of population members) is called population size.
The cardinality of a population (number of genes) member is called the defining length of the population member K.  The defining
length for population member P1, K =12.  The defining length of all the population members in a given population is constant. 
GA starts with a random set of population.  An evaluation operator is then applied to evaluate the fitness of each individual.  In
the case of learning connection weights for ANN for classification, the evaluation function is the number of correctly classified
cases.  A selection operator is then applied to select the population members with higher fitness (so that they can be assigned
higher probability for survival). Under a selection operator, individual population members may be born, allowed to live or die.
Several selection operators are reported in the literature; the operators are proportionate reproduction, ranking selection,
tournament selection, and steady state selection (Goldberg and Deb 1991).  Among the popular selection operators are ranking
and tournament selection.  Goldberg and Deb show that both ranking and tournament selection maintain strong population fitness
growth potential under normal conditions.  The tournament selection operator, however, requires lower computational overhead.
The time complexity of ranking selection is O (n log n) whereas the time complexity of tournament selection is O(n), where n is
number of population members in a population. In tournament selection, two random pair of individuals are selected and the
member with the better fitness of the two is admitted to the pool of individuals for further genetic processing.  The process is
repeated in such a way that the population size remains constant and the best individual in the population always survives.  For
our research, we use the tournament selection operator.

After the selection operator is applied, the new population special operators, called crossover and mutation, are applied with a
certain probability.  For applying the crossover operator, the status of each population member is determined.  Every population
member is assigned a status as a survivor or non-survivor.  The number of population members equal to survivor status is
approximately equal to population size * (1 – probability of crossover).  The number of  non-surviving members are approximately
equal to population size * probalility of crossover.  The non-surviving members in a population are then replaced by applying
crossover operators to randomly selected surviving members.  Several crossover operators exists; we describe and use three
different crossover operators in our research.  The crossover operators used in our research are:

1. One Point Crossover.  In one point crossover, two surviving parents and a crossover point are randomly selected.  For each
parent, the genes on the right hand side of the crossover point are exchanged to produce two children. Let P1 and P2 be two
parents and the crossover point be denoted by “|”.  The two children C1 and C2 are produced as follows: (we use the bold font
to simplify the understanding).

P1 = H w14, w15, w16, w24, w25, w26, | w34, w35, w36, w47, w57, w67 I
P2 = HHHH w14, w15, w16, w24, w25, w26, | w34, w35, w36, w47, w57, w67 IIII
C1= H w14, w15, w16, w24, w25, w26,  w34, w35, w36, w47, w57, w67 IIII
C2= HHHH w14, w15, w16, w24, w25, w26, w34, w35, w36, w47, w57, w67 I
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2. Uniform Crossover. In uniform crossover, two surviving parents are randomly selected and flipping the genes in the two
parents produces two children; probability of exchanging any given gene in a parent is 0.5.  Thus, for every gene in a parent,
a pseudo random number is generated.  If the value of the pseudo random number is greater than 0.5, then the genes are
flipped, else they are not flipped.  If we have two random surviving parents, P1 and P2 (as shown in one-point crossover
section), then a child, C1, can be produced in the following manner:

(a) Generate 12 (number equal to number of genes in the parent) pseudo random numbers between 0-1.  Let these 12 random
numbers be:
H 0.2, 0.3, 0.5, 0.6, 0.1, 0.7, 0.8, 0.8, 0.1, 0.9, 0.6, 0.1 I

(b) Flip the genes where a pseudo random number is greater than 0.5 as follows: 
C1= H w14, w15, w16, w24, w25, w26, w34, w35, w36, w47, w57, w67 I

3. Arithmetic Crossover.  Arithmetic crossover consists of producing children in a way that every gene in a child is a convex
combination of genes from its two parents.  Given the two parents, P1 and P2 (as illustrated before), a child, C1, can be
produced as follows:
C1= H k14, k15, k16, k24, w25, k26,  k34, k35, w36, k47, k57, k67 I
Where kij = U wij + (1-U) wij,  U M [0,1] is a random number.

Arithmetic crossover ensures that every gene in the child is bounded by the respective genes from both parents.  Unlike uniform
and one point crossover, arithmetic crossover provides some local/hill climbing search (if the parents are on the opposite side of
the hill) capability for a genetic algorithms.  Arithmetic crossover is a popular crossover operator when GA is used for
optimization (Pendharkar and Rodger 2000).  

A mutation operator randomly picks a gene in a surviving population member (with the probability equal to the probability of
mutation) and replaces it with a real random number.

In our experiments, we use all three crossover operators (one at a time) and investigate the performance of GA when different
crossover operators are used. Thus, based on the crossover operator, we have three different types of GAs: genetic algorithm with
arithmetic crossover called GA(A), genetic algorithm with uniform crossover operator GA (U), and genetic algorithm with one-
point crossover operator GA (O).  Our ANN architecture consists of four input nodes (3 inputs + 1 threshold), six hidden nodes
(5 hidden + 1 threshold), and one output node.  We use the same architecture as that of Bhattacharyya and Pendharkar (1998) so
that we can benchmark the performance of our GA based training of ANN with the results of the back-propagation algorithm based
ANN that Bhattacharyya and Pendharkar used.  For our architecture, we have a population member defining length of K = 6 ((3
inputs + 1 threshold) * 5 hidden +  (5 hidden + 1 threshold) * 1 output).

3. A SHORT LITERATURE REVIEW AND HYPOTHESES

Several independent studies  (Bhattacharyya and Pendharkar 1998; Joachimsthaler and Stam 1988; Koehler 1991; Koehler and
Erenguc  1990) and found that data distribution characteristics determine the learning and predictive performance of different
techniques for classification.  Specifically, researchers found that variance heterogeneity and group distribution kurtosis affects
the learning and predictive performance of the different techniques used for classification.  We, therefore, propose the following
two hypothesis (in the alternate form):

H1: The group variance heterogeneity will have an impact on both the learning and predictive
performance of the different techniques.   

H2: The group distribution kurtosis will have an impact on both the learning and predictive performance
of the different techniques.  

A back-propagation ANN uses a gradient descent algorithm to minimize RMS.  Mathematically, this can be represented as:
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The above minimization problem is an unconstrained minimization of a convex function.  Gradient approaches are known to find
the optimal solutions given the appropriate initial starting position (Pendharkar and Rodger 2000; Salomon 1998).  GAs, on the
other hand, are general-purpose optimization methods that use a survival of the fittest strategy to find heuristic solutions.  For
convex minimization based optimization problems, GAs are likely to under-perform the gradient based approaches (Pendharkar
and Rodger 2000).  This suggests that GA based ANN performance during the training phase will be lower than the back-
propagation based ANN performance.   This leads to our third hypothesis:

H3: The back-propagation based ANN will have higher performance than the GA based ANN during the
training phase. 

The arithmetic crossover, as described above, incorporates some hill climbing capabilities (when the two parents are on the
opposite sides of the hill).  Several researchers, because of the low disruption of schema (a specific pattern of genes in a population
member), have used arithmetic crossover for the optimization problems (Pendharkar and Rodger 2000).  In our case, GA using
arithmetic crossover (because of its hill climbing nature arising from convex combination of two parents on the opposite sides
of the hill) will have better performance than uniform and one-point crossover GAs during the learning phase.  This leads to our
fourth hypothesis:

H4: The arithmetic-crossover GA  based ANN will have higher performance than the uniform-crossover
and one-point crossover GA based ANNs during the training phase. 

Pendharkar (1999) has observed that adding random noise to the connection weights during the back-propogation ANN decreases
the performance of ANN during the training phases but improves the predictive performance of ANN.  One of his arguments was
that the gradient descent algorithms show high training performance and have a tendency to over-fit the training data sets (over-
fitting is sometimes referred  to as learning noise in the training data).  Adding random noise to the connection weights during
the training phase avoids the network over-fitting the training data and improves its performance on the test data.  GA based ANN
has a tendency not to over-fit the training data. The reason for over-fitting is that GA works with a population of potential solutions
as opposed to one optimal solution approach used by most other techniques.   At convergence, GA has a population of members
that have similar fitness.  The diversity of the fitness values in a population can be used to come up with a population member
that has genes that are average of genes of entire population.  This approach helps GA based ANN to learn the general patterns
and avoid over-fitting the training data (Moriarty and Miikkulainen 1998). The generalized learning approach, without over
learning the training data, is likely to perform better on test data set when compared to backpropagation ANN.  This leads to our
fifth hypothesis:

H5: The GA based ANNs will outperform the backpropagation based ANN in the classification of unseen
cases.

Crossover consists of exchanging information from the two parents to produce children.  Different crossover operators can be used
to produce children.  For one point crossover, there are K-1 ways of crossover.  For uniform crossover, there are 2K ways of
crossover.  Uniform crossover, because of its higher search space, has a potential to produce children that are less likely to contain
the traits of any one parent.  However, for promising two parents, one-point crossover, because of its restricted ways to crossover,
is likely to produce promising children.  Syswerda (1990), in his extensive experimental studies (using binary representation)
found that uniform crossover under-performs one-point crossover for K < 29 but, the performance improves when K > 30.  For
K = 30 both uniform and one-point crossover behave similarly.  Rooiji, Jain and Johnson, in their empirical studies using non-
binary representation, proposed following an upper bound heuristic of for the probability of the solution (schema) disruption for
one-point crossover and uniform crossover:

for 1-point crossover
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for uniform crossover

Where X is the number of inputs, Pd is the probability of disruption, and L is defining length of the population member (L = K).
In our case, for X = 3 and L = 26 the upper bound for the probability of disruption for uniform crossover is higher than upper
bound for the probability of disruption for one-point crossover.  This leads to the following hypothesis:

H6: Uniform crossover GA will under perform single point crossover GA for both learning and prediction.

4. DATA SETS

For our research, we use data sets that have been previously used for comparing a number of techniques for classification.  The
data sets were first developed and used by Joachimsthaler and Stam (1988) to examine Fisher’s linear discriminant function, the
quadratic discriminant function, the logistic discriminant function, and linear programming approaches under varying group
distribution characteristics.  Koehler and Erenguc (1990), Banks and Abad (1991), and Abad and Banks (1993) used these data
sets to establish experimental conditions to evaluate a number of linear programming approaches for the classification problem.
In another study, Koehler (1991) used these data sets to determine the effectiveness of a linear genetic algorithm based
discriminant analysis.  Recently, Bhattacharyya and Pendharkar (1998) and Yanev and Balev (1999) used these data sets to
compare a wide range of machine learning techniques and heuristic techniques for the classification problem.  Pendharkar (1999)
used these data sets to evaluate the impact of network architecture and input and weight noise on the learning and predictive
performance of artificial neural networks.

The data sets consist of 1,200 data samples.  Each data sample consists of three attributes and has 100 observations equally split
between two groups.  The data varies with respect to type of the distribution, determined through the kurtosis, and variance-
covariance homogeneity (dispersion).   Four kurtosis values of -1, 0, 1, and 3 correspond approximately to samples drawn from
uniform, normal, logistic and Laplace population distributions.  For dispersion variations across the data, if Ii denotes the 3x3-
dispersion matrix for Group i (i=1, 2), I1 is always I (the identity matrix) while three different values are considered for the second
group: I1, 2 II, and 4 I1. In order to minimize the effect of group overlap, the group means are set as follows:  the group 1 mean
is W' = (0, 0, 0) throughout, and the group 2 mean was W' = (.5, .5, .5) when I2 = I1, W' = (.6, .6, .6) when I2 = 2I1 and W' = (.8, .8,
.8) when I2 = 4I1.  There are thus 12 kurtosis-dispersion factor combinations leading to 12 data set groups.  For each group, 100
random samples were taken, yielding a total of 1,200 data samples.  A more detailed description of the data can be found in
Joachimsthaler and Stam (1998).

5. EXPERIMENTAL RESULTS

We compare our three different types of GAs with back-propagation based ANN and genetic programming approaches of
Bhattacharyya and Pendharkar (1998).  We keep our experimental design same as that of Bhattacharyya and Pendharkar so that
our results can be easily compared with their results on an equitable basis.  Table 1 illustrates the training results of our
experiments. 

Tables 2 and 3 illustrate the results of three-way-ANOVA for training performance of different techniques.  From Table 2, it can
be seen that hypothesis 1 (variance heterogeneity) (F = 2739.30) and hypothesis 2 (distribution kurtosis ) (22.87) are supported
(at 0.01 level of significance) for learning (training) performance of the techniques.  Further, the interactions between variance
heterogeneity and kurtosis and between technique and variance heterogeneity were significant (at level of significance = 0.01)
as well.  From Table 3, it can be seen that hypothesis 3 is supported (at 0.01 level of significance) with NN vs. GA (O) (F =
235.20), NN vs. GA (U) (F = 256.50) and NN vs. GA (A) (F = 206.42).  No support to a very weak support (level of significance
= 0.1) was found for hypothesis 4 (GA(A) vs. GA(O) and GA(A) vs. GA(U)) (F = 2.76).
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Table 4 illustrates the results of testing the different techniques on the holdout samples.  It can be seen that GA based ANNs
outperform both back-propagation neural network and genetic programming.  The difference in the performance between GA
based ANN and back-propagation ANN decreases as the group variance heterogeneity increases.

Tables 5 and 6 illustrate the results of three-way-ANOVA on the holdout sample experiments.  It can be seen from Table 5 that
there is support (at level of significance 0.01) for hypotheses 1 (variance heterogeneity) (F = 3907.66) and 2 (distribution kurtosis)
(F = 25.61) for holdout test data sets as well.  Like the training results, the interaction effects of distribution kurtosis and variance
heterogeneity were significant (at 0.01 level of significance) as well.  However, unlike the training results, the interaction effect
of distribution kurtosis and technique was significant at 0.05 level of significance.  Further, Table 6 shows that hypothesis 5 is
supported at 0.01 level of significance and the GA based ANN outperforms back-propagation based ANN (NN vs. GA (O)  (F
= 411.08), NN vs.GA (U) (F = 379.05), and NN vs. GA (A) (F = 366.80)). No support was found for hypothesis 6 (GA(U) vs.
GA(O)) both in Tables 3 and Table 6.

Table 7 illustrates the results of CPU training run times (400 Mhz Pentium with 128 MB RAM) for our experiments.  The CPU
run times decreased as variance heterogeneity increased.  This shows that population, with increase in group variance
heterogeneity, converges quickly.

Table 1.  The Training Performance

Variance Heterogeneity
Group 1   Group 2

Group Means
Group 1   Group 2

Kurtosis GA(A)
Mean

GA(O)
Mean

GA(U)
Mean

NNa

Mean
GPa

Mean
1 1 0 0.5 -1 76.62 76.62 76.38 80.28 78.08
1 1 0 0.5 0 77.22 76.90 76.60 80.18 79.78
1 1 0 0.5 1 77.46 77.46 77.36 80.32 79.42
1 1 0 0.5 3 78.58 78.18 78.16 81.80 79.60
1 2 0 0.6 -1 85.58 85.04 84.78 92.38 83.54
1 2 0 0.6 0 83.92 83.62 83.44 89.00 82.46
1 2 0 0.6 1 83.78 83.58 82.80 88.14 81.37
1 2 0 0.6 3 83.46 82.96 82.86 86.72 81.12
1 4 0 0.8 -1 94.82 94.90 94.58 96.78 93.92
1 4 0 0.8 0 93.14 92.82 92.84 96.50 90.72
1 4 0 0.8 1 90.56 90.28 90.48 95.08 90.44
1 4 0 0.8 3 91.68 91.48 91.56 93.16 90.08

aBhattacharyya and Pendharkar (1998)

Table 2.  The Correct Classification ANOVA Summary Table for Training Data

Source Sum of Sq. DF Mean Sq. F Ratio P > F
Main Effect

Distribution (D) 1314.04 3 438.01 22.87 0.0001**

Variance (V) 104928.34 2 52464.17 2739.30 0.0001**

Technique (T) 7455.30 4 1863.82 97.32 0.0001**

Two-Way-Interaction Effect
D × T 161.15 12 13.43 0.70 0.7518
D × V 2312.50 6 385.42 20.12 0.0001**

T × V 1846.56 8 230.82 12.05 0.0001**

Three-Way-Interaction Effect
D × T × V 524.99 24 21.87 1.14 0.2868

**Significant at 0.01 level of significance
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Table 3. The Overall Pairwise Comparisons on Training Data Sets

Contrast DF Sum of Sq. F Value P > F
NN vs. GP 1 5100.56 266.31 0.0001**

NN vs. GA (O) 1 4504.68 235.20 0.0001**

GP vs. GA (O) 1 18.50 0.97 0.3258
NN vs. GA (U) 1 4912.65 256.50 0.0001**

GP vs. GA (U) 1 1.76 0.09 0.7616
GA (A) vs. GA (O) 1 18.50 0.97 0.3258
NN vs. GA (A) 1 3945.81 206.02 0.0001**

GP vs. GA (A) 1 74.00 3.86 0.0494*

GA (A) vs. GA (U) 1 52.92 2.76 0.096
GA (O) vs. GA (U) 1 8.84 0.46 0.4969

  *Significant at 0.05 level of significance
**Significant at 0.01 level of significance

Table 4.   The Holdout Sample Performance

Variance Heterogeneity
Group 1     Group 2

Group Means
Group 1   Group 2

Kurtosis GA(A)
Mean

GA(O)
Mean

GA(U)
Mean

NNa

Mean
GPa

Mean
1 1 0 0.5 -1 68.68 69.02 69.18 60.60 58.34
1 1 0 0.5 0 69.82 69.96 69.96 61.20 60.42
1 1 0 0.5 1 70.18 69.86 70.28 61.94 59.40
1 1 0 0.5 3 71.36 71.22 71.52 63.64 60.14
1 2 0 0.6 -1 75.38 76.46 76.44 74.76 68.60
1 2 0 0.6 0 74.96 74.84 74.60 70.88 65.30
1 2 0 0.6 1 75.12 75.40 74.54 70.32 64.38
1 2 0 0.6 3 74.84 74.76 74.72 69.18 63.96
1 4 0 0.8 -1 87.80 88.62 88.54 85.54 84.72
1 4 0 0.8 0 85.84 86.36 85.14 82.86 80.50
1 4 0 0.8 1 84.56 85.04 84.24 81.14 78.68
1 4 0 0.8 3 84.34 84.88 84.72 80.26 77.66

aBhattacharyya and Pendharkar (1998).

Table 5.  The Correct Classification ANOVA Summary Table for Holdout Test Data

Source Sum of Sq. DF Mean Sq. F Ratio P > F
Main Effect

Distribution (D) 1589.93 3 529.98 25.61 0.0001**

Variance (V) 161724.79 2 80862.40 3907.66 0.0001**

Technique (T) 37363.52 4 9340.88 451.40 0.0001**

Two-Way-Interaction Effect
D × T 528.24 12 44.02 2.13 0.0128*

D × V 3715.26 6 619.21 29.92 0.0001**

T × V 3711.33 8 463.92 22.42 0.0001**

Three-Way-Interaction Effect
D × T× V 429.87 24 17.91 0.87 0.6518

  *Significant at 0.05 level of significance
**Significant at 0.01 level of significance
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Table 6.  The Overall Pairwise Comparisons on Holdout Test Data Sets

Contrast DF Sum of Sq. F Value P > F
NN vs. GP 1 3474.80 167.92 0.0001**

NN vs. GA (O) 1 8506.69 411.08 0.0001**

GP vs. GA (O) 1 22855.14 1104.47 0.0001**

NN vs. GA (U) 1 7843.85 379.05 0.0001**

GP vs. GA (U) 1 21760.08 1051.55 0.0001**

GA (A) vs. GA (O) 1 26.11 1.26 0.2614
NN vs. GA (A) 1 7590.27 366.80 0.0001**

GP vs. GA (A) 1 21336.33 1031.07 0.0001**

GA (A) vs. GA (U) 1 2.08 0.10 0.7510
GA (O) vs. GA (U) 1 13.44 0.65 0.4203

**Significant at 0.01 level of significance

Table 7.  The CPU Run Time in Seconds

Variance Heterogeneity
Group 1     Group 2

Group Means
Group 1   Group 2

Kurtosis GA (A)
Mean (SD)

GA (O)
Mean (SD)

GA (U)
Mean (SD)

1 1 0 0.5 -1 67.1 (0.49) 65.3(0.63) 69.4(5.11)
1 1 0 0.5 0 68.7(4.43) 66.9(0.49) 66.9(0.54)
1 1 0 0.5 1 68.5(5.27) 66.8(0.56) 68.4(4.79)
1 1 0 0.5 3 67.1(0.56) 68.4(4.97) 67.1(0.62)
1 2 0 0.6 -1 64.0(4.81) 62.6(1.18) 62.4(0.48)
1 2 0 0.6 0 64.2(4.76) 62.5(0.69) 64.1(4.99)
1 2 0 0.6 1 64.1(2.44) 62.7(0.78) 64.12(4.91)
1 2 0 0.6 3 63.1(0.87) 64.3(4.88) 63.1(0.88)
1 4 0 0.8 -1 56.4(0.59) 57.6(4.63) 56.2(0.55)
1 4 0 0.8 0 56.8(0.74) 57.9(4.26) 56.7(0.74)
1 4 0 0.8 1 57.4(1.95) 58.6(5.43) 57.3(1.92)
1 4 0 0.8 3 57.5(0.90) 57.4(0.92) 58.9(4.88)

6. DISCUSSION AND CONCLUSIONS

Our experiments show that GA based ANN training shows resistance toward over-fitting in a binary classification problem.  We
think that this is a strong facet and researchers and practitioners should use GA based ANN when a higher predictive performance
is desired. Our study was one of the first to compare the performance of different crossover operators related to design of GA
based ANN.  Although no significant difference was found between the different crossover operators, we believe that for larger
networks crossover may play a vital role during learning (since GA(A) vs. GA(U) were significantly different at level of
significance = 0.1 during learning phase).

In our experiments, we kept the ANN architecture constant.  Several studies have shown that the ANN architecture plays an
important role during the training and predictive performance.  In cases where higher learning performance is desired, hybrid
approaches might have potential.  For example, the best fitness population member from the GA based ANN can be used as an
initial set of weights for back-propagation algorithm and higher learning performance may be obtained.  The hybrid approaches
may have a merit when compared to random initialization of weights for an ANN.  Future research may focus on the impact of
network architecture on the training and predictive performance of GA trained ANN.  Hybrid approaches deserve merit for future
investigation as well.
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