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COMPLEXITY IN EMBEDDED INTELLIGENT
REAL TIME SYSTEMS

Erman Coskun
Rensselaer Polytechnic Institute

U.S.A.

Martha Grabowski
Rensselaer Polytechnic Institute and LeMoyne College

U.S.A.

Abstract

Embedded Intelligent Real Time Systems are proliferating in safety-critical large scale systems. Understanding
and measuring the complexity in EIRTS can aid us in designing and building more reliable and effective
EIRTS. In this paper, we propose a model of software complexity and describe a study of the impacts of EIRTS
complexity on operator performance, software performance and system safety.

1. RESEARCH OBJECTIVES AND QUESTIONS

Embedded Intelligent Real Time Systems (EIRTS) are proliferating in many safety-critical large scale systems.  ome examples
include aviation, ship, or space shuttle control systems (Coenen, Smeaton and Bole 1989; Heudin 1991), air traffic control systems
(Perry 1997), nuclear plant control systems (Wong and Kalam 1995), intelligent highway control systems (Dailey, Haselkorn and
Lin 1993), flexible manufacturing systems (Ben-Arieh, Moodie and Chu 1988), patient monitoring system in intensive care units
(Leveson and Turner 1993), and  military and defense systems (Rouse, Geddes and Hammer 1990).

In all of these large scale systems, safety and reliability are important. During the last two decades, increasing attention has been
paid to safety-critical large scale systems, particularly because of the enormous damage to human life, environment, property,
and society associated with such events as the Chernobyl nuclear power plant accident in 1986,  the Therac-25 Accidents between
1985-1987, and the Exxon Valdez oil spill in 1989.

EIRTS are often introduced in safety-critical large scale systems to improve the system's reliability and safety. However, EIRTS
often also increase  the system's complexity. Understanding and measuring the complexity in EIRTS can aid us in designing and
building more reliable and effective EIRTS, particularly in safety-critical settings. In this paper, we propose a model of complexity
in EIRTS and illustrate its use in evaluation of an operational EIRTS. We discuss the impact of complexity on EIRTS design and
operation and conclude with expected contributions of this research. 

2. THEORETICAL FOUNDATIONS

2.1 Embedded Intelligent Real Time Systems

An embedded software system is part of some larger system, which it controls and monitors (Highland 1994).  Embedded
intelligent systems reside in larger hosts, gather required data for reasoning from other components and from the environment,
use their knowledge base to process and interpret data and reasoning, produce results, and send those results to other components
or users.
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Real time systems must satisfy explicit (bounded) response time constraints or risk severe consequences, including failure
(Laplante 1992).  Real-time computer systems automatically capture  input data, as and when this data is available for capture,
and deliver the processed information (Freedman and Lees 1977).

Embedded Intelligent Real Time Systems, thus, are systems that exhibit properties of each of these component systems. They are
constructed from intelligent software components, are able to perform some functions with authority, and have the power to
control and communicate in a constrained domain.

2.2 Software Complexity

Software complexity is a concept that has been defined in different ways by different disciplines. Halstead (1977) made the first
systematic summarization of a branch of experimental and theoretical science dealing with the human preparation of computer
programs.  Mathematicians define software complexity based on dimensionality:  the number of components and number of
relationships among components in a software program (Kokol, Brest and Umer 1997; Zuse 1993).  McCabe (1976) introduced
the concept of “cyclomatic complexity,” which was an application of graph theoretic complexity to computer software.
Psychologists have defined software complexity in terms of its understandability by humans (Alford 1994; Banker, Davis and
Slaughter 1998; Zuse 1991).  Complexity poses problems for system users, developers, and maintenance personnel, as almost
half of a software maintainer’s time is spent trying to understand programs (Hirota et al. 1994).  Cognitive psychologists have
suggested that complexity, particularly for intelligent systems, should be addressed at the task, representation and implementation
levels in order to address the different types of complexity in cognitive systems (Marr 1982).  Economists often address
complexity in terms of resource consumption, a measure of the resources that must be expended in developing, maintaining, or
using a software product (Mildred 1996; Whitmire 1992).  Computer and system scientists propose still other metrics of
complexity, including the number of software errors (Mildred 1996), and the numbers of “operators,” “operands,” and/or the
number of lines of code in a program (Gaffney 1982).  In addition, Kolmogorov’s (1965) complexity model has been applied to
address the mathematical complexity of information.

Social scientists, particularly those of  the “normal accidents” school, discuss the impact of technological complexity on socio-
technical systems (Perrow 1984; Tenner 1996) and often describe complexity in terms of degrees of interaction and coupling.
Interactions in a large scale system can be complex or linear, depending on whether events are unpredicted or unexpected.
Coupling is the degree to which “reciprocal interdependence exists across many units and levels” and is a measure of the degree
of slack and redundancy in the system (Perrow 1984).

These various authors have each approached software complexity in different ways. Large scale safety-critical systems are
themselves complex entities. We suggest that understanding software complexity can aid us in designing reliable  and thoughtful
EIRTS and the large scale safety-critical systems in which they reside. It is this rationale that motivates our research.

3. RESEARCH METHODOLOGY

3.1 Proposed Model

Figure 1 illustrates the different domains that have contributed to understanding of software complexity and the approaches they
have adopted. We propose that software complexity in EIRTS in safety-critical settings has important impacts on software
performance, system safety, and operator performance. By measuring complexity in EIRTS, we can gain important insights as
to the design of future safety-critical large scale systems, EIRTS software, and the human-technical systems that are important
components of both.

In our research, we begin by addressing the impact of complexity on  system safety through the  use of social science, mathe-
matical and system science approaches to complexity (Figure 2). We then propose to assess the impact of software complexity
on software performance with the use of computer science, system science, economics, and mathematical metrics. Finally, we
propose to examine the impact of software complexity on operator performance by examining complexity from an economic and
psychological perspectives.  We expect that, as in many large scale systems, the interactions between subsystems and components
will provide at least as interesting results as the primary variables being studied.
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SOFTWARE
      COMPLEXITY

MATHEMATICS
-Number of components
-Number of relationships
  among  components
-High dimensions

   PSYCHOLOGY AND
  COGNITIVE SCIENCE
-Mental effort to understand
-Difficulty to understand

ECONOMY
-Resource consumption

    COMPUTER SCIENCE
-Difficulty to change, maintain,
  understand software
-Resource consumption (labor,
  technology, etc.)
-Number of errors
-Software metrics

SOCIAL SCIENCES
-Unpredictable and unexpected
  or nonlinear interactions
   among events or subsystems
- Coupling level

  SYSTEM SCIENCE
-Large number of elements
-High dimensionality

ASSESSMENT                       IMPACT                                                     DOMAINS and METRICS

     SOFTWARE
    COMPLEXITY

MATHEMATICAL    COMPLEXITY
-Number of components
-Number of relationships among
  components
-Possible number of interactions
   between all  components

PSYCHOLOGICAL AND
COGNITIVE COMPLEXITY
 -Average number of training
   hours for system's  operators
 -Marr's Cognitive Framework for
   Complex Systems

ECONOMIC COMPLEXITY
-Person hours used for EIRTS development
-Projected person hours for maintenance or
 changes
-Total cost of system
-Monthly cost (labor, hardware, maintenance)

COMPUTER SCIENCE COMPLEXITY
-LOC, KLOC, # of faults in code
-Fault rate, error rate
-Average number of  programmer
  hours to understand code

 SOCIAL SCIENCES
-Perrow's Interaction
 Coupling  Chart
    a)Interaction level
    b)Coupling level

SYSTEM COMPLEXITY
-Number of subsystems
-Number of interactions between subsystems
-Total number of persons who use outputs of
  EIRTS

        SYSTEM SAFETY
     Coupling and complexity
     Dimensionality
     Accuracy and correctness

  OPERATOR PERFORMANCE
    Understandability
    Cognitive Effort
    Effort/accuracy
    Economics
    Resource consumption

   SOFTWARE PERFORMANCE
    Speed
    Accuracy
    Economy

Figure 1.  Representations of Software Complexity

Figure 2.  Proposed Model and Metrics For EIRTS Complexity



Complexity in Embedded Intelligent Real Time Systems

437

To illustrate use of the model, we will evaluate an operational EIRTS, the Navigation and  Piloting Expert System (NPES), an
embedded intelligent ship’s piloting system developed for Lockheed Martin, the U.S. Defense Advanced Research Projects
Agency, and Chevron Shipping Co. and installed aboard the Chevron Colorado, an operational oil tanker operating on the West
Coast of the U.S. The NPES is a real-time knowledge based system that provides intelligent decision support to masters, mates
and pilots navigating the restricted waters of San Francisco Bay. The NPES operates as an embedded module within the Lockheed
Martin Smart Bridge™ Integrated Bridge System (IBS).  It gathers real-time navigational, environmental, and sensor data, applies
internally encoded knowledge to reason about the data, and provides real time recommendations and advice on all aspects of the
transit to Chevron ship captains and San Francisco Bay Pilots.

3.2 Research Methodology

3.2.1 Subjects

There are three  sets of subjects in this research: 

(1) Chevron Colorado masters, mates, and San Francisco Bay pilots for operator performance related hypotheses, 
(2) The NPES for the software performance related hypotheses, and 
(3) The Chevron Colorado and other members of the San Francisco Bay Area traffic system (i.e., other vessels, vessel traffic

controllers, ship's pilots, etc.) for safety related hypotheses. 

3.2.2 Method

Hypotheses for each of the three primary research areas (operator performance, software performance, and system safety per-
formance) were developed and are summarized in Figure 3. The operator performance evaluation will be a 3 x 2 design: three
sets of subjects (masters, mates, and San Francisco Bar pilots) and two technology treatments (NPES and without NPES). The
software performance evaluation will assess NPES performance with two different levels of software complexity. Finally, the
system safety evaluation will evaluate safety in the San Francisco Bay vessel traffic system with the NPES and without the NPES.

After identifying the dimensions of software complexity and their potential impacts on system safety,   software performance and
operator performance, we will use domains in Figure 2 (along with our hypotheses, dependent variables and metrics in Figure 3)
to measure the dimensions and impacts quantitatively. The appropriate statistical tests will be performed on collected data and
the results of tests will be used to accept or reject our hypotheses.

4. SUMMARY

4.1 Contribution of Research

Multidisciplinary evaluations of EIRTS are seldom performed. The proposed model can offer insights to the dimensionality and
impact of software complexity in EIRTS and on the large scale systems in which they are deployed. Such understanding can
significantly increase our knowledge of how best to design, operate and evaluate EIRTS in safety-critical settings. 

4.2 Current Status of Research

Currently, the literature review is completed and the proposed model to measure complexity is structured. The evaluation metrics
have been determined. After finalizing of hypotheses, data collection is the next step in this research in progress.
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           H Y P O T H E S E S    D E P E N D E N T  V A R I A B L E   V A R I A B L E   O P E R A T IO N A L I Z A T IO N

  S Y S T E M  S A F E T Y  H Y P O T H E S E S

 1 )  T h e  in t ro d u ction  of E IR T S  in  a
 la rg e  s ca le   s ys te m  w ill  in crea se
 s ys te m   com p le x ity.

S ys te m  com p le xity le ve l 1 )  #  of com p on e n ts   2 ) #  o f   in te r a c tion s
a m on g  c om p on e n ts   3 )  #  o f p e op le  w h o
b e n e fit from  sys te m  ou tp u ts  4 ) #  of
c o m m u n ic a tio n s  a m o n g  c re w  m e m b er s
5 )  #  of p roce s se s on  ra w  da ta
6 )  A ve ra g e tim e b etw e e n  d ata  in p u t a n d
d a ta  ou tp u t  w ith  a n d  w ith ou t E I R T S

2)  In cre a se d  s ys te m  co m p le x ity
ca n   be  cor re la ted  w ith  in crea s ed
le v e l of  s ys te m  s a fe ty

S ys te m  s a fe ty 1 )#  of a ccid e n ts , in cid e nts an d  u n us u al e ve n ts
2 )  C r e w  c on f id e n ce  le ve l  w ith  a n d  w ith ou t
E I R T S

3)  In trod u c tion  of E IR T S
w ill  in crea se   s ys te m  le v e ls  o f
con tro l  in  a  la rge  sca le  s ys te m

L e v e ls  of s ys te m  con t ro l 1 )  In cre a se d  n u m b er  of in te ra ct ion s a m on g
co m p o n e n ts  of s ys te m  2 ) A v e r a g e #  o f
in for m a tio n  c o m in g to  E I R T S  u n d er
d iffe re n t s c e n a rios   ( e m e r g en c y v s . n or m a l)

4)  In cre a se d  le v els  of s ys te m  s a fe ty
ca n  b e  as s ocia te d  w ith  s ys te m s  th at
are  loo s e ly cou p le d  an d  tigh t ly
cou p le d

.L e ve ls  of s ys te m  co n t ro l  v ia
ch a n ge s  on  in te ra ct ion  a n d
cou p lin g    le v e ls  w ith
in sta l la tion  o f E IR T S

1 )  A p p lica tion  of P e rrow ’s ch a rt  a n d
d e fin i tion s  of cou p lin g  an d  in tera ction  to   th e
m a r in e  tr a n s p or ta tion  w ith ou t E IR T S  (P er ro w
a l re a d y loca te d  M a rin e  T ra ns p o r ta tion  in  the
ch a r t)  a n d  w ith  E IR T S .

 S O F T W A R E  P E R F O R M A N C E
             H Y P O T H E S E S
5)  In cre a se d  s oftw a re  com p le x ity
w ill  re s u lt in  p oo re r s oftw a re
pe rform a n ce

.R e sp on s e tim e  .A c cu ra c y

.R el ia b ili ty

.R e sp on s e tim e / a ccu ra cy

.U s e of sys te m  re so u rce s

1 )T im e  to  p roce ss a  da ta  w i th  an d  w ith ou t
E IR T S
2 )  #  of tim e ly  r e sp on s e s
3 )  U s a bil ity %  o f E IR T S  a d v is e

6)  D e sig n  m eth o d  an d  lan gu a ge
 m a y c on t r ib u te  to  co m p le x ity o f
 E IR T S  a n d h as  e ffe ct  o n  s oftw a re
 p er fo rm a n ce

.R e sp on s e tim e .R e lia b i lity

.E ffic ie n c y .E ffe ct ive n e ss
1 )  D is cu ss io n  o f d iffe re nt  d e sig n  m eth o d s a n d
la n gu a ge s
2 )  N u m b e r o f  fa u lts , er r o r s
3 )  O O  d es ign  a d va nta ge s

7)  In te l lig e n t s ys te m s p erform a n ce
w ill  b e  c lo se ly r e la te d  to  us er
pe rform a n ce

.U s er  p erform a n ce 1 )  A ccu ra c y a n d  cor re ctn es s of d e c ision s
2 )  N u m b e r o f  a lte r n a tive s  b e for e  d ec is ion
m a k in g   3 ) U s er con fid e n ce  a nd  e ffe ct ive n e ss

8)  E IR T S  w ill  in crea s e  th e  ove ra ll
pe rform a n ce  e ffic ie n c y a n d
e ffe ct ive ne s s of  re a l  tim e  large
s cale  s ys te m

.O ve ral l s ys te m  p e r fo rm a n ce 1 )  S p ee d  o f d e cis ion  m a k in g
2 )  A c c u r a c y  of  d e cision s
3 )  N u m b er  o f d a n gero u s  situ at ion s b e fo re  a n d
a fte r E IR T S

 O P E R A T O R  P E R F O R M A N C E
             H Y P O T H E S E S
9)  In cre a se d  s oftw a re  com p le x ity
ha s a  p o s it ive  im p a ct  o n  op erator
pe rform a n ce

.O p erato r  pe r fo rm a n ce 1 )  O p e ra to r er ro r r a tes   2)  T a s k
p e r fo r m a n c e a n d  ta s k  c o m p let ion  t im e

 3 ) O p e rato r  co n fid e n ce a n d  sa tis fa c tion
 4 ) R e q u ir e d  tr a in in g  h ou r s
 5 ) U n de rs ta n da b ili ty o f u s e r in te r fa ce

10 ) E co n o m ica l l y co m p le x
s oftw are  w il l in cre as e  o p e rato r
pe rform a n ce

.O p erato r  pe r fo rm a n ce

.D ifficu lty o f ta s k s
1 )  N P E S  vs.  S P E S  cos t (L a b o r , #  of p e op le ,
t im e, ye a r ly m a in te n a n ce cos t)
2 )  N P E S  vs . S P E S  op e r ator  p e rfor m a n c es
( s p ee d , q u a lity  a n d  e ff ic ie n c y  o f d e c ision s
b y  op e r a to r s )

11 ) U s er  u n de rs tan d ab il ity of
s oftw are  w il l b e  co rre la te d  to
re p re se nta t ion  a n d  im p le m e n ta tion
com p le x itie s

.O p erato r  pe r fo rm a n ce  w i th
  u s er  in ter fa ce  co m p le x ity

1 )  M ar r’s  th e o ry  U s er  in ter fa ce  com p le x ity
m e trics
2 )  H a r d w a r e c om p le xity

12 ) C o m p u ter  sc ie n ce com p le x ity
w ill  in crea se  op era to r p er form a n ce

.O p erato r  pe r fo rm a n ce 1 )U n de r stan d ab il ity of fu n ct ion s  a n d
co m m a n d s  o f p rogra m ,
2 )  A u to m a t ion  le vel  of ta sk s  b y  E I R T S  (%
o f a ll  ta s k s  b ein g  s up p or te d  b y  E I R T S )

Figure 3.  Hypotheses, Dependent Variables, and
Operationalizations (Metrics) of Empirical Study
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