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Classification Algorithm Sensitivity to Training Data with Non Representative 

Attribute Noise 

Michael Mannino1, Yanjuan Yang1, and Young Ryu2 

Abstract 

We present an empirical comparison of major classification algorithms when training data contains 
attribute noise levels not representative of field data.  Although conventional wisdom indicates that training data 
should contain noise representative of field data, it can be difficult to ensure representative noise levels. To study 
classification algorithm sensitivity, we develop an innovative experimental design using noise situation (under or 
over representation of training noise), algorithm, noise level, and training set size as factors. We consider situations 
of uniform attribute noise levels on all attributes, variable noise levels, and noise levels assigned by attribute 
importance. Our results contradict conventional wisdom indicating that investments to achieve representative noise 
levels may not be worthwhile. In general, over representative training noise should be avoided while under 
representative training noise is less of a concern. However, the interactions among algorithm, noise level, and 
training set size indicate that these general results may not apply to particular practice situations. 
Keywords: Area under the Receiver Operating Curve, attribute noise, classification algorithm 

1. Introduction 

Classification algorithms, like other inductive methods, can be sensitive to data quality. In particular, 
attribute or input noise can have a significant impact on the performance of a classification algorithm. Attribute 
value errors in a training set can cause a classification algorithm to form a rule with an incorrect state for an input, 
while errors in cases to be classified can cause the wrong rule to be used. Attribute noise includes errors from 
incorrectly measuring an input, wrongly reporting the state of an input, relying on stale values, and using imprecise 
measurement devices. Error rates in large data sets can be larger than 5% unless careful measures are taken to 
reduce errors (Orr 1998, Redman 1998). Redman (1996) reported error rates for credit records as high as 30% with 
some recent anecdotal evidence by Pierce and Ackerman (2005) to confirm this high error rate. 

The study involves evaluation of asymmetric attribute noise on classification algorithm performance. 
Asymmetric means that noise levels in training data are significantly different than noise levels when a classifier is 
deployed in the field. The conventional wisdom on classifier design is to replicate field noise in training data. This 
research considers situations when noise levels are different. One situation involves training data obtained from 
experts rather than from historical data. When training data is obtained from historical data, it is difficult to discern 
whether noise levels in training data are similar to noise encountered in classifier usage. In addition, disruptions in 
the environment can change the noise levels encountered in the field. 

To study asymmetric attribute noise effects, we develop an innovative experimental design with algorithm, 
noise level, and training set size as factors and relative performance change as the performance measure. We 
consider under representative training noise (low training noise and high test noise) and over representative training 
noise (high training noise and low test noise). For noise generation, we study uniform input noise levels on all 
attributes, variable noise levels, and noise levels assigned by attribute importance. We use two multiple factor 
research models with repeated measures to test individual factors and factor interactions. To provide a level of 
external validity, we conduct experiments with four large data sets having diversity of data types, number of 
attributes, prevalence, and classification difficulty.  

Our results indicate that over representative training noise should be avoided while under representative 
training noise is less of a concern. Cleaning field data improves performance except when a data set is difficult to 
classify. However, interactions among algorithm, noise level, and training set size indicate that these general results 
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may not apply to particular practice situations. In comparisons of relative sensitivity of five prominent classification 
algorithms to asymmetric noise, the most common result was no significant relative sensitivity. However, 
interactions among training set size and noise level indicates that differences may occur in practice. 

This study has important implications for understanding classification algorithm performance under 
asymmetric noise. Many business decision environments involve input noise especially involving data provided by 
outside parties. For example, errors in credit reports, census data, and court records are common. In noisy 
environments, robustness of algorithm performance can be more important than performance under laboratory 
conditions. This work is the first systematic study to document differences in classification algorithm robustness 
under varying levels of asymmetric attribute noise and training set sizes. 

This paper is organized as follows. Section 2 presents the experimental design to study the impacts of 
asymmetric noise. Section 3 analyzes the experimental results and discusses issues related to the results. Section 4 
concludes the study. 

2. Research Methodology  

This section describes the research questions and methodology employed to test the research questions. We 
describe the hypotheses, framework, experiment design, experiment control procedure, and data sets. 

2.1 Research Questions and Framework 
The conventional wisdom about attribute noise as established in studies by Quinlan (1986a,b) is that 

training data should contain noise representative of field data. He demonstrated that the classification accuracy of 
ID3 was worse for a noise-free training set if the level of field noise is high (45% or greater). A more recent study 
by Zhu and Wu (2004) indicates that training data should be clean regardless of the noise in field data. Our goal is to 
extend these studies with a focus on different levels of noise in training and field deployment. As described in the 
following points, we use a range of classification algorithms, training set sizes, and refined performance measures to 
extend the results in these previous studies. 

• Training data with non representative noise levels: We want to characterize the relationship 
between noise level and performance degradation. An improved understanding of performance 
degradation may provide guidance about investment decisions for acquisition of training data. If 
over representation of noise is harmful, an organization may want to remove excessive noise if 
field data is relatively clean. If under representation is not harmful, an organization should not 
expend resources to obtain a training set with noise representative of field data. 

• Cleaning field data: Organizations may also consider investments to improve the quality of field 
data. We want to characterize the relationship between noise level and performance improvements 
from cleaning of field data. Cleaning field data is more expensive than training data so 
organizations may want to see significant performance improvements before improving data 
quality. 

• Tolerance of asymmetric noise by popular classification algorithms: Because ensemble methods 
(Dietterich 2000) have more tolerance for classification noise, we expect that ensemble classifiers 
will be more tolerant of asymmetric attribute noise than other classifiers. Beyond this expectation, 
the study will evaluate the sensitivity of popular classification algorithms to different levels of 
asymmetric attribute noise. 

• Interaction of training set size and asymmetric attribute noise: Learning curves and training set 
size have been carefully studied because of the expense of collecting training data. Interaction of 
training set size with asymmetric noise is important for justifying investment decisions in training 
data. We expect to see more sensitivity to asymmetric attribute noise on small training sets than 
medium and large training sets. 

• Impact of noise variation (uniform versus variable) and attribute importance:  Previous theoretical 
studies have demonstrated more harm due to variable noise on important attributes (Laird 1988 
and Goldman and Stone 1995). We expect that variable asymmetric attribute noise will lead to 
more performance degradation than uniform asymmetric noise. Asymmetric attribute noise 
directed towards important attributes should have more effect than asymmetric attribute noise that 
is randomly directed. 

To study these research questions, we use a framework involving comparisons between different levels of 
training and testing noise as depicted in Table 2. Test noise levels indicate actual noise encountered in classifier 
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deployment in the field. Our major interest is in situations of under or over representation of noise in training data. 
For intra-algorithm comparisons, we use absolute performance differences where AUCij denotes area under the 
receiver operating curve under the specified levels of training (i) and test noise (j). For over representative training 
noise, we use AUCHL - AUCLL (high training noise and low test noise). For under representative training noise, we 
use AUCLH – AUCHH (low training noise and high test noise).  For comparisons across classification algorithms, we 
use relative performance differences to focus on noise impact, not other differences among classification algorithms. 

We use 
LL

LLHL

AUC
AUCAUC −

 for over representative training noise levels and 
HH

HHLH

AUC
AUCAUC −

 for under 

representative training noise levels. Classification algorithms are evaluated for zero and non-zero levels of low noise 
with the noise level difference (high – low) constant in both cases. 

Table 2: Asymmetric Noise Situations 

 Test Noise 
Training Noise Low High 

Low AUCLL AUCLH 
High AUCHL AUCHH 

 

We are also interested in situations in which cleaning can be done in field data. For intra algorithm 
comparisons, we use AUCHL – AUCHH for cleaning field data.  If cleaning field data improves performance, 
additional cleaning of training data is covered by the case of over represented training noise. 

Noise level difference, training set size, and classification algorithm are used as factors. Because 
establishing an easily understood functional relationship is difficult, we use discrete noise level differences (low: 0 
to 0.05, medium: 0.10 to 0.15, and high: 0.20 to 0.25).  We randomly choose the noise level difference from a 
uniform distribution between the specified end points. Because noise levels are not under control of the data mining 
professional, we randomly vary the levels rather than setting fixed levels of noise. Two training set sizes are used 
(low: 200 and high: 1,000). Since training set size is often controllable by the data mining professional, constant 
values are used. We use five popular classification algorithms having different approaches about concept 
representation and search: decision tree induction, logistic regression, nearest neighbor, support vector machine, and 
a meta classifier using bagging and boosting. 

Noise levels are assigned to attributes as uniform noise (same noise level on all attributes), variable noise 
(different noise levels on attributes), and importance sampled noise (noise level selected by attribute importance). 
For each observation, a noise difference is randomly selected from a uniform distribution between the specified 
ranges. For uniform noise, zero and non-zero levels of low noise are considered. With zero-level low noise, the high 
noise level is the noise difference. For non zero-level low noise, the high level is chosen by randomly selecting a 
value between the noise difference and 25% larger than the noise difference. The low noise level is the high noise 
level minus the noise difference. For the variable noise variation, each attribute is randomly assigned a noise level 
from a uniform distribution between the noise difference and the high noise level used in the uniform noise case. 
The low noise level is the difference between the randomly assigned high noise level and the noise difference. For 
importance noise variation, the noise levels used in the variable case are sorted in ascending order. Noise levels are 
assigned according to attribute importance (largest noise level to the most important attribute) or reverse attribute 
importance (smallest noise level to the most important attribute). Attribute importance is determined by the Ranker 
search method with information gain as the evaluation function available in Weka (Witten and Frank 2005). 

2.2 Experiment Design and Procedures 
Our experiment design emphasizes internal validity about conclusions on individual data sets. We use a 

repeated measures design to investigate noise impacts on individual algorithms (intra-algorithm experiments) and 
sensitivity to noise among algorithms (inter-algorithm experiments). For each experiment, we repeat the randomly 
determined factor levels (noise level and training set size). In addition, we control the composition of cases in 
observations consisting of a pair of a training set and a test set. Given the number of factors and the need to isolate 
the impact of noise on training and test data, an emphasis on internal validity seems appropriate. We could not 
achieve a high level of internal validity if we had used the individual data set as an observation. We provide some 
insights about external validity (across data sets) by repeating the experiments on different data sets. 

The primary set of experiments applies to intra-algorithm performance using noise situation, noise level 
difference, and training set size as factors as shown in Table 3. An observation involves a combination of a training 
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set and a test set chosen by sampling without replacement from a classified data set. A randomly selected noise 
difference level is applied to the training and/or test sets as indicated by a noise situation (TRL-TSL, TRL-TSH, TRH-
TSL, TRH-TSH) representing combinations of low (L) and high (H) noise on training (TR) and test (TS) data. Thus, 
each cell in Table 3 contains 240 observations for the specified training set size and noise level applied to four noise 
situations. The test set size is two times the training set size. Since we use large data sets, data availability is not a 
problem for the training and test sets. After generating noise, a classifier is generated using the specified 
classification algorithm and training set. 

An observation is the performance of the specified classifier on the test set. To control for variance, 
identical training/test sets are used for each noise situation and noise level and identical noise levels are used for 
each training set size. A separate experiment is conducted for each classification algorithm. 

Table 3: Sample Sizes for Intra-Algorithm Experiments 

 Noise Level Difference 
Training Set Size 
 Noise Situation 

Low Medium High 

200 
 TRL-TSL 

 TRL-TSH 

 TRH-TSL 
 TRH-TSH 

 
60 
60 
60 
60 

 
60 
60 
60 
60 

 
60 
60 
60 
60 

1,000 
 TRL-TSL 

 TRL-TSH 

 TRH-TSL 
 TRH-TSH 

 
60 
60 
60 
60 

 
60 
60 
60 
60 

 
60 
60 
60 
60 

 
For inter-algorithm comparisons, we use a slightly different design with relative performance difference as 

the dependent variable. We perform pairwise comparisons among algorithms using a mix of training set sizes (200 
and 1,000) and noise level differences (low, medium, and high). We use 60 paired observations for a specified 
combination of noise level difference and training set size applied to five classification algorithms. Thus, an 
experiment involves a total of 360 (6 × 60) observations for each classification algorithm. A paired observation 
involves the same training and testing set for each classification algorithm. A separate experiment is conducted for 
each noise situation (over-representative and cleaning field data) and data set. Only variable noise variation is used 
in the inter-algorithm experiments. 

To execute the experiments, control software was developed in Microsoft Visual Studio. The control 
software randomly perturbs training and test data, builds classifiers using training data and selected classification 
algorithms, classifies test data using the classifiers, and calculates classifier performance. The experiment control 
program uses classification algorithms available in the Weka software for machine learning (Witten and Frank 2005) 
and data sets stored as Oracle 10g tables. We selected five popular algorithms available in Weka: J4.8 (Quinlan 
1993), AdaBoostM1 (Freund and Schapire 1996), SMO (support vector machine classifier (Keerthi  et al. 2001)), 
IBk (k nearest neighbor classifier (Aha and Kibler1991)), and Logistic (Ridge logistic regression (Cessie and 
Houwelingen 1992)). Separate experiments are executed for the large data sets described in Table 4. The data sets 
provide a mix of class distributions, data types, and classification difficulty (see Table 5 for average AUC scores 
with clean data). 
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Table 4: Summary of Data Sets 

Data Set Source Characteristics 
Adult UCI Repository (Hettich et al.1998) 14 attributes, mixed data types, 45,222 cases, 

about 25-75 class split (income level) 
DGP1 Generated by DGP/2 program from UCI 

repository 
10,000 cases, 20 numeric attributes, 60-40 class 
split, 3 peaks per attribute 

Bankruptcy Bankruptcy data from S&P Compustat 
North American database 

12 numeric attributes, 12212 cases, about 97-3 
class split (bankruptcy status) 

Thoracic United Network for Organ Sharing 19 tri state attributes, 13,326 cases, about 67-33 
class split (thoracic transplant survival) 

 
Table 5: Average AUC Results on Clean Data for Each Data Set and Algorithm 

Dataset\Algorithm AdaBoost J4.8 IBK Logistic SMO 
Adult 0.868 0.769 0.817 0.832 0.857 
Bank 0.786 0.528 0.594 0.747 0.626 
DGP 0.548 0.549 0.591 0.530 0.525 
Thoracic 0.709 0.653 0.692 0.722 0.713 

 

3. Analysis of Results  

This section presents the experiment results and discusses insights from the analysis. The significance of 
the intra and inter-algorithm models are evaluated followed implications of the study on investment decisions in 
training data. 

3.1 Evaluation of Models 
The intra-algorithm experimental results3 show a complex pattern for under and over representative training 

noise but a clearer pattern for cleaning field data as shown in Table 6. For the two easier data sets (Adult and 
Thoracic), over representative training noise (AUCHL – AUCLL) is usually significant. High training set size 
influences significance for SMO (Adult data set) and Logistic (Adult and Thoracic data sets) indicating that small 
training sets may not capture enough patterns for these algorithms. On the Adult data set, J4.8 is significant only at 
low noise level differences possibly due to the lower performance on clean data for J4.8 than the other algorithms 
(Table 5). For the two more difficult data sets (Bank and DGP), over representative training noise is usually not 
significant.  J4.8 is significant for both data sets when training set size and noise level difference are both high, 
while IBk is significant for the artificial DGP data. The Bank data set is difficult due to its high skew with some 
algorithms able to cope with the skew. The DGP data is difficult for all algorithms as shown in Table 5. 

For three data sets (Adult, Bank, and DGP), under representative training noise (AUCLH – AUCHH) is 
usually not significant. Table 6 shows some exceptions for large training sets and high noise levels especially for 
IBk. For the Thoracic data set, under representative training noise is usually significant with the exception of J4.8 
and SMO. J4.8 is the lowest performing algorithm on the Thoracic data set. 

                                                 
3 We used a traditional a level (0.05) for post hoc comparison tests. The family error rate (maximum probability that 

at least one comparison test has a Type I error) is 0.265 using the Bonferroni correction. 
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Table 6: Summary of Intra-Algorithm Test Results 

Dataset | Alg Over (training) Under (training) Cleaning (field) 
J4.8 Significant when 

noise level is low 
Not significant Significant 

AdaBoost Significant Not significant Significant 

SMO Significant when 
TSH-NLL

4 
Not significant Significant 

IBk Significant Significant for uniform and 
variable noise 

Significant 

Adult 

Logistic Significant when 
training set size is 
high. 

Significant when training set 
size is high. 

Significant 

J4.8 Significant when 
TSH-NLL 

Significant when TSH-NLL Significant when training 
set size is high 

AdaBoost Not significant Not significant Significant when training 
set size is high 

SMO Not significant Not significant Not significant 

IBk Not significant Not significant Significant when training 
set size is high 

Bank 

Logistic Not significant Significant when TSL-NLH Significant when training 
set size is high 

J4.8 Significant when 
TSH-NLH 

Significant when TSH-NLH  Significant when training 
set size is high 

AdaBoost Not significant  Not significant Significant 

SMO Not significant Not significant Not significant 

IBk Significant Significant when training set 
size is high 

Significant except for TSL-
NLL and TSL-NLM 

DGP 

Logistic Not significant  Not significant Not significant 

J4.8 Significant Not significant Significant 

AdaBoost Significant significant Significant 

SMO Significant Significant when TSH-NLH 
for uniform and importance 
noise. 

Significant 

IBk Significant Significant Significant 

Thoracic 

Logistic Significant when 
training set size is 
high for uniform, 
variable noise 

Significant Significant 

 
The results for cleaning field data partially confirm the results in (Zhu and Wu 2004).  Cleaning field data 

always significantly improves performance for the easier data sets (Adult and Thoracic). For the difficult data sets 
(Bank and DGP), cleaning field data has mixed results. Cleaning field data is only significant for large training sets 
for the Bank data set for all algorithms except SMO. The DGP results are highly mixed with SMO and Logistic not 
significant for any factors and J4.8 only significant with large training sets, and IBk significant for small training set 
sizes with low and moderate noise level differences. 

For the inter-algorithm comparison, we considered two noise situations (over-representative training noise 
and cleaned field data) with variable noise. For over-representative training noise, a positive performance difference 
                                                 
4 TSH-NLH means high training set size and high noise level difference. 
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(algorithm 1 – algorithm 2) means that algorithm 1 has less relative sensitivity than algorithm 2. Likewise, a 
negative performance difference means that algorithm 1 has more relative sensitivity than algorithm 2. Since the 
level of noise can be difficult to control in a training set, less sensitivity is desired. For cleaned field data, a positive 
performance difference (algorithm 1 – algorithm 2) means that algorithm 1 has more relative sensitivity than 
algorithm 2. These results provide insights into the desirability of cleaning field data because cleaning field data for 
a more sensitive algorithm has more impact than cleaning field data for a less sensitive algorithm. 

The inter-algorithm results are mixed as summarized in Table 7. The conclusions in Table 7 are based on 
significance counts for each data set as shown in Table 8. A Count+ value indicates the number of times a statistical 
test was significant comparing the algorithm to any other algorithm with a mean difference less sensitive. A Count0 
value indicates the number of times a statistical test was not significant comparing the algorithm to any other 
algorithm. For example in 24 statistical tests with over representative training noise, SMO is less sensitive in 16 tests 
but not significantly different in 8 tests. Most comparisons for the Adult data set are not significant as the Count0 
column counts are largest in all but two rows. Across data sets, IBk is more sensitive on three data sets (Adult, 
Thoracic, and DGP), while Logistic is more sensitive on the DGP and Thoracic data sets for over representative 
training noise. For cleaned field data, Logistic regression is most sensitive on three data sets but less sensitive on one 
data set (DGP). 

Table 7: Summary of Inter-Algorithm Test Results 

Data Set Over representative training Cleaned field data 
Adult SMO is less sensitive than others. AdaBoost and IBk 

are more sensitive to noise than others. 
Logistic is most sensitive. IBk is somewhat 
less sensitive than others. 

Bank Most differences are not significant.J4.8 is less 
sensitive than Logistic when training set size is high 
and noise level difference is medium. 

Algorithms’ differences are significant when 
training set size is high. IBk and Logistic are 
more sensitive than others. SMO is less 
sensitive to noise. 

DGP Logistic is less sensitive than others. IBk is most 
sensitive to noise. 

IBk is most sensitive to noise. SMO and 
Logistic are less sensitive to noise than others. 

Thoracic Logistic is less sensitive than others. IBk is most 
sensitive to noise. 

Logistic is more sensitive to noise. IBk is less 
sensitive to noise. 

 
Table 8: Significance Counts for the Adult Data Set 

Noise Situation Algorithm Count + Count – Count 0 
Over J4.8 0 5 19 
 AdaBoost 1 10 13 
 SMO 16 0 8 
 IBk 2 10 12 
 Logistic 9 3 12 
Cleaning J4.8 4 6 14 
 AdaBoost 2 8 14 
 SMO 3 9 12 
 IBk 2 10 12 
 Logistic 22 0 2 

 
In many data mining studies, algorithm performance is evaluated using graphs instead of statistical tests. 

Performance graphs can provide different conclusions than statistical tests as depicted in Figure 1 on the Adult data 
set. Figure 1 shows stacked bar graphs in which the height of a bar is the sum of the median relative AUC 
performance differences. J4.8 appears most sensitive in Figure 1 although the statistical tests indicate that the 
relative performance difference between J4.8 and other algorithms is usually not significant. Likewise, the statistical 
conclusions for the cleaned field data are not apparent in the bar graphs of Figure 2. 



 8

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

TSL-NLL TSL-NLM TSL-NLH TSH-NLL TSH-NLM TSH-NLH

Su
m

 o
f M

ed
ia

ns
 o

f P
er

fo
rm

an
ce

 D
iff

er
en

ce
s

Logistic

IBk

SMO

AdaBoost

J4.8

 
Figure 1: Performance Differences for Over Representative Noise of the Adult Data Set 
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Figure 2: Performance Differences for Cleaned Field Noise of the Adult Data Set 
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The box charts in Figures 3 and 4 indicate the dispersion of the performance measures in the intra and inter-
algorithms experiments. The performance on the Bankruptcy data set shows most dispersion on both parts of the 
distribution. The wide dispersion may be due to the interaction of noise and high class skew. The box charts also 
show anomalous situations in which over-representative training noise can lead to improved performance and 
cleaning field data can lead to worse performance. These anomalous situations are most pronounced for the 
Bankruptcy data set but exist to lesser degrees for the other data sets. 
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Figure 3: Box Charts for the Over Representative Training Noise Situation5 

                                                 
5 D-J4.8; A-Adaboost; S-SMO; N-IBk; L-Logistic regression; 1-Adult; 2-Bankruptcy; 3-DGP; 4-Thoracic;  
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Figure 4: Box Charts for the Data Cleaning Situation 

3.2 Discussion 
The results in both experiments indicate the complex pattern of algorithm performance in the presence of 

asymmetric attribute noise. In general, over representative training noise should be avoided while under 
representative training noise is less of a concern. However, the interactions among algorithm, noise level, and 
training set size indicate that these general results may not apply to particular practice situations. Thus investments 
to obtain training data with representative noise levels may not be worthwhile in practice. Investments to clean field 
data seem more likely to be worthwhile consistent with the results in (Zhu and Wu 2004). 

Two minor surprises involved the lack of impact of noise variation and ensemble learning algorithms. 
Although we think that variable attribute noise is the most realistic approach, it was surprising not to see that 
uniform and importance sampled noise had little differential impact. The results did not show much evidence that 
ensemble methods (AdaBoost-M1) had less relative sensitivity than other learning algorithms. 

The results of these experiments are consistent with the results in (Perlich et al. 2003) about training set 
size and data set difficulty. Learning efficiency varies by classification algorithm. Similarly, the interaction of 
training set size and asymmetric attribute noise varies by algorithm. Data set difficulty as evidenced by average 
AUC scores with clean data seems to influence the effect of asymmetric attribute noise.  However, we did not 
evaluate enough data sets to make any definitive conclusions about the impact of data set difficulty. 

4. Conclusion  

We presented an empirical comparison about asymmetric noise levels between training and field 
environments. We developed an innovative experimental design with algorithm, noise level, and training set size as 
factors and relative performance change as the performance measure. We considered under representative training 
noise (low training noise and high test noise) and over representative training noise (high training noise and low test 
noise). For noise generation, we studied uniform input noise levels on all attributes, variable noise levels, and noise 
levels assigned by attribute importance. Our results indicated that over representative training noise should be 
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avoided while under representative training noise is less of a concern. However, the interactions among algorithm, 
noise level, and training set size indicate that these general results may not apply to particular practice situations. 

This study with an emphasis on internal validity has limitations on conclusions in a wide variety of 
domains. To study the interactions of noise level differences and training set size, internal validity with controls 
about confounding effects was necessary. A follow-on experiment with an emphasis on data set characteristics such 
as difficulty and prevalence would provide additional external validity to complement this study. In addition, 
variations of learning algorithms could be studied to understand the impact of noise handling methods on 
asymmetric attribute noise. We are also interested in similar experiments to study class noise. 
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