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Abstract 

Service-centric application development has become one of the most important paradigms in software engineering, 
and collaborative open source development has emerged as a new way for organizations to develop new 
applications that are either not available or too expensive to acquire. A most recent trend is to combine service 
centricity with open source development collaborated by multiple organizations to develop scalable and flexible 
information systems. However, service centricity and open source collaboration involve innovative concepts and 
practices that are very new to many. As such, there are a lot of confusion among both researchers and practitioners 
in this area. In this paper, we investigate several important concepts surrounding service-centric open source 
development via the case of Kuali including service-oriented architecture, workflow technology, and technology 
flexibility as well as the relationships among those concepts. In particular, we concentrate on understanding the 
relationships between technology flexibility and emerging technologies.  One important contribution of this paper is 
the introduction of community source as a unique open source concept to the MIS community. Finally, we report 
several research findings and outline a number of research directions in the related areas. 

Keywords: technology flexibility, open source, community source, business process management, workflow technology, 
service-oriented architecture, service centricity, service-centric development 

Introduction 
Organizations are facing an environment of ever increasing turbulence and change on a global scale. To survive under global 
competition, they need to meet more and more challenging requirements, such as shorter product cycle times and continuous 
costs reduction. One way to meet the new challenges is to improve the flexibility of enterprise systems, thus making the 
organization more adaptive and agile to unexpected changes. In particular, increased flexibility can give an organization more 
competitive advantage through faster response to varying customer needs and environmental conditions. As companies 
automate their business processes through workflow technology and electronic business, the flexibility of business process 
implementation can also greatly influence the organization’s capacity for change. As has been long recognized by researchers 
(Nelson et al. 1997), companies have been using emerging technologies to enable flexibility in the enterprise computing 
environment.  Most recently, a new set of information technologies collectively referred to as service-oriented computing 
have been adopted to support more enterprise agility (Zhao, Tanniru, and Zhang, 2007).   

In this paper, we examine the importance of service-centricity in open source development, in the context of Kuali, a 
collaborative project among nine major universities in the US (www.kuali.org). Kuali is an ideal case for studying service-
centric open source development.  It started with a focus on developing a university financial information system and has 
now extended the system scope by including research administration and student systems.  The goal of Kuali is to combine 
resources from multiple universities to minimize development risk and financial burdens.  Kuali is developed as an 
alternative to expensive and rigid systems such as Financial ERP modules offered by commercial software vendors.  Kuali 
has been referred to as community source because it is an open source project developed by a community of functional 
managers and systems developers from nine major universities collaboratively.  The community source project is being 
developed through several phases. All adopting organizations can customize the Kuali system, but the source code must be 
properly documented and shared by the whole community. 

 
1 Ms. Manlu Liu is also a faculty member at Zhejiang University and is currently on leave while pursuing her doctoral study 
at the University of Arizona. 



Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali 

 
As a community source project, Kuali is a unique form of open source in which the community must balance the various, 
sometimes even conflicting, requirements from all development partners.  As such, community source is more challenging 
than a general open source project in which variations in requirements are not a major issue. In our view, community source 
has more stringent requirement in flexibility in order to deal with complex requirement analysis and change management.  
Recently emerged technologies such as web services, service-oriented architectures, and workflow automation can help make 
a system more customizable. As we illustrate in the paper, Kuali takes advantage remarkably of these emerging technologies 
to enable the strong system flexibility.  In fact, we believe that Kuali is a good representative of a recent trend in combining 
service centricity with open source development to build scalable and flexible information systems. 

As we demonstrate via the Kuali case in a later section, the community source approach is a unique form of open source 
approach.  There are several important distinctions between the two. First, community source requires a formal collaboration 
among multiple institutions via a virtual organization whereas the latter does not require so.  Second, the application 
developers in a community source are employees designated to the project by the partner institutions.  Third, the community 
source project requires significant initial investments by the partner institutions, but an ordinary open source project might 
not.  Some of these three features might appear in other types of open source projects, but a community source project 
requires all of them.  In summary, we define community source as a unique type of open source that depends on significant 
financial and other support from a community of institutions in the development and deployment of the enterprise 
application. 

All in all, service centricity and open source involve innovative concepts and practices that are very new to many. As such, 
there are a lot of confusion among both researchers and practitioners. In this paper, we investigate the concepts and issues 
surrounding these two important topics based on the recent literature. Further, we examine the case of Kuali and its 
technological components, including service-oriented architecture, document workflow, and customization techniques.   

The structure of the paper is as follows. First, we review the recent research in technology flexibility, open source 
development, workflow technology, and service-oriented architecture. Second, we introduce the Kuali project by discussing 
its project goal, organizational structure, and its system architecture. Third, we describe the five levels of customization in 
Kuali and explain how Kuali achieves flexibility via various software techniques. Finally, we discuss our research findings 
by means of several propositions and outline a number of research directions stemming from the Kuali case.   

Literature Review 
As explained above, our focus in this paper is to illustrate how to achieve flexibility under service-centric community source. 
Next, we summarize the recent thinking in several related research areas, including technology flexibility, open source 
development, business process management, and service-oriented architectures. 

Technology Flexibility 

Flexibility has emerged as a key competitive factor in many organizational endeavors. Nelson et al. (1997) defines 
technology flexibility as “the ability to adapt to both incremental and revolutionary change in the business or business 
process with minimal penalty to current time, effort, cost, or performance.” A measurement framework for technology 
flexibility was proposed including such factors as modularity, change acceptance, and consistency in the structural flexibility 
dimension, and rate of response, expertise, and coordination of actions in the process flexibility dimension.  Zhao (1998) 
differentiated between two software flexibility concepts: system adaptability and system versatility.  The former is defined as 
the capability to modify the system to cope with major changes in business processes with little or no interruption to business 
operations, and the latter is the capability of the system to allow flexible procedures to deal with exceptions in processes and 
procedures.  Deiters, Goesmann, and Löffeler (2000) dealt with the issue of flexibility in technical, organizational, and 
human perspectives. They classify flexibility into four dimensions: process flexibility, inter-organizational flexibility, flexible 
management and knowledge, and flexible task allocation. Byrd, et al. (2000) focused on the IT infrastructure flexibility and 
attempted to develop a valid and reliable instrument for IT infrastructure flexibility.  

Our work in this paper extends the literature by examining the relationship among three related characteristics, namely 
technology flexibility, system extensibility, and software customizability. Essentially, we find that technology flexibility is a 
continuum of two stages of implementation.  At the lower level, software can be customized without making major changes 
to the system code, leading to software customizability, and at the higher level, the system can be extended by either 
modifying the code or by adding new components.  The key issue is about how emerging technologies such as service centric 
computing and business process automation can facilitate those capabilities. 

Open Source 
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Open source has become an important software engineering methodology in which the source code of a system is made 
available to its adopters (Ducheneanut 2005).  However, open source is a very complex concept because of variations on how 
it is developed, marketed, and adopted.  The most well-known example is the Linux system that is developed and maintained 
by a global network of volunteers and distributed by some commercial companies such as Red Hat (www.redhat.com).  
Many versions of Linux are distributed currently by these commercial companies who generate revenue by adding new 
features and providing consulting services.  Many other open source systems are developed with government funding as 
output of a research project and given online for free adoption with or without technical support (www.sf.net).   

As a research domain, open source has received a lot of attention from various researchers, particularly the communication 
issue.  Curtis et al. (1988) found that large projects have extensive communication and coordination needs that are not 
mitigated properly by documentation. These collaborative problems are exacerbated when the development team is 
geographically or organizationally distributed, as is becoming increasingly common. More effort is required for more 
systematic interactions when participants are distant and unfamiliar with each others’ work (Ocker and Fjermestad 2000). 
Kraut and Streeter (1995) found that the formal and informal communication mechanisms for collaborative work on large-
scale, complex software projects are important for sharing information and achieving collaboration in software development.  
Stewart et al. (2006) developed a framework of the main tenets of the open source software (OSS) ideology, which impacts 
the team effectiveness in various ways.  Recently, Fitzgerald (2006) found the field of open source has undergone a major 
transformation from its free software origins to a new form of community-based development and adoption.  

In this paper, our study about Kuali calls for new concepts and ideas on collaborative open source development among 
multiple institutions.  Many research issues need to be explored.  For instance, the community source in Kuali is based on a 
consortium of nine major universities.  It is not clear if this paradigm would work well in a consortium of commercial 
companies.  If so, what would be the difference in both development and adoption? 

Workflow Technology 
Workflow technology has been widely adopted by organizations to automate business processes, reduce cycle time, and 
support e-business. Workflow Management Systems (WFMSs) remove the process dependency by separating the process 
logic from the application logic, which makes information systems more flexible and adaptive to process changes (Stohr and 
Zhao 2001). Many approaches have been proposed to make WFMSs even more flexible. Casati et al. (2000) proposed a rule-
based workflow modeling method to allow a high degree of flexibility during workflow design and great adaptability in terms 
of process exception handling. Document-driven workflow is another such effort, which is different from production 
workflow systems (Wang and Kumar 2005). The latter models the workflow as an execution sequence of tasks while the 
former designs a process by specifying the data dependences among the documents. As a result, document-driven workflow 
is very suitable for less-structured, cooperative, and ad hoc workflows.  

Today, many companies are investing a great amount to expose their business operations as web services in order to offer 
easy integration with a wide range of third-party applications. Web services choreography and orchestration technologies 
have been developed to connect individual web services to form higher value-added processes (Peltz 2003). Workflow 
technologies based on the workflow standards such as Business Process Execution Language (BEPL) have helped 
organizations achieve better process flexibility (Weerawarana 2005).  As we will illustrate later, the Kuali project leverages 
workflow technology to enhance the flexibility and extensibility of the system. 

Service-Oriented Architecture 

One of the emerging technologies used in Kuali is service-oriented architecture, which enables better system extensibility.  
This is a critical feature that makes community source a viable development methodology.  Service Oriented Architecture 
(SOA) was first proposed by Schulte and Natis (1996). They specified SOA as "a style of multi-tier computing that helps 
organizations share logic and data among multiple applications and usage modes."  SOA is commonly defined as a software 
architecture that allows the use of loosely-coupled software services to meet the needs of business processes and users 
(en.wiki.org). A service-oriented architecture defined by IBM contains four core components including business services, 
integration services, enterprise service bus, and infrastructure services, which work together to provide the capability for on-
demand business (Keen et al. 2004). Typically, SOA consists of composable services, which are used to support the 
operations of a specific enterprise (Cherbakov et al. 2005). 

Service-oriented computing is a broader term referred to as the computing paradigm that utilizes services as fundamental 
elements for developing applications (Papazoglou and Georgakopoulos 2003, Huhns and Singh 2005).  Service-oriented 
computing is described by some researchers as the use of service-oriented architecture for implementing web services.  

As indicated in the literature, service-oriented computing is process-driven.  This is because business processes are a flexible 
way to organize and integrate enterprise applications at the business level (Zhao et al. 2005).  At the computational level, 
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service orchestration is the main function of the enterprise service bus, the coordinator of the functional modules under the 
service centric infrastructure.  

Service-Centric Community Source: the Case of Kuali 
In this section, we present the case of Kuali and show how Kuali achieves flexibility via service-centric community source.  
Kuali is a consortium of universities to develop an open source financial service system, starting with the conversion of the 
Indiana University’s Financial Information System to the web in 2004 (www.kuali.org).   The original motivation of the 
project is that existing financial systems used in the universities are outdated and too difficult to maintain.  The commercial 
products are often too expensive and hard to customize; some institutions paid tens of millions to companies for software and 
installation, but still need to build 15% of all the features they need themselves to handle specific financial transaction needs.  
Some schools and colleges find they need to operate expensive "shadow systems" to provide needed features that are absent 
in currently available ERP packages. The alternatives to buying off-the-shelf packaged financial software are equally 
daunting and can only be considered by the largest institutions.  The Kuali project provides an attractive alternative to the 
“buy or build” dilemma. It pools institutional resources to develop an open source financial system, thus dramatically 
reducing the cost of managing fiscal data and processes in higher education.  

Launched in August, 2004, the Indiana University and the University of Hawaii led the effort to build Kuali. In March, 2005, 
Kuali project got an award of $2.5M from the Andrew W. Mellon Foundation. In the same year, four new partners, Cornell 
University, San Joaquin Delta College, Michigan State University, and the University of Arizona, joined as core investors. In 
April 2006, Kuali Project  announced the availability of the Kuali Test Drive,  which enables institutions to explore Kuali 
Financial Systems.  In July 2006, the University of California joined Kuali. In October, 2006, Kuali foundation released 
phase I. Phase IIa and Phase IIb are planned to be released in July 2007 and in July 2008, respectively.  

Figure 1. Kuali Organizational Chart 

Kuali uses a community source approach to allow member universities to share the cost for and the benefit from system 
development.   Figure 1 shows the complexity of the organization structure. The development partners work in a project 
organization.  The Kuali Board is the final decision maker during the development of Kuali. The Kuali functional council and 
Kuali technical council take care of the functional issues and technical issues of Kuali, respectively. The Extended board, 
Kuali investors, Kuali functional council, Kuali technical council and the project manager report to the Kuali board. The 
project manager supervises the project staff and development staff. 

The initial mission of the Kuali consortium was to develop a baseline system for financial services and has now expanded to 
other systems such as research administation and student management.  In order to ensure flexibility and extensibility, Kuali 
uses the most up-to-date approaches and technologies such as open source, workflow, and service-oriented architecture.  
Figure 2 illustrates the Kuali system architecture that shows how the enterprise service bus is used to support service-oriented 
architecture.  Currently, there are three main application modules, financial services, research administration, and student 
system.   

At the center of the Kuali system is the Kuali enterprise service bus (KSB), the core concept of service-oriented architecture 
that coordinates the interactions between an application module and the various lower-level system services such as 

http://kualitestdrive.org/
http://www.sakaiproject.org/www.kuali.org


Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali 

 
workgroup service, user service, and legacy wrapper service.  KSB includes a service registry, remote access protocols, and 
service invocation procedures.  Each application module carries its own documents, business objects, business rules, data 
dictionaries, and other local services.  This service-centric architecture makes it relatively easier to enhance the application 
modules and add new modules.  As shown in Figure 2, Kuali also has a modularized middleware infrastructure called Rice, 
sitting between the server and applications.  Rice consists of four client-side-components: Kuali Enterprise Service Bus, 
which includes a service registry, remote access protocols, and service invocation procedures; Kuali Nervous System, which 
provides reusable code and shared services to enforce system development standards; Kuali Enterprise Workflow, which 
facilitates the routing and approval of transactions throughout the university; and Kuali Enterprise Notification, which 
provides a single list for all university-related communications. 

Kuali Service Bus
• Provide service registry
• Provide remote accesses

• Support service invocation

Institutional 
workgroup 

service

Wrapper service 
to access

legacy systems

Institutional 
user 

service

Alternative 
Implementation to 
any Kuali service

Financial Services
• Documents

• Business Objects
• Business Rules

• Data Dictionaries
• Other Services

Rice Middleware

Research Administration
• Documents

• Business Objects
• Business Rules

• Data Dictionaries
• Other Services

Rice Middleware

Student System
• Documents

• Business Objects
• Business Rules

• Data Dictionaries
• Other Services

Rice Middleware

 
Figure 2. Service-Oriented Architecture of Kuali 

Enabling Flexibility in Kuali 

As a community source project, Kuali must balance 
among varying requirements from many universities. 
Thus, it is imperative to make the Kuali system 
flexibile in terms of both customizablility and 
extensibility. In this section, we take an in-depth look 
at how Kuali achieves flexibility in this unique 
environment. 

Label Customization 

An important aspect of flexibility is to enable the 
customization of the look and feel of its user interface.  
Specifically, Kuali allows its adoptors to rename any 
label on all forms (Figure 3) without the need to write 
code. 

Kuali supports label customization by means of its 
Data Dictionary, which can be specified using XML 
files. For example, account.xml (Figure 4) holds 
various attributes about a Business Object “Account 
Number”.  This customizability allows an institution 
to change the user interface to fit its unique lingo without changing the lower-level programs. 

<attribute name="accountNumber" forceUppercase="true"> 

Figure 3. Kuali Forms and Labels
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<label>Account Number</label>  <shortLabel>Account</shortLabel> <maxLength>7</maxLength>  
<validationPattern> <alphaNumeric exactLength="7" allowWhitespace="false" allowUnderscore="false" /> </validationPattern> 
<required>true</required> <control>  <text size="10" /> </control> 
<summary>Account Number</summary> <description>Identifier for a pool of funds.</description> 
</attribute> 

Figure 4. Data Dictionary Attribute Definition 

Modification and Addition of Document Types 

Kuali organizes its financial documents into a hierarchy of document types; as of today, it has 139 types on its website.  
Figure 5 illustrates a number of document types in the financial transactions category.  Document types are a critical concept 
for Kuali since its business process evolves around the routing of documents. 

Kuali allows its adopters to modify and add new document type via XML files.  As shown in Figure 6, the Account 
Maintenance Document type is defined via a XML (only partially show for simplicity).  The components of a document type 
include business rules, authorization, locking keys, and so on.   

Workflow Customization 

Figure 5. Kuali Document Type Examples 

<dictionaryEntry>
<maintenanceDocument> 

 ... 
 <businessRulesClass>org.kuali.module.chart.rules.AccountRule</businessRulesClass> 
 <documentAuthorizerClass>org.kuali.core.document.MaintenanceDocumentAuthorizerBase</documentAuthorizerClass> 
 <authorizations> 
 <authorization action="initiate"> 
 <workgroups> <workgroup>kualiUniversalGroup</workgroup> </workgroups> 
 </authorization> 
 </authorizations> 
 <documentTypeName>KualiAccountMaintenanceDocument</documentTypeName> 
 <documentTypeCode>ACCT</documentTypeCode> 

<label>Account Maintenance Document</label> 
<shortLabel>AcctMaintDoc</shortLabel> 
<summary>Account maintenance document</summary> 
<description>Document used to create or update Account objects</description> 
<lockingKeys> <field attributeName="chartOfAccountsCode"/> <field attributeName="accountNumber" /> </lockingKeys> 
…
</maintenanceDocument> 

</dictionaryEntry> 
Figure 6. AccountMaintenanceDocument.xml 
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Workflows in Kuali can be customized to suit the needs of different universities. Essentially, Kuali workflow is document-
based and allows the modification of document routing without having to write any code.  As given in Figure 7, the Kuali 
workflow engine specifies the generic actions on financial documents including initial actions, approval actions, workflow 
processor, and post processor. Specific actions on each financial document are specified within the document type itself such 
as document initiator, organizational unit, and document approver.  The Kuali workflow uses XML-driven routing 
capabilities, and routing rules can be defined or modified with respect to any document type without requiring a modification 
to the Kuali source code. 

Figure 7. Kuali Workflow 

Code Modification 

This level of extensibility is inherent to the open source paradigm of Kuali.  As an open source system, Kuali “allows its 
users to: 1) freely access, install, and run the software for any purpose; 2) modify the original software; 3) redistribute copies 
of the original or modified programs; and 4) share modifications with the community.” Further, as a community source 
system, Kuali “is based on many of the principles of open source development efforts, but community source efforts rely 
more explicitly on defined roles, responsibilities, and funded commitments by community members than some open source 
development models.”   

Kuali is distributed according to the Educational Community License version 1.0, which grants the permission to use, copy, 
modify, merge, publish, distribute, and sublicense this original work and its documentation, with or without modification, for 
any purpose, and without fee or royalty to the copyright holder(s).  The adopters are required to notify any changes or 
modifications to the original work. 

Addition of New Modules 
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As discussed in an earlier section, Kuali started as a financial system and has evolved to an umbrella suite of administrative 
higher education systems.  It does so by providing a common architecture that can be extended to incorporate new 
applications.  The Kuali framework improves productivity and consistency across Kuali applications and creates a reusable 
development environment.  

The service centric approach of Kuali makes it possible to “develop once and use anywhere and on any platform”. This 
reduces the dependency of various development efforts and therefore simplifies the system architecture.  Furthermore, 
workflow customization via business rules discussed previously makes it easier to create new application modules in a 
document-based routing.  This further highlights the business value of service-oriented architecture, including the Kuali Rice 
Middleware approach. 

Research Findings and Directions 

The Relationship between Flexibility and the Community Source Approach 

From the Kuali case, we can generalize several observations into a number of propositions, which will need to be validated in 
future research.  Next, we state the propositions and explain them briefly without proofs. 

Proposition 1: Service–oriented architectures enhance system extensibility. 

As said previously, Kuali’s system architecture is service-oriented.  Its enterprise service bus provides the necessary facilities 
to enable various application modules to access enterprise services without being hardwired to these services.  This helps the 
Kuali adopters extend the system by adding new modules while reusing much of these enterprise services such as user 
services such as user directories and institutional services such as data dictionary. 

Proposition 2: Workflow automation enables model-based application development and system maintenance without having 
to revise lower-level code. 

Model-based applications can be modified by revising the process models without having to change any program code.  The 
Kuali case indicates that workflow can help model the routing and authorization tasks and make it easier for an organization 
to streamline its processes and tasks.  This feature is more pronounced in a community base project like Kuali in which the 
system is designed with built-in flexibility.   

Proposition 3: Community source requires more flexible software architectures in order to meet the needs of the community. 

The Kuali case demonstrates the need for close and intensive interactions between the functional aspects and the technical 
aspects on the regular basis because varying needs of multiple institutions make it very difficult to get the specifications right.  
This is not as essential in other types of open source projects when the functional requirements are relatively stable. 

To validate these propositions, we need to develop additional and more specific hypotheses that are based on measurable 
parameters.  This will be done as part of our future research. 

Research Directions 

Next, we outline several research directions related to the Kuali case, including community source, workflow modeling 
paradigms, and software adoption methodology. We discuss unique research opportunities along with those research 
directions. 

• Community Source 

In a community source project similar to Kuali, software development teams acquire, maintain, analyze, and formalize 
software requirements from multiple stakeholders that can have varying and possibly conflicting demands.  Different 
universities work together to develop the system, which may have conflicting demands. How to solve this issue and make the 
community based software development successful is an interesting research issue. In addition, effective collaboration is a 
major concern in large development teams. Designing complex software systems like Kuali requires effective communication 
among all shareholders. Although a few researchers studied the collaboration issue in software development, there are 
currently no formal guidelines and procedures that suggest to software and managers how to manage communications among 
all stakeholders of a complex software project.  Successful community source projects must understand the political nature of 
complex software development and progressively enroll a network of collaborators to support their efforts (Ducheneaut 
2005). Social network analysis can be an interesting research topic in the context of community source where the level of 
centralization may be correlated with project size and modularity (Crowston and Howison 2006). 
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• Workflow Modeling Paradigms 

Currently, the Kuali platform specifies workflows by means of workflow rules in the context of financial documents.  As 
such, these workflow rules are also called routing rules. These routing rules seem to work fine in the context of financial 
services since the workflows are relatively simple with typically three to five steps.  However, it is not clear if routing rules 
would be appropriate in other Kuali modules.  For instance, the Research Administration Module, currently under 
development, contains very complex workflows.  The COEUS workflow (http://www.princeton.edu/~orpa1/coeus/) consists 
of over twenty processes, each of which could include many steps as illustrated in Figure 8. Specifying these workflows 
using routing rules could result in lengthy XML scripts that are very difficult to write and maintain.  In addition, the control 
flow of those processes is not explicitly modeled when using rule-based and document-driven workflow modeling, which 
makes it difficult to understand the underlying process logic. This raises a research direction on when a particular workflow 
modeling paradigm should be used.  Specific research issues include the development of criteria on how to choose between 
control-flow-driven workflow modeling and rule-based and document-driven workflow modeling (Wang and Kumar 2005), 
mechanisms and procedures to extract implicit control flow from workflow rules, and rule languages that are capable of 
modeling more complex workflows (van der Aalst et al. 2003).  

Figure 8. Equipment purchase process in research administration (http://www.princeton.edu/~orpa1/coeus/) 

• Adoption Methodology for SOA-based Software 

As demonstrated with the Kuali case, enterprises need to make software adoption decisions amidst recent technology 
advances such as service-oriented architectures and workflow automation. For example, how the universities other than Kuali 
development partners know Kuali is the right system or not for them is a non-trivial problem. As such, it is interesting to 
study how to describe the fitness of the system capabilities and enterprises needs. In order to study this issue, we need to 
understand how to formally specify the capabilities of the system, how to formally specify the needs of enterprises, and how 
to measure the fitness.  Currently there is no formal methodology that allows enterprises to specify their system needs and 
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compare with software capabilities in a manner similar to conceptual database design via ER diagram. In other words, there 
should be a software adoption methodology to describe the fitness of the system capabilities and enterprises needs.  

A related concept is business modeling (Cherbakov et al. 2005).  Business modeling is an emerging area of research. 
Researchers have studied the difference between a business model and a business process model (Gordijn et al. 2000), how 
related project activities can be modeled consistently to support the reengineering effort of the same business entity (Gulla et 
al. 2000), and how to develop business models to support the development of complex systems (Petrovic et al. 2001).  Our 
focus in this direction is to develop a methodology for adopting software systems for given business requirements. 

Conclusions 

In this paper, we studied the need for technology flexibility and how to achieve it in the context of the Kuali project, a multi-
university and multi-year project by bringing an existing system to the web.  We demonstrated how Kuali utilizes a service-
oriented architecture and the community source approach to minimize project risk and maximize cost sharing in enterprise 
application development. At the core of the flexibility endeavor is the five types of customization in Kuali.  It is clear that 
service centricity is the key ingredient in the Kuali recipe for achieving flexibility.  In addition, rule-based workflow 
management, XML-based document specification, and the Rice middleware approach are necessary ingredients as well.  
Based on the Kuali case, we summarized our observations in the form of research propositions and directions.  To the best of 
our knowledge, this paper is the first article examining the relationship between technology flexibility and service-centricity.  
Another important contribution of this paper is the study of community source in the context of a large-scale project. 

We plan to tackle some of the research directions given in the last section.  We will monitor the development and deployment 
of the Kuali system and continue with the research ideas we have presented in this paper. Validation of the propositions we 
outlined in this paper is another future research we plan to pursue. 
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