
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2007 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2007

Achieving Flexibility via Service-Centric
Community Source: The Case of Kuali
Manlu Liu

Harry Wang
University of Delaware

Leon Zhao
University of Arizona

Leon Zhao
University of Manitoba

Leon Zhao
University of Arizona

See next page for additional authors

Follow this and additional works at: http://aisel.aisnet.org/amcis2007

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Liu, Manlu; Wang, Harry; Zhao, Leon; Zhao, Leon; Zhao, Leon; and Zhao, Leon, "Achieving Flexibility via Service-Centric
Community Source: The Case of Kuali" (2007). AMCIS 2007 Proceedings. 103.
http://aisel.aisnet.org/amcis2007/103

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301340105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007/103?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Authors
Manlu Liu, Harry Wang, Leon Zhao, Leon Zhao, Leon Zhao, and Leon Zhao

This article is available at AIS Electronic Library (AISeL): http://aisel.aisnet.org/amcis2007/103

http://aisel.aisnet.org/amcis2007/103?utm_source=aisel.aisnet.org%2Famcis2007%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

Achieving Flexibility via Service-Centric Community
Source: The Case of Kuali

Manlu Liu1

Department of MIS
University of Arizona
manluliu@arizona.edu

Harry J. Wang
Dept. of Accounting & MIS

University of Delaware
hjwang@lerner.udel.edu

J. Leon Zhao
Department of MIS

University of Arizona
jlzhao@u.arizona.edu

Abstract

Service-centric application development has become one of the most important paradigms in software engineering,
and collaborative open source development has emerged as a new way for organizations to develop new
applications that are either not available or too expensive to acquire. A most recent trend is to combine service
centricity with open source development collaborated by multiple organizations to develop scalable and flexible
information systems. However, service centricity and open source collaboration involve innovative concepts and
practices that are very new to many. As such, there are a lot of confusion among both researchers and practitioners
in this area. In this paper, we investigate several important concepts surrounding service-centric open source
development via the case of Kuali including service-oriented architecture, workflow technology, and technology
flexibility as well as the relationships among those concepts. In particular, we concentrate on understanding the
relationships between technology flexibility and emerging technologies. One important contribution of this paper is
the introduction of community source as a unique open source concept to the MIS community. Finally, we report
several research findings and outline a number of research directions in the related areas.

Keywords: technology flexibility, open source, community source, business process management, workflow technology,
service-oriented architecture, service centricity, service-centric development

Introduction
Organizations are facing an environment of ever increasing turbulence and change on a global scale. To survive under global
competition, they need to meet more and more challenging requirements, such as shorter product cycle times and continuous
costs reduction. One way to meet the new challenges is to improve the flexibility of enterprise systems, thus making the
organization more adaptive and agile to unexpected changes. In particular, increased flexibility can give an organization more
competitive advantage through faster response to varying customer needs and environmental conditions. As companies
automate their business processes through workflow technology and electronic business, the flexibility of business process
implementation can also greatly influence the organization’s capacity for change. As has been long recognized by researchers
(Nelson et al. 1997), companies have been using emerging technologies to enable flexibility in the enterprise computing
environment. Most recently, a new set of information technologies collectively referred to as service-oriented computing
have been adopted to support more enterprise agility (Zhao, Tanniru, and Zhang, 2007).

In this paper, we examine the importance of service-centricity in open source development, in the context of Kuali, a
collaborative project among nine major universities in the US (www.kuali.org). Kuali is an ideal case for studying service-
centric open source development. It started with a focus on developing a university financial information system and has
now extended the system scope by including research administration and student systems. The goal of Kuali is to combine
resources from multiple universities to minimize development risk and financial burdens. Kuali is developed as an
alternative to expensive and rigid systems such as Financial ERP modules offered by commercial software vendors. Kuali
has been referred to as community source because it is an open source project developed by a community of functional
managers and systems developers from nine major universities collaboratively. The community source project is being
developed through several phases. All adopting organizations can customize the Kuali system, but the source code must be
properly documented and shared by the whole community.

1 Ms. Manlu Liu is also a faculty member at Zhejiang University and is currently on leave while pursuing her doctoral study
at the University of Arizona.

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

As a community source project, Kuali is a unique form of open source in which the community must balance the various,
sometimes even conflicting, requirements from all development partners. As such, community source is more challenging
than a general open source project in which variations in requirements are not a major issue. In our view, community source
has more stringent requirement in flexibility in order to deal with complex requirement analysis and change management.
Recently emerged technologies such as web services, service-oriented architectures, and workflow automation can help make
a system more customizable. As we illustrate in the paper, Kuali takes advantage remarkably of these emerging technologies
to enable the strong system flexibility. In fact, we believe that Kuali is a good representative of a recent trend in combining
service centricity with open source development to build scalable and flexible information systems.

As we demonstrate via the Kuali case in a later section, the community source approach is a unique form of open source
approach. There are several important distinctions between the two. First, community source requires a formal collaboration
among multiple institutions via a virtual organization whereas the latter does not require so. Second, the application
developers in a community source are employees designated to the project by the partner institutions. Third, the community
source project requires significant initial investments by the partner institutions, but an ordinary open source project might
not. Some of these three features might appear in other types of open source projects, but a community source project
requires all of them. In summary, we define community source as a unique type of open source that depends on significant
financial and other support from a community of institutions in the development and deployment of the enterprise
application.

All in all, service centricity and open source involve innovative concepts and practices that are very new to many. As such,
there are a lot of confusion among both researchers and practitioners. In this paper, we investigate the concepts and issues
surrounding these two important topics based on the recent literature. Further, we examine the case of Kuali and its
technological components, including service-oriented architecture, document workflow, and customization techniques.

The structure of the paper is as follows. First, we review the recent research in technology flexibility, open source
development, workflow technology, and service-oriented architecture. Second, we introduce the Kuali project by discussing
its project goal, organizational structure, and its system architecture. Third, we describe the five levels of customization in
Kuali and explain how Kuali achieves flexibility via various software techniques. Finally, we discuss our research findings
by means of several propositions and outline a number of research directions stemming from the Kuali case.

Literature Review
As explained above, our focus in this paper is to illustrate how to achieve flexibility under service-centric community source.
Next, we summarize the recent thinking in several related research areas, including technology flexibility, open source
development, business process management, and service-oriented architectures.

Technology Flexibility

Flexibility has emerged as a key competitive factor in many organizational endeavors. Nelson et al. (1997) defines
technology flexibility as “the ability to adapt to both incremental and revolutionary change in the business or business
process with minimal penalty to current time, effort, cost, or performance.” A measurement framework for technology
flexibility was proposed including such factors as modularity, change acceptance, and consistency in the structural flexibility
dimension, and rate of response, expertise, and coordination of actions in the process flexibility dimension. Zhao (1998)
differentiated between two software flexibility concepts: system adaptability and system versatility. The former is defined as
the capability to modify the system to cope with major changes in business processes with little or no interruption to business
operations, and the latter is the capability of the system to allow flexible procedures to deal with exceptions in processes and
procedures. Deiters, Goesmann, and Löffeler (2000) dealt with the issue of flexibility in technical, organizational, and
human perspectives. They classify flexibility into four dimensions: process flexibility, inter-organizational flexibility, flexible
management and knowledge, and flexible task allocation. Byrd, et al. (2000) focused on the IT infrastructure flexibility and
attempted to develop a valid and reliable instrument for IT infrastructure flexibility.

Our work in this paper extends the literature by examining the relationship among three related characteristics, namely
technology flexibility, system extensibility, and software customizability. Essentially, we find that technology flexibility is a
continuum of two stages of implementation. At the lower level, software can be customized without making major changes
to the system code, leading to software customizability, and at the higher level, the system can be extended by either
modifying the code or by adding new components. The key issue is about how emerging technologies such as service centric
computing and business process automation can facilitate those capabilities.

Open Source

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

Open source has become an important software engineering methodology in which the source code of a system is made
available to its adopters (Ducheneanut 2005). However, open source is a very complex concept because of variations on how
it is developed, marketed, and adopted. The most well-known example is the Linux system that is developed and maintained
by a global network of volunteers and distributed by some commercial companies such as Red Hat (www.redhat.com).
Many versions of Linux are distributed currently by these commercial companies who generate revenue by adding new
features and providing consulting services. Many other open source systems are developed with government funding as
output of a research project and given online for free adoption with or without technical support (www.sf.net).

As a research domain, open source has received a lot of attention from various researchers, particularly the communication
issue. Curtis et al. (1988) found that large projects have extensive communication and coordination needs that are not
mitigated properly by documentation. These collaborative problems are exacerbated when the development team is
geographically or organizationally distributed, as is becoming increasingly common. More effort is required for more
systematic interactions when participants are distant and unfamiliar with each others’ work (Ocker and Fjermestad 2000).
Kraut and Streeter (1995) found that the formal and informal communication mechanisms for collaborative work on large-
scale, complex software projects are important for sharing information and achieving collaboration in software development.
Stewart et al. (2006) developed a framework of the main tenets of the open source software (OSS) ideology, which impacts
the team effectiveness in various ways. Recently, Fitzgerald (2006) found the field of open source has undergone a major
transformation from its free software origins to a new form of community-based development and adoption.

In this paper, our study about Kuali calls for new concepts and ideas on collaborative open source development among
multiple institutions. Many research issues need to be explored. For instance, the community source in Kuali is based on a
consortium of nine major universities. It is not clear if this paradigm would work well in a consortium of commercial
companies. If so, what would be the difference in both development and adoption?

Workflow Technology
Workflow technology has been widely adopted by organizations to automate business processes, reduce cycle time, and
support e-business. Workflow Management Systems (WFMSs) remove the process dependency by separating the process
logic from the application logic, which makes information systems more flexible and adaptive to process changes (Stohr and
Zhao 2001). Many approaches have been proposed to make WFMSs even more flexible. Casati et al. (2000) proposed a rule-
based workflow modeling method to allow a high degree of flexibility during workflow design and great adaptability in terms
of process exception handling. Document-driven workflow is another such effort, which is different from production
workflow systems (Wang and Kumar 2005). The latter models the workflow as an execution sequence of tasks while the
former designs a process by specifying the data dependences among the documents. As a result, document-driven workflow
is very suitable for less-structured, cooperative, and ad hoc workflows.

Today, many companies are investing a great amount to expose their business operations as web services in order to offer
easy integration with a wide range of third-party applications. Web services choreography and orchestration technologies
have been developed to connect individual web services to form higher value-added processes (Peltz 2003). Workflow
technologies based on the workflow standards such as Business Process Execution Language (BEPL) have helped
organizations achieve better process flexibility (Weerawarana 2005). As we will illustrate later, the Kuali project leverages
workflow technology to enhance the flexibility and extensibility of the system.

Service-Oriented Architecture

One of the emerging technologies used in Kuali is service-oriented architecture, which enables better system extensibility.
This is a critical feature that makes community source a viable development methodology. Service Oriented Architecture
(SOA) was first proposed by Schulte and Natis (1996). They specified SOA as "a style of multi-tier computing that helps
organizations share logic and data among multiple applications and usage modes." SOA is commonly defined as a software
architecture that allows the use of loosely-coupled software services to meet the needs of business processes and users
(en.wiki.org). A service-oriented architecture defined by IBM contains four core components including business services,
integration services, enterprise service bus, and infrastructure services, which work together to provide the capability for on-
demand business (Keen et al. 2004). Typically, SOA consists of composable services, which are used to support the
operations of a specific enterprise (Cherbakov et al. 2005).

Service-oriented computing is a broader term referred to as the computing paradigm that utilizes services as fundamental
elements for developing applications (Papazoglou and Georgakopoulos 2003, Huhns and Singh 2005). Service-oriented
computing is described by some researchers as the use of service-oriented architecture for implementing web services.

As indicated in the literature, service-oriented computing is process-driven. This is because business processes are a flexible
way to organize and integrate enterprise applications at the business level (Zhao et al. 2005). At the computational level,

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

service orchestration is the main function of the enterprise service bus, the coordinator of the functional modules under the
service centric infrastructure.

Service-Centric Community Source: the Case of Kuali
In this section, we present the case of Kuali and show how Kuali achieves flexibility via service-centric community source.
Kuali is a consortium of universities to develop an open source financial service system, starting with the conversion of the
Indiana University’s Financial Information System to the web in 2004 (www.kuali.org). The original motivation of the
project is that existing financial systems used in the universities are outdated and too difficult to maintain. The commercial
products are often too expensive and hard to customize; some institutions paid tens of millions to companies for software and
installation, but still need to build 15% of all the features they need themselves to handle specific financial transaction needs.
Some schools and colleges find they need to operate expensive "shadow systems" to provide needed features that are absent
in currently available ERP packages. The alternatives to buying off-the-shelf packaged financial software are equally
daunting and can only be considered by the largest institutions. The Kuali project provides an attractive alternative to the
“buy or build” dilemma. It pools institutional resources to develop an open source financial system, thus dramatically
reducing the cost of managing fiscal data and processes in higher education.

Launched in August, 2004, the Indiana University and the University of Hawaii led the effort to build Kuali. In March, 2005,
Kuali project got an award of $2.5M from the Andrew W. Mellon Foundation. In the same year, four new partners, Cornell
University, San Joaquin Delta College, Michigan State University, and the University of Arizona, joined as core investors. In
April 2006, Kuali Project announced the availability of the Kuali Test Drive, which enables institutions to explore Kuali
Financial Systems. In July 2006, the University of California joined Kuali. In October, 2006, Kuali foundation released
phase I. Phase IIa and Phase IIb are planned to be released in July 2007 and in July 2008, respectively.

Figure 1. Kuali Organizational Chart

Kuali uses a community source approach to allow member universities to share the cost for and the benefit from system
development. Figure 1 shows the complexity of the organization structure. The development partners work in a project
organization. The Kuali Board is the final decision maker during the development of Kuali. The Kuali functional council and
Kuali technical council take care of the functional issues and technical issues of Kuali, respectively. The Extended board,
Kuali investors, Kuali functional council, Kuali technical council and the project manager report to the Kuali board. The
project manager supervises the project staff and development staff.

The initial mission of the Kuali consortium was to develop a baseline system for financial services and has now expanded to
other systems such as research administation and student management. In order to ensure flexibility and extensibility, Kuali
uses the most up-to-date approaches and technologies such as open source, workflow, and service-oriented architecture.
Figure 2 illustrates the Kuali system architecture that shows how the enterprise service bus is used to support service-oriented
architecture. Currently, there are three main application modules, financial services, research administration, and student
system.

At the center of the Kuali system is the Kuali enterprise service bus (KSB), the core concept of service-oriented architecture
that coordinates the interactions between an application module and the various lower-level system services such as

http://kualitestdrive.org/
http://www.sakaiproject.org/www.kuali.org

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

workgroup service, user service, and legacy wrapper service. KSB includes a service registry, remote access protocols, and
service invocation procedures. Each application module carries its own documents, business objects, business rules, data
dictionaries, and other local services. This service-centric architecture makes it relatively easier to enhance the application
modules and add new modules. As shown in Figure 2, Kuali also has a modularized middleware infrastructure called Rice,
sitting between the server and applications. Rice consists of four client-side-components: Kuali Enterprise Service Bus,
which includes a service registry, remote access protocols, and service invocation procedures; Kuali Nervous System, which
provides reusable code and shared services to enforce system development standards; Kuali Enterprise Workflow, which
facilitates the routing and approval of transactions throughout the university; and Kuali Enterprise Notification, which
provides a single list for all university-related communications.

Kuali Service Bus
• Provide service registry
• Provide remote accesses

• Support service invocation

Institutional
workgroup

service

Wrapper service
to access

legacy systems

Institutional
user

service

Alternative
Implementation to
any Kuali service

Financial Services
• Documents

• Business Objects
• Business Rules

• Data Dictionaries
• Other Services

Rice Middleware

Research Administration
• Documents

• Business Objects
• Business Rules

• Data Dictionaries
• Other Services

Rice Middleware

Student System
• Documents

• Business Objects
• Business Rules

• Data Dictionaries
• Other Services

Rice Middleware

Figure 2. Service-Oriented Architecture of Kuali

Enabling Flexibility in Kuali

As a community source project, Kuali must balance
among varying requirements from many universities.
Thus, it is imperative to make the Kuali system
flexibile in terms of both customizablility and
extensibility. In this section, we take an in-depth look
at how Kuali achieves flexibility in this unique
environment.

Label Customization

An important aspect of flexibility is to enable the
customization of the look and feel of its user interface.
Specifically, Kuali allows its adoptors to rename any
label on all forms (Figure 3) without the need to write
code.

Kuali supports label customization by means of its
Data Dictionary, which can be specified using XML
files. For example, account.xml (Figure 4) holds
various attributes about a Business Object “Account
Number”. This customizability allows an institution
to change the user interface to fit its unique lingo without changing the lower-level programs.

<attribute name="accountNumber" forceUppercase="true">

Figure 3. Kuali Forms and Labels

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

<label>Account Number</label> <shortLabel>Account</shortLabel> <maxLength>7</maxLength>
<validationPattern> <alphaNumeric exactLength="7" allowWhitespace="false" allowUnderscore="false" /> </validationPattern>
<required>true</required> <control> <text size="10" /> </control>
<summary>Account Number</summary> <description>Identifier for a pool of funds.</description>
</attribute>

Figure 4. Data Dictionary Attribute Definition

Modification and Addition of Document Types

Kuali organizes its financial documents into a hierarchy of document types; as of today, it has 139 types on its website.
Figure 5 illustrates a number of document types in the financial transactions category. Document types are a critical concept
for Kuali since its business process evolves around the routing of documents.

Kuali allows its adopters to modify and add new document type via XML files. As shown in Figure 6, the Account
Maintenance Document type is defined via a XML (only partially show for simplicity). The components of a document type
include business rules, authorization, locking keys, and so on.

Workflow Customization

Figure 5. Kuali Document Type Examples

<dictionaryEntry>
<maintenanceDocument>

 ...
 <businessRulesClass>org.kuali.module.chart.rules.AccountRule</businessRulesClass>
 <documentAuthorizerClass>org.kuali.core.document.MaintenanceDocumentAuthorizerBase</documentAuthorizerClass>
 <authorizations>
 <authorization action="initiate">
 <workgroups> <workgroup>kualiUniversalGroup</workgroup> </workgroups>
 </authorization>
 </authorizations>
 <documentTypeName>KualiAccountMaintenanceDocument</documentTypeName>
 <documentTypeCode>ACCT</documentTypeCode>

<label>Account Maintenance Document</label>
<shortLabel>AcctMaintDoc</shortLabel>
<summary>Account maintenance document</summary>
<description>Document used to create or update Account objects</description>
<lockingKeys> <field attributeName="chartOfAccountsCode"/> <field attributeName="accountNumber" /> </lockingKeys>
…
</maintenanceDocument>

</dictionaryEntry>
Figure 6. AccountMaintenanceDocument.xml

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

Workflows in Kuali can be customized to suit the needs of different universities. Essentially, Kuali workflow is document-
based and allows the modification of document routing without having to write any code. As given in Figure 7, the Kuali
workflow engine specifies the generic actions on financial documents including initial actions, approval actions, workflow
processor, and post processor. Specific actions on each financial document are specified within the document type itself such
as document initiator, organizational unit, and document approver. The Kuali workflow uses XML-driven routing
capabilities, and routing rules can be defined or modified with respect to any document type without requiring a modification
to the Kuali source code.

Figure 7. Kuali Workflow

Code Modification

This level of extensibility is inherent to the open source paradigm of Kuali. As an open source system, Kuali “allows its
users to: 1) freely access, install, and run the software for any purpose; 2) modify the original software; 3) redistribute copies
of the original or modified programs; and 4) share modifications with the community.” Further, as a community source
system, Kuali “is based on many of the principles of open source development efforts, but community source efforts rely
more explicitly on defined roles, responsibilities, and funded commitments by community members than some open source
development models.”

Kuali is distributed according to the Educational Community License version 1.0, which grants the permission to use, copy,
modify, merge, publish, distribute, and sublicense this original work and its documentation, with or without modification, for
any purpose, and without fee or royalty to the copyright holder(s). The adopters are required to notify any changes or
modifications to the original work.

Addition of New Modules

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

As discussed in an earlier section, Kuali started as a financial system and has evolved to an umbrella suite of administrative
higher education systems. It does so by providing a common architecture that can be extended to incorporate new
applications. The Kuali framework improves productivity and consistency across Kuali applications and creates a reusable
development environment.

The service centric approach of Kuali makes it possible to “develop once and use anywhere and on any platform”. This
reduces the dependency of various development efforts and therefore simplifies the system architecture. Furthermore,
workflow customization via business rules discussed previously makes it easier to create new application modules in a
document-based routing. This further highlights the business value of service-oriented architecture, including the Kuali Rice
Middleware approach.

Research Findings and Directions

The Relationship between Flexibility and the Community Source Approach

From the Kuali case, we can generalize several observations into a number of propositions, which will need to be validated in
future research. Next, we state the propositions and explain them briefly without proofs.

Proposition 1: Service–oriented architectures enhance system extensibility.

As said previously, Kuali’s system architecture is service-oriented. Its enterprise service bus provides the necessary facilities
to enable various application modules to access enterprise services without being hardwired to these services. This helps the
Kuali adopters extend the system by adding new modules while reusing much of these enterprise services such as user
services such as user directories and institutional services such as data dictionary.

Proposition 2: Workflow automation enables model-based application development and system maintenance without having
to revise lower-level code.

Model-based applications can be modified by revising the process models without having to change any program code. The
Kuali case indicates that workflow can help model the routing and authorization tasks and make it easier for an organization
to streamline its processes and tasks. This feature is more pronounced in a community base project like Kuali in which the
system is designed with built-in flexibility.

Proposition 3: Community source requires more flexible software architectures in order to meet the needs of the community.

The Kuali case demonstrates the need for close and intensive interactions between the functional aspects and the technical
aspects on the regular basis because varying needs of multiple institutions make it very difficult to get the specifications right.
This is not as essential in other types of open source projects when the functional requirements are relatively stable.

To validate these propositions, we need to develop additional and more specific hypotheses that are based on measurable
parameters. This will be done as part of our future research.

Research Directions

Next, we outline several research directions related to the Kuali case, including community source, workflow modeling
paradigms, and software adoption methodology. We discuss unique research opportunities along with those research
directions.

• Community Source

In a community source project similar to Kuali, software development teams acquire, maintain, analyze, and formalize
software requirements from multiple stakeholders that can have varying and possibly conflicting demands. Different
universities work together to develop the system, which may have conflicting demands. How to solve this issue and make the
community based software development successful is an interesting research issue. In addition, effective collaboration is a
major concern in large development teams. Designing complex software systems like Kuali requires effective communication
among all shareholders. Although a few researchers studied the collaboration issue in software development, there are
currently no formal guidelines and procedures that suggest to software and managers how to manage communications among
all stakeholders of a complex software project. Successful community source projects must understand the political nature of
complex software development and progressively enroll a network of collaborators to support their efforts (Ducheneaut
2005). Social network analysis can be an interesting research topic in the context of community source where the level of
centralization may be correlated with project size and modularity (Crowston and Howison 2006).

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

• Workflow Modeling Paradigms

Currently, the Kuali platform specifies workflows by means of workflow rules in the context of financial documents. As
such, these workflow rules are also called routing rules. These routing rules seem to work fine in the context of financial
services since the workflows are relatively simple with typically three to five steps. However, it is not clear if routing rules
would be appropriate in other Kuali modules. For instance, the Research Administration Module, currently under
development, contains very complex workflows. The COEUS workflow (http://www.princeton.edu/~orpa1/coeus/) consists
of over twenty processes, each of which could include many steps as illustrated in Figure 8. Specifying these workflows
using routing rules could result in lengthy XML scripts that are very difficult to write and maintain. In addition, the control
flow of those processes is not explicitly modeled when using rule-based and document-driven workflow modeling, which
makes it difficult to understand the underlying process logic. This raises a research direction on when a particular workflow
modeling paradigm should be used. Specific research issues include the development of criteria on how to choose between
control-flow-driven workflow modeling and rule-based and document-driven workflow modeling (Wang and Kumar 2005),
mechanisms and procedures to extract implicit control flow from workflow rules, and rule languages that are capable of
modeling more complex workflows (van der Aalst et al. 2003).

Figure 8. Equipment purchase process in research administration (http://www.princeton.edu/~orpa1/coeus/)

• Adoption Methodology for SOA-based Software

As demonstrated with the Kuali case, enterprises need to make software adoption decisions amidst recent technology
advances such as service-oriented architectures and workflow automation. For example, how the universities other than Kuali
development partners know Kuali is the right system or not for them is a non-trivial problem. As such, it is interesting to
study how to describe the fitness of the system capabilities and enterprises needs. In order to study this issue, we need to
understand how to formally specify the capabilities of the system, how to formally specify the needs of enterprises, and how
to measure the fitness. Currently there is no formal methodology that allows enterprises to specify their system needs and

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

compare with software capabilities in a manner similar to conceptual database design via ER diagram. In other words, there
should be a software adoption methodology to describe the fitness of the system capabilities and enterprises needs.

A related concept is business modeling (Cherbakov et al. 2005). Business modeling is an emerging area of research.
Researchers have studied the difference between a business model and a business process model (Gordijn et al. 2000), how
related project activities can be modeled consistently to support the reengineering effort of the same business entity (Gulla et
al. 2000), and how to develop business models to support the development of complex systems (Petrovic et al. 2001). Our
focus in this direction is to develop a methodology for adopting software systems for given business requirements.

Conclusions

In this paper, we studied the need for technology flexibility and how to achieve it in the context of the Kuali project, a multi-
university and multi-year project by bringing an existing system to the web. We demonstrated how Kuali utilizes a service-
oriented architecture and the community source approach to minimize project risk and maximize cost sharing in enterprise
application development. At the core of the flexibility endeavor is the five types of customization in Kuali. It is clear that
service centricity is the key ingredient in the Kuali recipe for achieving flexibility. In addition, rule-based workflow
management, XML-based document specification, and the Rice middleware approach are necessary ingredients as well.
Based on the Kuali case, we summarized our observations in the form of research propositions and directions. To the best of
our knowledge, this paper is the first article examining the relationship between technology flexibility and service-centricity.
Another important contribution of this paper is the study of community source in the context of a large-scale project.

We plan to tackle some of the research directions given in the last section. We will monitor the development and deployment
of the Kuali system and continue with the research ideas we have presented in this paper. Validation of the propositions we
outlined in this paper is another future research we plan to pursue.

Acknowledgements

We would like to thank Brad Wheeler, Elizabeth Taylor, and Kymber Horn for inviting us to attend the Kuali Days
Conference held in November 14-15, 2006 and for providing valuable information about Kuali. We would also like to thank
Brian McGough and Andrew Hollamon for providing us with in-depth technical knowledge about Kuali. The third author’s
research is supported in part by the 2005 IBM Faculty Award on Services Computing and Business Process Management.

References

1. Byrd, T., A. Byrd and D. E. Turner, “Measuring the flexibility of information technology infrastructure: exploratory
analysis of a construct”, Journal of Management Information Systems/Summer 2000, Vol. 17, No. 1. pp. 167-208.

2. Casati, F., Castano, S., Fugini, M., Mirbel, I., and Pernici, B. "Using Patterns to Design Rules in Workflows," IEEE
Transactions on Software Engineering (26:8) 2000, pp 760 - 785.

3. Chau, P. Y.K., K. Y. Tam, “Factors affecting the adoption of open systems: an exploratory study”, MIS Quarterly,
March 1997, pp. 1-24.

4. Cherbakov, L., G. Galambos, R. Harishankar, S. Kalyana, G. Rackham, “Impact of Service Orientation at the Business
Level”, IBM Systems Journal, Vol. 44, No. 4, 2005.

5. Crowston, K. Crowston and J. Howison, “Hierarchy and Centralization in Free and Open source software team
communications”, Knowledge, Technology, & Policy, Winter 2006, Vol. 18, No. 4. pp. 65-85.

6. Curtis, B., Krasner, H., Iscoe, N., “A Field study of the Software Design Process for Large Systems”. Communications
of the ACM, Nov. 1988, Vol. 31 Issue 11, pp. 1268-1287.

7. Deiters W., Goesmann T., Loffeler T., “Flexibility in workflow management: dimensions and solutions”, Computer
Systems Science and Engineering, 2000, Vol 15; Part 5, pages 303-314.

8. Ducheneanut, N.” Socialization in an open source software community: A Socio-Technical analysis”, Computer
Supported Cooperative Work, 2005 14: 323-368.

Liu, Wang, and Zhao, Achieving flexibility via service-centric community source: The Case of Kuali

9. Fitzgerald, B. The transformation of open source software, MIS Quarterly, Vol. 30 No 3, pp. 587-598/September 2006.

10. Glynn, E., B. Fitzgerald, C. Exton, “Commercial adoption of open source software: an empirical study”, Proceedings of
the 2005 International Symposium on Empirical Software Engineering, 17-18 Nov. 2005, 10 p.

11. Gordijn, J., Akkermans, H., Van Vliet, H.: Business modeling is not process modeling. Proceedings of the Conference
on Conceptual Modeling for E-Business and the Web, pp 40-51, 2000.

12. Gulla, J. A., T. Brasethvik, “On the Challenge of Business Modeling in Large-scale Reengineering Projects”. Fourth
International Conference on Requirements Engineering, 2000, 17 p.

13. Hooper, M. J., D. Steeple, C. N. Winters, “Costing customer value: an approach for the agile enterprise”, International
Journals of Operations & Production Management, Vol. 21, No. 5/6, 2001, pp. 630 - 644.

14. Huhns, M. N. and M. P. Singh, “Service-oriented computing: key concepts and principles”, IEEE Internet Computing,
January – February 2005, pp. 75-81.

15. Keen, M., A. Acharya, S. Bishop, A. Hopkins, S. Milinski, C. Nott, Rick R. Robinson, Jonathan J. Adams, Paul P.
Verschueren, “Patterns: Implementing an SOA Using an Enterprise Service Bus”, IBM Redbooks, July 2004.

16. Kraut, R. E.; Streeter, L. “Coordination in Software Development”. Communications of the ACM, Mar1995, Vol. 38
Issue 3, pp. 69-81.

17. Mcoy, D. W., D. C. Plummer. “Defining, cultivating and measuring enterprise agility”, Gartner Research, April 28,
2006.

18. Nelson K., Nelson H., Ghods M. “Technology flexibility: Conceptualization, validation, and measurement”, Proceedings
of the 30th Hawaii International Conference on System Sciences, 1997, Volume 3, 10 p.

19. Nelson, K. and Ghods, M. “Measuring technology flexibility”, European Journal of Information Systems, Volume 7,
Number 4, 1 December 1998, pp. 232-240.

20. Ocker, R.J. Fjermestad, J. High versus low performing virtual design teams: a preliminary analysis of communication,
Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000, 9 p. vol.1.

21. Papazoglou, M. P., D. Georgakopoulos, “Service-oriented computing: introduction”, Communications of the ACM, 46
(10), (October 2003), 24 – 28.

22. Peltz, C. "Web Services Orchestration: A Review of Emerging Technologies, Tools, and Standards," Hewlett Packard,
Co., 2003.

23. Petrovic, O., Kittl, C., Teksten, R.D., “Developing Business Models for eBusiness”, the Proceedings of the International
Conference on Electronic Commerce 2001, Vienna, Austria, October 31 - November 4, 2001.

24. Stewart, K. J., S. Gosain, The impact of ideology effectiveness in open source software development teams, MIS
Quarterly, Vol. 30 No 2, pp. 291-314/June 2006.

25. Stohr, E.A., Zhao, J.L. "Workflow automation: overview and research issues," Info. Systems Frontiers: Special Issue on
Workflow Automation (3:3) 2001, pp. 281-296.

26. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., and Barros, A.P. "Workflow patterns," Distributed and
Parallel Databases (14:3), July 2003, pp. 5-51.

27. Wang, J., and Kumar, A. "A Framework for Document-Driven Workflow Systems," International Conference Business
Process Management, Nancy, France, 2005, pp. 285-301.

28. Weerawarana, S. Web services platform architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and more, Prentice Hall PTR, Upper Saddle River, NJ, 2005.

29. Zhao, J. L. "Intelligent Agents for Flexible Workflow Systems", Proceedings of the AIS Americas Conference on
Information Systems, Baltimore, Maryland, August 14-16, 1998.

30. Zhao, J. L., H. K. Cheng, “Web Services and Process Management: a Union of Convenience or a New Area of
Research?” Decision Support Systems, 40 (2005), pp.1-8.

31. Zhao, J. L., Tanniru M., Zhang L.-J., “Services computing as the foundation of enterprise agility: overview of recent
advances and introduction to the sepcialspecial issue”, Information Systems Frontier, Volume 9, Number 1 / March,
2007, Pages 1-8.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20fjermestad%20%20j.%3cIN%3eau)&valnm=+Fjermestad%2C+J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(ocker%20%20r.%20j.%3cIN%3eau)&valnm=Ocker%2C+R.J.&reqloc%20=others&history=yes
http://web.ebscohost.com/ehost/viewarticle?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie469%2bK5%2fCshd%2ff7Ebj3u2L8ravR7CrrUquprU4s7CxS7irtTjOw6SM8Nfsi9%2fZ8oHt5Od8u6OwSLarskquqLdOpOLfhuWz44ak2uBV3%2bbmPvLX5VW%2fxKR57LOvSrOtr0%2byp6R%2b7ejrefKz5I3q4tJ99uoA&hid=118

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2007

	Achieving Flexibility via Service-Centric Community Source: The Case of Kuali
	Manlu Liu
	Harry Wang
	Leon Zhao
	Leon Zhao
	Leon Zhao
	See next page for additional authors
	Recommended Citation
	Authors

	Microsoft Word - $ASQ2754890_File000000_31512920

