
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2006 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2006

Analysis of Software Quality via a Goal
Programming Approach
Young Chun
Louisiana State University

Follow this and additional works at: http://aisel.aisnet.org/amcis2006

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2006 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Chun, Young, "Analysis of Software Quality via a Goal Programming Approach" (2006). AMCIS 2006 Proceedings. 457.
http://aisel.aisnet.org/amcis2006/457

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301339995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2006%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2006?utm_source=aisel.aisnet.org%2Famcis2006%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2006%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2006%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2006?utm_source=aisel.aisnet.org%2Famcis2006%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2006/457?utm_source=aisel.aisnet.org%2Famcis2006%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

Analysis of Software Quality
via a Goal Programming Approach

Young H. Chun
Department of Information Systems and Decision Sciences

E. J. Ourso College of Business
Louisiana State University

Baton Rouge, LA 70803, USA
chun@lsu.edu

ABSTRACT

Complex software systems often fail because of errors undiscovered in the design stage of the development process.
Detecting these errors early in the process would eliminate many downstream problems. The so-called capture-recapture
model used by biologists in estimating the size of wildlife populations has also been used to estimate the number of software
design errors. However, one simplifying assumption in capture-recapture models is that the inspections performed by various
inspectors are statistically independent from each other. In the paper, we propose a novel method that is based on the
correlation matrix of multiple inspectors. In a numerical analysis, we show that our method outperforms other traditional
models that are based on the independence assumption.

Keywords

Software reliability, software inspections, capture-recapture model, quality management.

INTRODUCTION

Sometimes complex software systems fail because of errors or faults introduced in the design stage of the development
process. Design reviews can remove some of these errors, but often a few errors remain undetected until the software is
developed further. It is important to eliminate these design errors at an early stage because they become much more
expensive to fix as a software system proceeds through development.

In the design stage, software engineers usually produce documents that are reviewed by their peers. Document reviews serve
as the gateway to the next stage in the process. The current industry practice is for each document to be reviewed by a small
group of software engineers before it passes to the next stage. The engineers individually read the document and note
“issues” that they believe should be resolved before the software feature is developed further. We refer to these issues as
“errors” or “fault” in the paper. At the review meeting, data are collected showing which software engineers discovered
which faults. These data are then used to estimate the number of errors that remain undetected. These estimates can then be
used in managing the software quality at the design stage of the development process.

Since it is impossible to count the total number of errors in a software system before it has been in operation for a while, it is
necessary to build estimation models of the number of defects in a software artifact. One of the techniques that have been
widely used to estimate the software design faults is a class of statistical methods known as “capture-recapture models”.

This technique is most commonly used by biologists in estimating the size of wildlife populations in wildlife research.

LITERATURE REVIEW

Capture-recapture models with two inspectors

Suppose that animals are captured, marked, and released on several trapping occasions. If an animal bearing a mark is
captured on a subsequent trapping occasion, it is said to be recaptured. Based on the number of marked animals that are
recaptured, one can estimate the total population size using statistical models and their estimators. When many marked
animals are recaptured, for example, one can argue that the total population size is small, and vice versa.

 3793

mailto:chun@lsu.edu

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

Second Catch
Marked Unmarked

First Marked n12 n1-n12 n1
Catch Unmarked n2-n12 N-n1-n2+n12 N-n1

n2 N-n2 N

Table 1. Capture-recapture history of fish in the lake

For example, consider the problem of estimating the number of fish in a lake (Schnabel, 1938). A commonly used approach
is to first catch a number n1 of fish, tag or mark them, and release them again into the lake. Some time later, after giving the
tagged fish an opportunity to mix well with the remaining fish in the lake, a second catch of n2 fish is made, and the number
n12 of tagged fish is observed. What is the total number N of fish in the lake?

From Table 1, one can derive an intuitive estimator of the population size N based on the assumption that the ratio of marked
to total animals in the second sample (n12/n2) should reflect the same ratio (n1/N) in the population. Thus, the so-called
Lincoln-Peterson estimator of N can be derived as follows (Seber, 1982):

12

21ˆ
n

nnN ×
= . (1)

From a formal statistical point of view, the Lincoln-Peterson estimator has the drawback of having an “infinite bias”, because
there is always a finite probability that n12 = 0 (i.e., no marked animals are caught on the second occasion). Chapman (1951)
proposed an adjusted equation to circumvent this drawback:

1
)1(

)1()1(ˆ
12

21 −
+

+×+
=

n
nnN . (2)

Now the idea behind using capture-recapture models for software engineering inspections can be illustrated by the following
puzzle (Wells, 1992, p. 146):

“Two proof readers are checking two copies of the same manuscript. The first finds thirty errors, and the second
finds only twenty-four. When their completed proofs are compared, it turns out that only twenty errors have been
spotted by both of them. How many errors would you suspect remain, not detected by either of them?”

Applying the Lincoln-Peterson estimator to the data given in the problem, we see that the estimate of N is 36, and thus
answer to the puzzle is 2.0 (=N-n1-n2+n12). Note that the Chapman’s modification of the Petersen-Lincoln estimator in (2)
gives N̂ =35.90.

Readers are referred to Pollock (1991) and Seber (1986) for more detail about the modeling of capture, recapture, and
removal statistics in the estimation of demographic parameters of fish and wildlife populations, and to Briand, El Emam,
Freimut, and Laitenberger (2000) for a comprehensive analysis of capture-recapture models in the field of software
inspections.

Capture-recapture models with multiple inspectors

The basic methodology of capture-recapture models can be easily extended to the case in which there are more than two
inspectors. Suppose that there are m inspectors, who work independently on identical copies of the product, or who work in
some sequence on a single product, identifying, but not removing, the errors which they find. Suppose also that the
inspection process is such that (1) each error present has the same probability of being detected by a given inspector, and (2)
the probability that inspector i will find any given error is pi, independent of previous errors found by inspector i or by any
other inspector.

Let ni denote the total number of errors detected by inspector i (i = 1, 2,… , m), and ui be the number of errors not detected by
inspector i but detected by any of the remaining inspectors. Likewise, let nij denote the number of errors detected by both
inspector i and inspector j, and uij denote the number of errors detected by neither inspector i nor inspector j but detected by
any of the remaining inspectors. Furthermore, let nT be the total number of errors discovered by any of the inspectors and n0
be the number of errors not discovered by any inspectors. Thus, the total number of errors N in the software design document
is nT + n0 as shown in Table 2.

 3794

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

Inspector j
Detected Undetected

Inspector Detected nij ni - nij ni
i Undetected nj - nij uij + n0 ui + n0

nj uj + n0 N = nT + n0

Table 2. Capture-recapture history in a multiple inspector case

The most commonly used estimator of N in the software design document is the maximum likelihood (ML) estimator N̂ ,
which maximizes the following likelihood (Eick et al., 1993a):

ii nN
i

m

i

n
i

T
pp

n
N

NL −

=

−







= ∏)1()(

1
. (3)

The exact ML estimator of N does not exist in closed form. The relevant log-likelihood function for estimating the
parameters (N, p1, p2,… , pm) is given by

∑∑
==

−−++







=

m

i
ii

m

i
ii

T
pnNpn

n
N

NL
11

)1ln()(lnln)(ln . (4)

Given the value of N, the ML estimators pi(N) are obtained by taking the first-order derivative of (4) with respect to pi, setting
it equal to zero, and solving it for pi:

N
np i

i =ˆ , i = 1, 2, … , m. (5)

By replacing pi in (4) with ip̂ in (5), we have the following the log-likelihood function:

∑∑
==







 −

−+





+








=

m

i

i
i

m

i

i
i

T N
nNnN

N
nn

n
N

NL
11

ln)(lnln)(ln

constantln)ln()()!ln(!ln
1

+−−−+−−= ∑
=

NNmnNnNnNN
m

i
iiT . (6)

The ML estimator N̂ that maximizes (6) can be obtained numerically with the constraint N nT. For a large value of N, it is
computationally more convenient to use the log-gamma function ln [Γ(N+1)] in place of ln N! in (6), assuming that N is a
continuous variable; In the numerical analysis, we used the log-gamma function, GAMMALN(), in Microsoft Excel 2000.

An alternative estimator of N is Darroch’s approximate ML estimator N̂ , which is the unique solution of the following
equation (Darroch, 1958):

∏
=







 −=−

m

i

iT
N
n

N
n

1
11 , where N nT. (7)

The left side of (7) estimates the probability of not being able to detect an error using the fact that the group of inspectors as a
whole discovered a total number of nT errors. The right hand side of (7) estimates the same probability using the number of
errors ni detected by each individual inspector. It can be easily shown that, for the special case of m=2, Darroch’s estimator
in (7) reduces to the Lincoln-Peterson estimator in (1).

Both the maximum likelihood estimator and the Darroch’s approximation method require a fast and iterative method, such as
the Newton-Rapson method or the steepest-descent method, to find the optimal solution. However, Chao (1989) proposed an
estimator of N that is in closed form as follows:

 3795

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

1
ˆ

2

1 1
}{}{

+
+=

∑ ∑
= +=

s

nn

nN

m

i

m

ij
ji

T , (8)

where n{i} is the number of defects detected only by inspector i and s2 is the total number of defects that have been detected
by exactly two inspectors. For the special case of m=2, Chao’s estimator in (8) reduces to the Chapman’s modification of the
Petersen-Lincoln estimator in (2).

Like all other mathematical models, capture-recapture models in software inspection as well as in biology make certain
simplifying assumptions so as to render the mathematics tractable. One simplifying assumption is that the inspectors are
working independently from each other. The statistical independence between two inspectors can be formally explained as
follow.

For a certain error, let the random variable Xi be defined as follows:





=
i

i
X i inspectorbyundetectedif0

inspectorbydetectedif1
(9)

Furthermore, let Xi be a Bernoulli random variable with parameter pi as shown in Table 3. If and only if two inspectors are
statistically independent, the joint probability p12 that the error is detected by both inspectors is expressed as p12 = p1 p2. If
two inspectors are working together to find many errors in common, then p12 > p1 p2. If they have different specialties or
educational backgrounds, then p12 < p1 p2.

Inspector 2
X2 = 1 X2 = 0

Inspector X1 = 1 p12 p1 - p12 p1
1 X1 = 0 p2 - p12 1- p1 – p2+p12 1-p1

p2 1-p2 1.0

Table 3. Probability table for two inspectors

Suppose that the data in Table 1 is observed from N Bernoulli trials. Then, the maximum likelihood estimator of p12, p1, p2
are n12/N, n1/N, and n2/N, respectively. If two inspectors are statistically independent, then we have p12 = p1 p2 or

N
n

N
n

N
n 2112 = . (10)

From (10), the Lincoln-Peterson estimator in (1) can be easily derived and the number of undetected errors n0 is estimated as
follows:

12

122121
0

))((ˆ
n

nnnnn −−
= . (11)

In many occasions, however, this independence assumption might be violated particularly when (a) inspectors collaborate
(resulting is more defects found in common), or (b) specialize on certain defect types (resulting in fewer defects found in
common). Collusion occurs when multiple inspectors work together, resulting in more common faults than would be
expected. On the other hand, inspectors specializing in different areas may be intentionally chosen to ensure nothing is
overlooked. Since each inspector may focus on certain parts of the document relating to his or her area of expertise,
specialization may result in fewer common faults than would otherwise be expected. In either case, the cornerstone of
capture-recapture models is no longer valid.

In the paper, we propose a novel approach that is distinct from the concept of capture-recapture models. The idea is to
consider the correlation matrix of multiple inspectors. Since the correlation coefficients are expressed as a function of N, we
can estimate N if the correlation matrix of multiple inspectors is given a priori or can be estimated based on past inspection
history.

CORRELATION MATRIX OF MULTIPLE INSPECTORS

The correlation coefficient is a standardized measure of the relationship between two variables X1 and X2, which is defined as
follows:

 3796

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

)()(
),(

21

21
2,1 XVarXVar

XXCov
=ρ . (12)

As shown above, the correlation coefficient is computed by dividing the covariance by the standard deviations of the two
variables, X1 and X2. This division results in the correlation coefficient having a standardized range from -1 to +1. The
correlation coefficient provides us with a good indication of relationship because it varies in the range from -1 to +1 and its
value directly indicates (1) the strength and (2) the direction of the relationship between two variables.

For the binary random variables X1 and X2 in Table 3, the covariance between X1 and X2 is shown to be

][][][),(212121 XEXEXXEXXCov −= 2112 ppp −= , (13)

and thus the correlation coefficient between the two binary variables is

)1()1(2211

2112
2,1 pppp

ppp
−−

−
=ρ . (14)

From the contingency table in Table 1, the observed correlation coefficient is

N
nN

N
n

N
nN

N
n

N
n

N
n

N
n

Nr
)()(

)(
2211

2112

2,1
−−

−
= =

)()(2211

2112

nNnnNn
nnNn

−−

− , (15)

which is also expressed as a function of n0 as follows:

)()(
)(

022011

21012
02,1 nunnun

uunnnr
++

−
= . (16)

Since n0 and r1,2 in (16) are in one-to-one correspondence, we can estimate the total number of undetected errors n0 for any
given value of the correlation coefficient 2,1̂ . In other words, there exists a unique solution because r1,2(n0) is a monotone
function of n0. If the inspections are statistically independent as in capture-recapture models, for example, the correlation
coefficient in (16) is assumed to be zero and the number of undetected errors is estimated as

12

21
0̂ n

uun = , (17)

which is consistent with (11). Thus, the Lincoln-Peterson estimator is a special case of (16) in which the correlation
coefficient is zero.

Suppose that there are m inspectors. From Table 2, the observed correlation coefficient between inspector i and inspector j is
obtained as follows:

)()(

))(()(
)(

00

0
0 nunnun

nnnnnun
nr

jjii

ijjijiijij
ij

++

−−−+
= , (18)

which is a function of n0. For the m × m correlation matrix, there are m(m-1)/2 number of elements rij(n0), all of which will
be changed simultaneously as we change the value of n0.

Suppose that all of ρij in the correlation matrix are known a priori or can be estimated from the past inspection history. Then,
there are “deviations” between the given correlation coefficients iĵ and the observed correlation coefficients rij(n0). The

given correlation coefficients ρij are considered multiple “goals” that should be achieved by changing n0, and thus the
problem of estimating the number of undetected errors n0 can be formulated as a “goal programming” model in operations
research. In the next section, we estimate the number of undetected errors via the goal programming approach.

GOAL PROGRAMMING APPROACH
For m inspectors, there are m(m-1)/2 number of goals iĵ to be achieved and the same number of attained values rij(n0)

 3797

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

obtained from the inspection data. Note that rij(n0) are all functions of a single variable n0. As we change n0, all rij(n0) are
changed simultaneously. Thus, each of the attained value rij(n0) may be lower or higher than a given goal iĵ . Let dij =

)(ˆ 0nrijij − be a “deviational variable”, which is the difference between the goal and the attained value. Using the
deviational variable, we can formulate a goal program that minimizes the total cost incurred in deviating from the goals.

As in many other goal programming models, we use the additive objective function for its simplicity: the total cost is the
weighted sum of individual costs as follows:

∑ ∑
−

= +=

=
1

1 1}{
)(min

0

m

i

m

ij
ijijn

dcvz (19)

 subject to

ijijij dnr =−)(ˆ 0 , i = 1, 2, … , m-1 and j = 2, 3, … , m (20)

+∞<<−∞ ijd ; 00 ≥n ,

where c(dij) is a cost function and vij is its weight.

The weight vij should be determined such that the most important goal has the largest weight, and so on. In practice, we
suggest that the weight vij be determined based on ni, nj, and nij; e.g.,

ijjiij nnnv −+= . (21)

For the cost function c(dij), we could use the one that minimizes the weighted sum of squared deviations,
2)(ijij ddc = , (22)

or that minimizes the weighted sum of absolute deviations

ijij ddc =)(. (23)

In practice, the goals or targets, iĵ , may not be known a priori. In that case, we recommend the following heuristic method.

The attained correlation coefficient rij(n0) in (18) is a monotonically increasing function of n0. Thus, the lower limit mim
ij

r is

obtained when n0 = 0,

jjii

ijjijiijij
ij unun

nnnnun
nrr

ij

))((
)0(0

min −−−
=== , (24)

and the upper limit on rij is achieved when n0 → ,

)()(

))(()(
lim)(lim

00

0
0

max

00 nunnun

nnnnnun
nrr

jjii

ijjijiijij

nijnij
++

−−−+
==

→∞→∞

)1/()1/(

/))(()1/(
lim

00

00

0 ++

−−−+
=

∞→ nunnun

nnnnnnun

jjii

ijjijiijij

n ji

ij

nn
n

= . (25)

Since the unknown goal iĵ is somewhere between min
ijr and max

ijr , we may set the goal or target iĵ as a weighted average

of the lower bound min
ijr and the upper bound max

ijr as follows:

maxmin)1(ˆ ijijij rwrw −+=ρ . (26)

As a practical matter, we suggest that equal weight should be put on the lower and the upper bound because we lack any
theory that suggests otherwise. In our empirical research, we also found that the weight w of 0.5 or 0.6 gives a good estimate

 3798

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

of iĵ .

PERFORMANCE EVALUATIONS
In our goal programming approach, the goal is a weighted average of the lower and the upper bounds of the observed
correlation coefficients rij(n0). Thus, the weight w should be specified in our model. In addition, the form of the cost
function c(dij) and its appropriate weight vij in the objective function should be also specified in advance. In the numerical
analysis, we set w equal to 0.6, which is the most appropriate value that we found from our empirical research. The objective
is to minimize the weighted average of the absolute deviations, in which the weight vij is determined from (21).

Suppose that there are exactly 100 (=N) errors in the system, among which 80 (= nT) errors have been detected by m
inspectors. For all the possible cases, we found the estimates of N using the SOLVER function in Microsoft Excel and then
computed the mean square error,

k

N
MSE

k

j
j∑

=

−

= 1

2)100ˆ(

, (27)

and the mean absolute percentage error,

k

N

MAPE

k

j

j∑
=

−

= 1 100
|100ˆ|

, (28)

where k is the number of possible cases considered in the numerical analysis.

First, we consider the situation in which there are two inspectors. As shown in Table 4, we consider 24 possible cases in
which exactly 80 errors have been found by the two inspectors and 20 errors are still remaining in the system. In the first row
in Table 9, for example, both Inspector 1 and Inspector 2 have detected 70, respectively. If their inspections are statistically
independent, the number of common errors detected by both inspectors should be 49. Since they have detected 60 common
errors, it implies that their inspections are positively interrelated with each other.

n1 n2 n12 MLE Darroch (1958) Chao (1989) Chun
1 70 70 60 80.968 81.667 81.639 86.667
2 65 70 55 81.980 82.727 82.679 88.202
3 60 70 50 83.186 84.000 83.922 89.531
4 55 70 45 84.657 85.556 85.435 90.698
5 50 70 40 86.493 87.500 87.317 91.720
6 45 70 35 88.852 90.000 89.722 92.601
7 40 70 30 91.997 93.333 92.903 93.333
8 35 70 25 96.399 98.000 97.308 93.905
9 30 70 20 103.001 105.000 103.810 94.296

10 25 70 15 114.003 116.667 114.375 94.477
11 20 70 10 136.006 140.000 134.545 94.410
12 15 70 5 202.011 210.000 188.333 94.048
13 60 60 40 88.996 90.000 89.756 93.333
14 55 60 35 93.141 94.286 93.889 94.908
15 50 60 30 98.667 100.000 99.355 96.313
16 45 60 25 106.401 108.000 106.923 97.560
17 40 60 20 118.003 120.000 118.095 98.647
18 35 60 15 137.338 140.000 136.250 99.566
19 30 60 10 176.006 180.000 170.909 100.300
20 25 60 5 292.008 300.000 263.333 100.824
21 50 50 20 123.003 125.000 122.857 100.000
22 45 50 15 147.338 150.000 145.625 101.584
23 40 50 10 196.006 200.000 189.091 103.004
24 35 50 5 342.007 350.000 305.000 104.254

Mean squared error 5359.346 5817.843 4031.396 40.419
Mean absolute percentage error 42.408% 44.067% 38.134% 5.240%

Table 4. Numerical analysis for two inspectors: N = 100

 3799

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

In this case, the total number of errors is estimated to be 80.968, 81.667, and 81.639, respectively, by the maximum
likelihood estimator, Darroch’s approximate maximum likelihood estimator, and Chao’s estimator. Note that Darroch’s
estimate and Chao’s estimate are the same as the Lincoln-Peterson estimate and Chapman’s estimate, respectively, when m =
2. Our estimate of N based on the goal programming approach is 86.667, which is slightly closer to the parameter N = 100.
In terms of the MSE and MAPE criteria, our method performs much better than the traditional capture-recapture methods as
shown in the last two rows in Table 9. Particularly when the inspectors are negatively interrelated as in case 24, our goal
programming approach outperforms the traditional methods remarkably.

The performance of our method is reaffirmed in the three inspector cases. As shown in Table 5, we considered 42 possible
cases of m=3, systematically changing the number of errors detected by each inspectors to simulate various situations. As
shown in last two rows in Table 10, the MSE and the MAPE of our method are much smaller than those of the traditional
capture-recapture models.

We did not perform the numerical analysis for the cases of more than three inspectors, because there are too many possible
permutations. For m inspectors, for example, we need to simulate 2m -1 different inspection history. However, we expect
that our method would also outperform the traditional models that are based on the independence assumption.

n1 n2 n3 n12 n13 n23 n123 MLE Darroch (1958) Chao (1989) Chun
1 65 65 65 55 55 55 50 81.081 80.583 84.688 90.000
2 50 65 65 40 40 55 35 81.824 81.250 82.419 94.439
3 35 65 65 25 25 55 20 82.673 82.026 81.630 97.593
4 65 50 65 40 55 40 35 81.824 81.250 82.419 94.439
5 50 50 65 25 40 40 20 83.475 82.791 81.630 94.439
6 35 50 65 10 25 40 5 85.577 84.756 81.230 97.593
7 65 35 65 25 55 25 20 82.673 82.026 81.630 97.593
8 50 35 65 10 40 25 5 85.577 84.756 81.230 97.593
9 65 65 50 55 40 40 35 81.824 81.250 82.419 94.439

10 50 65 50 40 25 40 20 83.475 82.791 81.630 94.439
11 35 65 50 25 10 40 5 85.577 84.756 81.230 97.593
12 65 50 50 40 40 25 20 83.475 82.791 81.630 94.439
13 50 50 50 25 25 25 5 87.370 86.498 81.230 100.000
14 65 35 50 25 40 10 5 85.577 84.756 81.230 97.593
15 65 65 35 55 25 25 20 82.673 82.026 81.630 97.593
16 50 65 35 40 10 25 5 85.577 84.756 81.230 97.593
17 65 50 35 40 25 10 5 85.577 84.756 81.230 97.593
18 50 50 65 40 40 40 35 83.475 82.791 94.063 94.439
19 35 50 65 25 25 40 20 85.577 84.756 87.258 97.593
20 20 50 65 10 10 40 5 88.408 87.385 84.891 98.942
21 50 35 65 25 40 25 20 85.577 84.756 87.258 97.593
22 35 35 65 10 25 25 5 89.765 88.674 84.891 97.593
23 50 20 65 10 40 10 5 88.408 87.385 84.891 98.942
24 50 50 50 40 25 25 20 87.370 86.498 87.258 100.000
25 35 50 50 25 10 25 5 92.921 91.752 84.891 104.334
26 50 35 50 25 25 10 5 92.921 91.752 84.891 104.334
27 50 50 35 40 10 10 5 92.921 91.752 84.891 104.334
28 35 35 65 25 25 25 20 89.765 88.674 103.438 97.593
29 20 35 65 10 10 25 5 96.484 94.887 92.097 98.942
30 35 20 65 10 25 10 5 96.484 94.887 92.097 98.942
31 35 35 50 25 10 10 5 105.185 103.302 92.097 104.334
32 35 50 50 25 25 25 20 92.921 91.752 117.500 100.000
33 20 50 50 10 10 25 5 101.746 100.000 99.355 100.000
34 35 35 50 10 25 10 5 105.185 103.302 99.355 104.334
35 35 50 35 25 10 10 5 105.185 103.302 99.355 104.334
36 20 35 50 10 10 10 5 130.927 126.974 140.938 104.334
37 50 50 35 25 25 25 20 92.921 91.751 117.500 100.000
38 35 50 35 10 10 25 5 105.185 103.302 99.355 104.334
39 50 35 35 10 25 10 5 105.185 103.302 99.355 104.334
40 50 50 20 25 10 10 5 101.746 100.000 99.355 100.000
41 35 35 35 10 10 10 5 138.546 134.223 155.000 110.000
42 35 50 20 10 10 10 5 130.927 126.973 140.938 104.334

Mean squared error 228.996 225.176 350.847 16.288
Mean absolute percentage error 13.049% 13.129% 15.414% 3.281%

Table 5. Numerical analysis for three inspectors: N = 100

 3800

Chun Analysis of Software Quality via a Goal Programming Approach

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

CONCLUDING REMARKS

In the paper, we proposed a new method that estimates the number of undetected errors in software design documents. The
idea is to use the correlation matrix of multiple inspectors and to formulate the estimation problem as a goal program. To use
our method in practice, the goal or target ρij must be given in advance or should be estimated based on the past data or
experience. If the goal ρij is not available, we may first find, using the observed data, its lower and upper bounds, and then
estimate the goal as a weighted average of the two bounds. The optimal weight could be obtained from the training data, or
we suggest w=0.5 or 0.6 if there is no prior information at all.

We also illustrated our method with an empirical data and compared its performance with those of traditional capture-
recapture models that are based on the independence assumption. Although our method outperformed other capture-
recapture models, it would be more informative to use our method along with other traditional models in a specific inspection
environment.

The capture-recapture model was first introduced by ecologists as a means of estimating the size of wildlife populations.
However, the basic methodology has been used in different scientific areas such as demography, engineering, and
epidemiology. We expect that our method can be successfully applied to any areas in which we suspect the independence
assumption among inspectors.

REFERENCES

1. Briand, L. C., El Eman, K., Freimut, B. G. , and Laitenberger, O. (2000) A comprehensive evaluation of capture-
recapture models for estimating software defect content, IEEE Transactions on Software Engineering, 26, 6, 518-540.

2. Chao, A. (1989) Estimating population size for sparse data in capture-recapture experiments, Biometrics, 45, 427-438.

3. Chapman, D. G. (1951) Some properties of the hypergeometric distribution with applications to zoological sample
censuses, University of California Publications in Statistics, 1, 131-160.

4. Darroch, J. N. (1958) The multiple-recapture census: I. Estimation of a closed population, Biometrika, 45, 343-359.

5. Eick, S. G., Loader, C. R. , Long, M. D., Votta, L. G., and Wiel, S. V. (1993a) Estimating software fault content before
coding, Proceedings of the 15th International Conference of Software Engineering, Melbourne, Australia.

6. Eick, S. G., Loader, C. R., Vander Wiel, S. A., and Votta, L. G. (1993b) How many errors remain in a software design
document after inspection? Proceedings of the 25th Symposium on the Interface, 195-202.

7. Pollock, K. H. (1991) Modeling capture, recapture, and removal statistics for estimation of demographic parameters for
fish and wildlife populations: past, present, and future, J. American Statistical Association, 86, 225-238.

8. Schnabel, Z. E. (1938) The estimation of the total fish population of a lake, American Mathematics Monthly, 45, 348-
352.

9. Seber, G. (1982) The estimation of animal abundance and related parameters, 2nd edition, Charles Griffin & Company.

10. Seber, G. (1986) A review of estimating animal abundance, Biometrics, 42, 267-292.

11. Wells, D. (1992) The Penguin Book of Curious and Interesting Puzzles, Penguin Books, New York.

 3801

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2006

	Analysis of Software Quality via a Goal Programming Approach
	Young Chun
	Recommended Citation

	tmp.1219202418.pdf.uCWDc

