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ABSTRACT

Many IT acceptance models assume a positive association will exist between behavioral intention (BI) toward IT use and
actual use of the IT. Yet in some cases this relationship is weak or nonsignificant, and models based on predictions mediated
by BI lose their value. In this paper I report findings of a weak relationship between BI and IT use in a study that applies IT
acceptance models to predict patients’ use of e-health. I theorize this weak relationship arises from effects of facilitating
conditions that initiate much of the use of e-health. In a post hoc analysis, I propose and test an alternative model that
augments TAM with measures of prior use of offline health services and structural need. Results of this test indicate that
these measures can dramatically improve predictions of initial e-health use.
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INTRODUCTION

Most major U.S. healthcare provider organizations now supply e-health services to patients. Through provider e-health1 the
patient’s own healthcare provider organization uses the Internet to deliver health services including informational content and
advanced capabilities, such as appointment scheduling, prescription refilling, and online communication with physicians and
clinical staff (Lazarus, 2001). Designing, developing, and deploying e-health represents a substantial investment, and it is
important to providers that these services are cost-effective. Yet patients sometimes fail to use the very e-health services that
providers think will be most essential (Payton and Brennan, 1999). If providers could predict patients’ acceptance and use of
e-health at early stages in the design process, this would help them to be more effective in allocating resources and managing
risks associated with delivering e-health.

Wilson and Lankton (2004) address the issue of initial acceptance in a study of new registrants for a prototype e-health
application. They find acceptance of e-health (measured as BI toward use) is predicted well by three prominent models of IT
acceptance: the technology acceptance model (TAM) (Davis, 1989), the motivational model (Davis, Bagozzi, and Warshaw,
1992), and the integrated model (Venkatesh, Speier, and Morris, 2002). In addition, Wilson and Lankton identify three
antecedent characteristics (information seeking propensity, prior satisfaction with medical services, and Internet dependence)
that can be used to predict constructs within these models even prior to the time that patients are introduced to a specific e-
health application.

It should be noted that Wilson and Lankton did not measure e-health use. Instead, their research design assumes the existence
of a positive association between BI and behavior based on a substantial literature (see reviews by Ouellette and Wood, 1998
and Sheppard, Hartwick, and Warshaw, 1988). The assumption that BI leads to use has been applied widely in IT acceptance
research, however, the degree of association varies substantially among studies which explicitly test this relationship. I
reviewed 277 IT acceptance studies and found just 13 that evaluate effects of BI on self-reported IT use2 (see Table 1).
Calculating from the sample sizes and actual or estimated correlations across these studies, the weighted average correlation
of BI with use is 36% (R2 = .13) and the 95% confidence interval ranges from 25-46% (R2 CI = .06-.21).

1 For brevity, I reference “provider e-health” simply as e-health and “healthcare provider organizations” as providers
throughout the remainder of the paper.
2 There are 9 additional studies that examine the effects of BI on objectively-measured use.
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Reference IT Type Variance in IT Use Explained by BI
Davis et al. (1989) Word processor 12-40 %
Dishaw and Strong (1999) Software maintenance tool 36%, including direct effect of perceived usefulness
Hartwick and Barki (1994) Business IS application 35-74%
Horton et al. (2001) Intranet 11%
Lai (2004) Short message services 15%
Limayem and Hirt (2003) Communication application 47%, including direct effects of habit and facilitating

conditions
Moon and Kim (2001) World wide web 38%
Morris and Dillon (1997) Netscape web browser 19%
Shih and Fang (2004) Internet banking 24%
Stoel and Lee (2003) Web-based courseware 4%
Suh and Han (2002, 2003) Internet banking 3%
Szajna (1996) Email 6-32%

Table 1. Review of Studies Testing Association Between Behavioral Intention and Self-Reported IT Use.

Although the reported effects of BI on use are substantial at the higher end of this range, effects at the lower end offer limited
practical prediction of use. Researchers have proposed several explanations for weak associations, including the length of
time between measurements or instability of intentions due to a lack of experience (Davis, Bagozzi, and Warshaw, 1989;
Fishbein and Ajzen, 1975; Szajna, 1996), effects of social desirability on BI responses (Harris, Donaldson, and Campbell,
2001), irrational behaviors (Kim and Malhotra, 2005), and omission of external factors that might influence use (Davis, et al.,
1989; Harris et al., 2001).

The overriding objective in studying patients’ acceptance of e-health is to provide practical guidance for providers.
Therefore, it is important to qualify the assumption that BI does in fact explain variance in e-health use. In the Wilson and
Lankton (2004) study, data were drawn from a questionnaire administered during the first two weeks following patients’
registration for e-health access. Meaningful usage data were not available at that time, but a follow-up questionnaire was
administered later to many of the original participants in order to assess their use of the system. In this paper I begin by
describing the initial research method and then present an analysis of the combined data, finding that the association between
BI and e-health use is quite low compared to prior studies. This finding prompts a post hoc analysis in which an explanation
is proposed for the weak association between BI and e-health use and hypothesize and alternative relationships are tested in
an attempt to improve predictions of use. The principle intellectual contribution of this study is increased understanding of
ways to overcome constraints in modeling IT use in the context of e-health, some of which may be generalizable to similar
contexts outside healthcare.

RESEARCH METHOD

This research is conducted among patients who registered for access to an e-health application called MyHealth (a
pseudonym), which was developed by a large Midwest U.S. healthcare provider. MyHealth presents encyclopedic health
content with both browse and search access, email-style connectivity with the clinic office, prescription refill ordering, and
appointment scheduling. Access for patients is unrestricted, but they must first register online and thereafter login using a
self-assigned ID and password. The developer of MyHealth is a healthcare provider managing approximately 100 clinics. At
the time of the study, access to MyHealth was being offered to patients in four of these clinics as a pilot test.

Procedure

An invitation to volunteer for participation was sent to the email addresses of 1,750 individuals who had registered for access
to MyHealth following announcement of the website in a promotional mailing to clinic patients. On average, registrants
received the email invitations approximately two weeks after registration, which provided a short introductory period for
them to investigate the site. 163 (9%) of the invitees responded to the invitation and 135 (8%) completed the entire initial
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online questionnaire. The healthcare provider declined to allow the researchers to send follow-up requests to participate. The
initial questionnaire measured BI as well as demographic factors and aspects of prior health service use and need.

Three months later a new questionnaire was administered to assess use of MyHealth during the intervening period. A request
to complete the follow-up questionnaire was emailed to the original 135 respondents, and a second request was emailed two
weeks later to those who had not completed the questionnaire by that time. In total, 83 of the original respondents (61%)
completed the follow-up questionnaire. A one-way ANOVA conducted between early and late responders to the follow-up
questionnaire showed no significant differences on measures between these groups, suggesting that participants are generally
representative of the original respondents.

Responses from the initial questionnaire and the follow-up questionnaire were matched based on the participant’s email
address. Average age of participants is 52, with a minimum age of 25 and a maximum age of 80, and 75% are women. Data
screening showed no differences in any of the constructs by age or gender. Following registration, participants accessed
MyHealth an average of 1.9 times (s.d. = 3.1 accesses).

Association Between BI and Use of MyHealth

Structural equation modeling (SEM) was used to test the association between BI and MyHealth use. Because of the relatively
small sample size, the partial least squares method of SEM was applied using PLS-Graph (Chin, 1998). The independent
variable in the model is BI, a latent factor deriving from two indicator measures that are drawn from prior research
(Venkatesh et al., 2002). The dependent variable is e-health use, which measures the total number of times participants self-
reported having used MyHealth for each of five services (these are referenced hereafter as health services): request a
prescription refill, request an appointment, get health information, communicate with physician, and communicate with other
healthcare staff. A significant relationship is found between BI and use (β = .254, p < .001, use R2 = .065), however,
predictiveness is low relative to the weighted average results of R2 = .13 in the prior IT literature. This weak association
suggests that determinants of BI will have relatively little effect on e-health use, regardless of their relationship with BI. This
is especially true for antecedent factors studied by Wilson and Lankton (2004), which are theorized to exert only indirect
effects on BI. Clearly these findings call for re-evaluation of the applicability of prominent IT acceptance models to the
context of e-health and for the assessment of alternative models.

REANALYSIS: AN EXPLANATION AND NEW HYPOTHESES

Wilson and Lankton (2004) focused their attention on determinants of BI. The reanalysis presented in the present paper
focuses on determinants of use, including BI. The first issue I address is to explain how characteristics of the e-health domain
may act to weaken the assumed association between BI and use. Following that discussion, I present a new research model
and propose hypotheses to test the model.

Explaining a Weak Association

E-health uses the same Internet infrastructure and WWW software conventions as many other online applications. However,
predictions of use based on BI vary considerably across studies of online applications. For example, some studies of online
communication and banking applications find BI to be highly predictive of use (Limayem and Hirt, 2003; Shih and Fang,
2004) but others find low predictiveness (Suh and Han, 2002, 2003; Szajna, 1996). The equivocal nature of findings among
studies of similar technologies suggests the association between BI and use is not due to technology characteristics. Thus, I
turn to two other types of factors that have been identified in the literature as influencing use. These are factors relating to
individual users and factors relating to the task activities that are performed (Davis, et al., 1989, Hong, Thong, Won, and
Tam, 2001; Igbaria, Guimaraes, and Davis, 1995; Keil, Beranek, and Konsynski, 1995). I consider each factor in turn.

Participants in this study are undeniably unique relative to subject populations of most IT acceptance research. They are older
and comprise a higher proportion of women than is the case in any of the studies I reviewed in Table 1. Yet despite these
demographic characteristics, cognitive measures taken from participants reflect relationships among beliefs and BI that
parallel findings throughout the IT acceptance literature. Wilson and Lankton note regarding their test of three prominent IT
acceptance models in this population, “it is reassuring to find that they are robust in the previously untested context of e-
health and among a subject group primarily composed of middle-aged to elderly female medical patients, a population that
has not previously been studied by technology acceptance researchers” (2004, p. 245). It is only in the relationship between
BI and use that the results diverge from typical findings. The number of older individuals who use e-health services is
disproportionately high relative to younger adults (McKillen, 2001), thus, it seems unlikely that participants in this sample
would be especially reluctant to act upon their intentions.
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A more likely source for divergence from typical findings arises from the activities e-health is used to support, which center
on acquiring health information, diagnosis, or treatment. Access to e-health frequently is initiated by onset of illness, injury,
or medical concern. In such circumstances, motivational effects of BI on e-health use are likely to be subordinated to
facilitating conditions outside an individual’s personal control. Triandis writes

At any level of habit or behavioral intention, the absence or presence of facilitating conditions will affect the
likelihood of a behavior. In an extreme case, the person’s habits and behavioral intentions have no relevance if the
situation does not permit him or her to behave. (Triandis, 1997, pp. 206-207).

I propose that facilitating conditions related to illness, injuries, or medical concerns are more salient to e-health than is the
case with facilitating conditions relating to typical IT applications that are addressed in IT acceptance research, such as email
and web browsing. As a result, facilitating conditions could play a larger role than BI in determining use of e-health. This
proposition has several ramifications for future research designs. First, it cautions against assuming a strong association
between BI and use in the context of e-health, so future studies should implement longitudinal designs that allow
measurement of e-health use. Second, models of IT acceptance that are based entirely upon rational processes, such as TAM,
will be less predictive in the context of e-health and other applications where facilitating conditions subordinate BI. Finally, it
will be necessary to evaluate alternative models of acceptance in order to increase predictiveness to levels that can accurately
guide providers in designing successful e-health applications.

In the following sections, I present a post hoc analysis of data from the two MyHealth questionnaires that begins to address
the research ramifications presented above. I first propose a research model that augments the relationship between BI and
use with three factors hypothesized to proxy for direct measurement of facilitating conditions. I then test these hypothesized
relationships and conclude with a discussion of the overall findings.

Research Model and Hypotheses

The research model I propose for the new analysis augments BI with three factors related to participant’s experiences and
situation prior to being introduced to e-health. As shown in Figure 1, the model posits that, in addition to BI, offline service
use, frequency of medical office visits, and structural need for medical services will jointly determine use of e-health.

Where a specific IT has been used previously, the level of prior use can be a more important predictor of future use than BI
(Cheung and Limayem, 2005) or can replace effects of BI altogether (Kim and Malhotra, 2005). In effect, prior use serves as
a proxy measure of the presence or absence of facilitating conditions during the prior period. Although participants in the
present study did not use MyHealth previously, they did use the same health services that MyHealth supports. Prior
utilization of an organization’s service is known to predict future service use (Naessens, Baird, Jouten, Vanness, and
Campbell, 2005), suggesting that use of MyHealth will be influenced by prior use of the same health services offered by the
provider in its offline facilities, e.g., at a healthcare clinic.

H1: Prior use of offline health services will predict use of e-health.

A second aspect of prior use relates to utilization of general services offered by the provider. I hypothesize that interacting
with the provider in the form of office visits will offer a measure of general service utilization that is salient to predicting use
of MyHealth. The rationale is that patients who visit clinic offices frequently will be more motivated to use MyHealth
regardless of the level at which they use the five specific offline health services.

H2: Prior number of office visits will predict use of e-health.

Wilson, Mao, and Lankton (2005) conducted a study of IT continuing use involving applications that are used only
sporadically. They consider e-health to be an example of sporadic use IT, based upon the irregular and infrequent occurrence
of factors that initiate many accesses (e.g., onset of illness). Wilson et al. find that irregular prior use and habit are key
predictors of continued use in a setting where subjects had several months of prior use experience. Based on these findings,
they call for research to predict initial use from individuals’need for services. Healthcare researchers find that need for
healthcare is associated with higher rates of healthcare utilization (Ford, Trestman, Steinberg, Tennen, and Allen, 2004;
Naessens et al., 2005), and that individuals with a low need for health services are less likely to use e-health services (Hsu,
Huang, Kinsman, Fireman, Miller, Selby, and Ortiz, 2005). Thus the third hypothesis tests the predictiveness of prior need
for health services that is structural, i.e., where need is statistically associated with observable characteristics of participants.
Because the assessment is statistical rather than direct, I consider structural need to be a proxy measure for presence or
absence of facilitating conditions.

H3: Structural need for health services will predict use of e-health.
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Structural need has not been studied to my knowledge in the context of IT acceptance. Two factors that fit the criteria
presented above are age and presence of a chronic health condition, such as diabetes. Both factors are statistically associated
with increased need for health services, and I propose in Hypotheses 4a and 4b to test their individual effects as formative
antecedents to structural need within the research model.

H4a: Age will predict structural need for health services.

H4b: Chronic health condition will predict structural need for health services.

The final hypothesis tests the predictiveness of the full research model vs. alternative nested models.

H5: The full research model will be more predictive of e-health use than any nested model.

Figure 1. Research Model.

RESULTS

Hypothesis testing was completed using PLS-Graph. BI was measured as a reflective latent variable with two indicator items.
Offline service use was measured as the total of self-reported offline accesses to five health services and office visits was
measured as the total of self-reported visits to healthcare facilities made during the six months prior to completing the first
questionnaire. Structural need was measured as a formative latent variable (Gefen, Straub, and Boudreau, 2001) with two
indicator items: age and presence of chronic health condition. E-health use was measured as the total of self-reported access
to five health services on MyHealth during the three-month period following completion of the first questionnaire.
Confirmatory factor analysis and correlation analysis were conducted but are not reported here because of space constraints.
These analyses indicate that the measures are internally reliable and construct-valid.

All hypotheses are supported. E-health use is predicted by use of offline services (path coeff. = .410, p < .01), frequency of
prior office visits (path coeff. = .213, p < .05), and by presence of structural need (path coeff. = .294, p < .001). Structural
need  is  predicted  as  a  formative  latent  variable  by  age  (path  coeff.  =  .562,  p  <  .01)  and  by  presence  of  a  chronic  health
condition (path coeff. = .864, p < .0001).

Finally, the full research model (shown in column 8 of Table 2) provides significantly better predictions of e-health use than
any other model (p < .05)3. Modeling of e-health use based upon BI (shown as column 1 of Table 2) is significantly worse
than all other models except model 2 (BI plus office visits).

3 Significance of R2 differences was calculated using between-model F-tests that account for the differing number of
variables in each model.

 2792



Wilson Predicting Patients’ Use of Provider E-Health

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 4th-6th 2006

Relationship / Model 1 2 3 4 5 6 7 8
BI  E-Health Use .2543 .2553 .2973 .3013 .2122 .2122 .2533 .2543

Offline Service Use  E-Health Use .3952 .4602 .3412 .4102

Office Visits  E-Health Use .038 .082 .1931 .2131

Structural Need  E-Health Use .3473 .3573 .2813 .2943

E-Health Use R2 .065 .066 .183 .190 .219 .252 .294 .335
1 p < .05 2 p < .01 3 p < .001 (one-tailed t-tests)

Table 2. Model Comparisons, Arranged in Order of Increasing Explained Variance (R2)

DISCUSSION

The findings demonstrate that predictiveness of rational models of IT acceptance, such as TAM, can be limited in the context
of e-health. Predictions of initial use of e-health can be improved substantially by incorporating measures of offline service
utilization and structural need. This finding has important practical implications, as these factors can be assessed early in the
design process. Healthcare providers can use this information to identify patient populations who are most likely to use e-
health and to guide design of e-health applications that support targeted needs. For example, the findings regarding chronic
disease suggest affected patients are disproportionately motivated to try out e-health and are well-positioned, therefore, to
benefit from targeted services, e.g., providing support for disease management.

In addition, contrasts among full and nested models show the importance of studying BI, offline service use, and need jointly.
Regardless of need, patients sometimes do not use health services due to a wide range of geographic, financial,
organizational, social, trust, and personal factors (Ford, Bearman, and Moody, 1999; Forrest and Starfield, 1998; Leisen and
Hyman, 2004). For these individuals, prior use can be an essential predictor of future use. In many cases patients who are
willing to use health services may not have an immediate, medical need (Cantor and Fallon, 1997).

It would be useful for future research to build upon these findings. First, measurement should be extended beyond the three-
month period I assessed in order to understand how well the research model predicts longer-term effects and to explore usage
patterns of participants who indicated their intention to use MyHealth but who may not have had a cause to use it during the
assessment period. Second, the findings show that both specific and general service utilization are predictive of use, but there
is  need  for  theory  development  to  explain  why.  We  need  to  understand  which  aspects  of  service  utilization  are  key  to
motivate use of online services. Finally, the results linking use to two aspects underlying structural need (age and chronic
health condition) suggest that e-health is well-received by populations who may benefit most from e-health services, such as
healthcare information and online support communities. This finding should prompt researchers to explore whether
additional factors may be important contributors to this construct and to study which services are most beneficial to
populations with specific patterns of structural need, e.g., elderly diabetics.

Conclusion

The present research was designed initially to be an application of three well-established IT acceptance models to predict e-
health use by incorporating context-specific antecedents into the models. That design was successful at the stage of predicting
BI, but subsequent measurement of e-health use revealed an unexpectedly low association between these factors. This finding
prompted a post hoc analysis  of  the  overall  data  to  determine  whether  prediction  of  e-health  use  could  be  improved  by
augmenting BI with factors representing offline health service utilization and structural need for health services, applied as
proxy measures for facilitating conditions. These factors offer the benefit of being available for measurement prior to the
design of e-health services. The augmented research model greatly improves prediction of e-health use beyond TAM and
other prominent IT acceptance models. Although the route was circuitous, this finding does meets the practical objective of
providing practical guidance for providers.

The present study also holds interesting ramifications for researchers. Although authors have called for addressing effects of
prior behaviors and need in modeling initial stages of IT use, relatively little research has been reported in this area. The
findings suggest that exploring non-rational characteristics of individual IT users can provide important improvements in
predicting initial IT use in cases where effects of BI are subordinated by facilitating conditions, as appears to occur in the
context of e-health.
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