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ABSTRACT

Educators are increasingly using online computer-based training and assessment software—especially with large classes or in
distance education settings. This technology is often criticized, however, for hampering personalized interaction with
students. This paper introduces a unique approach for analyzing student characteristics influencing their adoption and use of
computer-based educational technology so that instructors can better meet student learning needs. Using visual, sef-
organizing mapping, our data mining approach clustered students based on input data from thirty-six survey questions posed
to over 400 students with experience usng computer based training and assessment. The data mining technique provided
clear descriptions of four different student clusters. Based on the unique characteristics of the four clusters, instructors could
optimize classroom resources as well as provide individualized support once specific students are matched to their respective
cluster group. In this manner, continual computer-based assessments of students can be used to maximize computer-based
learning and evaluation.
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INTRODUCTION

In recent years, researchers, teachers, and technologists have attempted to develop more effective computer-based education
systems. Educational institutions are increasingly turning to distance education with various computer-based methods of
course content delivery and computer-based assessment (CBA) tools. The computer based course tools are adapted for entry-
level courses like introductory computing, or for large section, or for administering computer literacy or proficiency exams.
Electronic, online, or computer-based learning can provide a number of advantages—such as time and place convenience for
students and indructors, standardized delivery, self-paced learning, economies of scale in terms of classrooms and
instructors, automated feedback to students and ingtructors, a variety of available content (Siegfried and Kennedy, 1995). IT
can assist an instructor in extending avail ability beyond class time and office hours, establishing links among classmates, and
accomplishing administrative activities (Benbunan-Fich, Hiltz, 2002).

Online education systems and large classes (more than 80 students) are often criticized for generality and a lack of personal
contact. Instructors not getting adequate feedback from students while explaining a difficult concept can not elaborate on the
topic to ensure better understanding. Information about the characteristics of a particular student class and of individua
students can alow an instructor to tailor course delivery for maximum learning benefits. But what is the best method to
gauge student characteristics to maximize computer-based training and assessment benefits?

Data mining methods seek knowledge from seemingly hidden data relationships and patterns where data dimensionality,
complexity, and quantity are prohibitively large for common manua analysis. The commonly used techniques for data
mining are statistical methods and machine learning methods. A ssessing the value of discovered patterns, their usability, and
their validity toward the investigated problem requires domain knowledge expertise, however, and thus may be difficult to
automate. But the ease of interpreting visualized and validated paterns often makes data mining attractive to finding
complex characteristics and patterns.
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This paper explores using a visual data mining approach—the salf-organizing map or SOM—for understanding student
characteristics and patterns that can be used to guide instructors in optimizing learning resources. This study is the second in
a series of studies on the factors that affect student learning using computer-based training and assessment software. While
the first study indicated the significant factors affecting that learning, this study constructs a data mining artifact to help
instructors better tailor computer-based training and assessment to meet class and individual needs. Our aim isto provide an
instructor with computer-based data mining tools for assessing the learning needs of students using computer-based training
and assessment systems.

LITERATURE REVIEW

Previous literature relative to this study's research issueis in two major areas: the rel ationships between various technical and
individual characteristics and academic performance, and the use of data mining methods to learn more about students using
educational technology. Two types of classroom information technologies are reviewed here: using technology to improve
student learning (computer-based training or CBT), and using technology to improve student performance evaluation
(computer-based assessment, or CBA).

Individual Characteristics and Technology-Enabled Learning

Many researchers have studied the relationships among student individual characteristics and academic performance. Arias
and Walker (2004) found strong negative relationships between class size and student performance calculated as aggregate
exam points while teaching economics. The results suggested to them that student ethics and proximity to an instructor in
small classes help students understand economic concepts better. They included several measures of student academic
abilities, i.e, SAT, SAT verbal and SAT math, GPA, and demographic data (such as year of study, age, and gender) as
explanatory variables and class size as the control variable. Bostrom, et al., (1990) argued that individual differences are
important for end-user training. Two studiesin particular examined factors that influence computer training and skill gaining
(Leidner and Jarvenpaa, 2001; Willet, 2002).

Ricketts and Wilks (2002) suggested that well-designed CBA can benefit students by improving their performancesin
assessments in the introduction of statisticsin biology. Noyes, Garland, and Robbins (2004) studied paper-based and
computer-based assessments, comparing the test performances of undergraduate students taking each test type. Given the
identica multiple choice questions, students who used CBA achieved better results than those taking paper-based tests, and
students with higher scores were found to benefit the most from CBA. Finally, CBA helped toimprove long term recall of
key concepts and resulted in higher scores than conventional exams, and students with computer experience had no additional
advantages versus less experienced students (Bocij and Greasley, 1999).

Compeau and Higgins (1995) concentrated on studying self efficacy—the conviction that one can control his’her outcomes
and do what is necessary to produce a certain result—and its importance in user acceptance and use of information
technology. Learning style defined through demographic variables were found to have an effect on teaching and learning
processes (Bostrom, et al., 1990). Student major as a predictor was mentioned in McGray (2000). Thereisalso literature on
the effectiveness of technical support for computer assisted learning. Bocij and Greasley (1999) concluded that students with
computer experience had no additional advantages versus less-experienced students.

Data Mining Approaches

Data mining approaches reside on the shoulders of two giants of data analysis. statigtics and artificia intelligence. Data
mining helps convert data into knowledge by uncovering interesting, unobvious, or “golden” patterns to enhance the
performance of an organization or a product (Fayyad, 1996). Data mining approaches are widely used in finance (Tan,
2002), marketing (Eklund, et al., 2002), logistics (Piatetsky-Shapiro, 2000), engineering, natura science research,
bioinformatics (Fayyad and Uthurusamy, 2002; Hand, 2001), medicine (Goldman, et al., 1998) and text analysis (Tkatch,
1997).

Two common statigtical data mining techniques are clustering and classification. Clustering identifies collections of similar
data objects different from other objects; they are grouped based on the principle of maximizing intraclass similarity and
minimizing interclass similarity. Classification finds patterns or a set of models in “training” data that describe and
distinguish data cases or concepts. Classification constructs a model to predict the class of objects whose class type is
known. The derived models may be presented as a set of association rules, decision trees, mathematical formulae, or neural
networks.

Neural networks transform nonlinear, multidimensional input variables into another multidimensional output variable (Safer
and Wilamowski, 1999). A derived measure of performance indicates how well a neura network has “learned” the
relationships in the data. One popular neural network data mining technique using clustering is the self-organizing map
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(SOM)—a good method for visualizing multidimensional data that has been used in pattern recognition, image analysis, and
process monitoring (Vesanto, 1999).

Using machine learning, SOM creates a two-dimensional map from n-dimensional input training data. The map shows a
landscape of standard shapes (such as hexagons) with borders between the shapes that define data clusters based on
probability density (Kohonen, 1997). These clusters consist of input variables with similar characteristics but different intra-
cluster characteristics that provide density. Overall, these clusters can provide visual clues about variable characterigtics.
Visualizing data can help when analyzing data for intuitive patterns—especially with exploratory research involving high
numbers of variables—such as with this study.

SOM analysis is done in two steps: the training process, and the mapping process. When processing the data for neural
training, node vectors are initialy set to random values and then adjusted based on the input data. The SOM agorithm
traverses each node using Euclidean distance formulas to find similarity between the input vector and the map’s node weight
vectors. The agorithm then identifies the node that produces the smallest weight vector distance—called the Best Matching
Unit. In essence, it's a “winner take al” process where a node with its weight vector closest to the vector of inputs is
declared the winner and its weights are adjusted to make it closer to the input vector—and its neighbors weights are also
changed relative to how close the neighbor is. This process is then repeated for each input vector, over and over, for alarge
number of cycles.’ Resulting “feature planes’ represent the values in a single vector column for identifying cluster
characteristics. The end result of the entire data mining processis a map of output nodes called a U-matrix.

Much education-related, published research using data mining has focused on using the World Wide Web such as Chen, et
al., (2001) using data mining tools to assist instructors in changing their pedagogical strategies and interventions by analyzing
large volumes of Web-access logs. The authors are not aware of published research based on using visua, self-organizing
maps to analyze the use of educational technology.

RESEARCH METHODOLOGY

We used a four-step methodology: data collection (student performance in hybrid class and CB assessments and survey
responses), factor analysis, clustering analysis, and result visualization usng a self-organizing map.

Data Collection: Survey Instrument

This paper built on a previous exploratory study on computer-based training and assessments (CBA) (Schneberger, et al.,
2006). A wide range of variables were chosen from theinitial study based on the model shown in Figure 1.

Training

Baszed
Clazszroom
Individual Lectures

Technolsy Computer-bazed
Characierizics Iraimns * Computer
chamsieristics I

]
Figure 1. Initial Model for Hybrid Educational Technology Use

Data collection combined a survey methodology with direct performance measurement. Thirty-six questions were posed to
over 550 students with direct and current experience using CBT and CBA for course credit. Additionaly, the subjective or
perceptive survey data was matched with measured, objective course performance scores. The combination of two collection
approaches (perceptional and measured) alowed us to search for relationships among the subjective data, among the
objective data, and between the subjective and objective data. All sudents used the same CBT/CBA software linked to the
same course textbook. Six course sections were small (<35 students), and four were large (>100 students). All sections were
taught individualy by two professors; one had five small sections one semester then three large sections the following
semester, the other had one large and one small section the same semester. Both professors followed identical syllabi over
both semesters—each taught the same topics in the same sequence using the same textbook, lecture dides, and exams. The
students were university undergraduate students of a wide range of ages and of all academic years from all schools across

! wikipedia.com, Self-Organizing_Map, 2/13/2006.
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campus. It was arequired course for some students, but not for all. The specific results of the survey anaysis can be found
in Schneberger, et a., 2006.

Factor Analysis

Factor analysisis an interdependence technique which defines the underlying structure among variables in the analysis (Hair,

2006). Highly interrelated (correlated) variables form factors which represent a data dimension. We used factor analysis to
refine the structure of the survey data, consolidating or collapsing the initial list of variables into a smaller group of highly
cohesive yet unique factors we could use for optimal data mining. The overall sample size met the genera minimum criteria
for factor analysis—having at least five times the number of observations than the number of variables. We used SPSS 14.0
to reduce data using Principal Component Analysis.

Data Mining Using a Self-Organizing Map (SOM)

SOM identifies borders defining unique clusters of input data based on common characteristics; we used the output of the
factor analysis to improve the SOM clustering. SOM analysis ends when the average quantization error is smal enough to
present diminishing marginal returns from continued analysis. The SOM maps were created usng SOM_PAK, a SOM
software package developed a the Helsinki University of Technology and fredy avalable at
http://www.cis.hut.fi/research/som_pak/. The U-Matrix map is visualized usng Nenet vl.la (Neurd Networks Tool)
application designed to illugtrate the visualization abilities of SOM. The demo version of Nenet is available at
http://koti.mbnet.fi/~phodju/nenet/Nenet/I.

DATA ANALYSIS

Using the results of the earlier, exploratory study on CBT and CBA variables affecting learning outcomes, the initial data
analysis step was to use principa component analysis with Varimax and Kaiser normaization rotation to cluster theinitial 28
input variables into their orthogonal factors. The eight significant resulting factors are shown in Tables 1 and 2 explaining
65.25% of cumulative variance and a sufficient level of sampling adequacy of .778 as measured by the Kaiser-Meyer-Olkin
measure. “SAM” isthe brand name of the computer-based training and assessment software.

Computer SAM SAM Tech Internet  Emotional

Question SAM Value Skills Usabilty CBAHelp  Support Preparation Experience  Support
1 2 3 4 5 6 7 8

Q32 0.833
Q19 0.803
Q20 0.797
Q31 0.788
Q22 0.711
Q21 0.681
Q17 0.632
Q12 0.830
Q13 0.805
Q14 0.744
Q11 0.677
Q27 0.659
Q16 0.749
Q15 0.741
Q18 0.697
Q29 0.836
Q30 0.794
Q28 0.689
Q24 0.894
Q25 0.885
Q23 0.448
Q33 0.797
Q26 0.579
Q8 0.787
Q9 0.571
Q35 0.757
Q34 0.690

Table 1. Factor Components Analysis
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Factors | Questions Title Interpretation
1 Q17,19-22, | SAM value SAM darity, usefulness, and ability to prepare them
31,32 for exams
2 Q 10-14, 27 | Computer skills Initial computer skills and those acquired in class
3 Q 15-16, 18 | SAM usahility Ease in learning and navigating SAM
4 Q 28-30 CBA help Help from instructor, peers, and tech support
5 Q 23-25 SAM tech support | Accuracy and helpfulness of SAM tech support
6 Q 26, 33 Preparation Difficulty preparing for class and CBA
7 Q8,9 Internet experience | Number of years and experience on the Internet
8 Q34,35 Emational support | Moral support outside of class

Table 2. Factor Interpretation

The next step was clustering and visualizing the converted dataset with aggregated factor scores usng SOM data mining.
Table 3 shows the training parameters used with the SOM algorithm. Appendix 1 shows the feature planes for the eight
factors, where colder (bluer, or darker) and warmer (reddish, or grayer) color codes show higher values of factors.

Number of trids: 100 Network Size 5x7
Training length of 1% part: 1750 | Training rate of 1% part: 0.5
Network radius of 1% part: 7 Training rate of the 2™ part: 17500
Training rate of the 2™ part: | 0.05 | Neighborhood radius of 2™ part: | 1

Table 3. The SOM Training Parameters

To plot the U-matrix and identify the resulting clusters of students, we combined the individua feature planes from Appendix
A as shown in Figure 2. By anayzing the shading of the hexagons and the borders between them, we identified similarities
as well as differences forming clusters. The resulting clusters are shown in Figure 3 as a SOM U-matrix map with
highlighted borders. Theinterpretation of the clustersis based on the factor descriptions.

Figure2. SOM U-Matrix Map
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Figure3. SOM U-Matrix Map With Highlighted Borders

ANALYTICAL RESULTS AND DISCUSSION

Group A islocated at the left hand sde of the map shown in Figure 3. This group represents students who value and use
computer-based training often; they already had above average computer skills, had above average access to broadband
Internet access, they thought the CBT/CBA software was very easy to navigate, and therefore did not highly need or value
associated technical support. Studentsin this group received minima moral support outside the classroom and used minimal
help while performing assignments. While these students did not consider themselves to be hardworking or persistent, they
did place great value on computer-based training and used it to their advantage. In summary, this could be considered an
ideal group for exploiting the advantages of CBT/CBA. When working with students in group A, ingtructors can maximize
course learning by maximizing computer-based training opportunities.

Group B is located in the top middle part of the map. It contains students who felt they had little computer skills to begin
with, but placed the highest value on computer-based training preparing them for computer-based assessments—even though
technica support seemed to be of little value. Students in this group relied on collaborative external hep and emotional
support even though they perceived themsalves as hardworking and persistent. Overall, these students had low computer
literacy, saw little value in technical support, but placed high value on computer-based training. Instructors dealing with
students in this group could provide more background on computer literacy fundamentals, more guidance on using technical
support, and take advantage of opportunities to use computer-based training.

Group C isthe smallest group located in the bottom, middle part of the Figure 3 map. It includes students with the highest
computer proficiency and skills, but who find this particular computer-based training and assessment software very hard to
navigate—and praise technicd support in helping them with it. Students in this group describe themselves as the most
persistent and hardworking, but rarely do computer-based training and therefore do not vaue it highly. At the same time,
these students enjoy talking about course content outside the class and rely the maost on external emotional support—but do
not often get help with computer-based assessments. In summary, they had the strongest computer skills and are very
persistent workers, and believed technica support was timely and useful but that this particular CBT/CBA software was very
unclear and difficult to navigate. Instructors working with students in this group are dealing with more sophisticated
CBT/CBA users, and may, therefore, choose to focus more up front on how to navigate and use the particular CBT/CBA
software.

Group D isthe largest group, located in the right hand side of the map with a second subgroup in between groups A and C.
This group represents students who have below average computer skills, find the computer-based training and assessment
software very difficult to navigate, and do not use or vaueitstraining. They also see themsalves as having very little Internet
knowledge and experience, rarely discuss the course content outside the classroom, and frequently seek help from friends or
an ingructor while doing CBT/CBA work. They perceive themsdves to be moderately hard working but do not take
advantage of training before completing assessments.  On the whole, this appears to be the group that needs the greatest
amount of attention. Instructors dealing with this group can improve basic computer skills, spend more effort on explaining
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how to navigate and use the CBT/CBA software, require computer-based training before attempting computer-based
assessment, and ensure easy access to help during training and assessment.

IMPLICATIONS

On the surface, it may appear difficult to cleanly labe the four SOM groups described above since they might appear to have
a mixture of indirectly related characteristics. But the SOM data mining technique clearly found that the students in each
group are distinctly related and different from other groups. While focusing on those group similarities and differences may
provide a significant insight on studentsin general who use CBT and CBA, there isa simpler and highly practica use of a U-
matrix map such asthat shown in Figure 3. After surveying students early in a course, performing the SOM data mining, and
matching student IDs to aresulting U-matrix map, an instructor can quickly gauge the needs of an entire student class aswell
asindividual students. Figure 4 shows the Figure 3 cluster map labeled with associated (in this case, coded) student 1Ds for
each respective hexagon.

For example, an ingructor could immediately see from Figure 4 that roughly 40% of the students belong to group D, 30%
belong to group A, 15% belong to group C, and the remaining 15% to group B. If facing limited time and resources, an
instructor could, therefore, seek to optimize time and resources by putting more emphasis on meeting the needs of the largest
group—in this case, by sressing student collaboration in training, by providing more background information about
computing and the Internet, by spending more effort on explaining how to navigate through the CBT/CBA software, and
perhaps by requiring CBT as part of the course performance evaluation. |If resources allow, the instructor can then similarly
address the needs of the smaller groups. Likewise, knowing which group a particular student belongs to alows an instructor
to address individua student needs based on the general characteristics of students in the respective SOM group.

An appealing point about using the SOM data mining method in this manner is that the resulting maps don’'t show what
course material students know or don’t know—it shows how they are likely to best learn the course material. This may be
highly beneficial when using computer-based training and assessment since much of that activity may be done outside the
classroom—outside of direct observation by an instructor. Moreover, ingructors with large classes using computer-based
training and assessment may find this data mining technique especially useful in providing targeted, more persona attention
toindividual students or small groups who might feel isolated in large settings.
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Figure 4. Labeled SOM U-Matrix Map

SUMMARY

Organizations that use computer-based training and assessment tools can potentially reap significant rewards in improving
knowledge and skill levels, while minimizing resource expenditures and maximizing student access. But extensive use of
computer-based technologies is often criticized in educational circles for a perceived loss of personal interaction between
instructors and students. By using a data mining approach such as SOM with sdf-organizing maps, an ingtructor can profile
students from online or large classes to change the focus or overcome specific pedagogical chalenges. The data mining
approach provides a personalization and customization tool for clustering student learning and tailoring online training and
assessment for use in hybrid classes. In essence students can receive customized learning based upon their matrix location
and therefore can learn at much higher rates than if there were only one learning module developed for a class at-large.
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Future research will include the devel opment of predictive models for student learning based upon SOM locations. Corporate
training can be enhanced by using the SOM technique prior to corporate investment in training programs.
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APPENDIX A: SOM FEATURE PLANES FOR FACTORS 1-8

Factor 1 Factor 2

Fector3 ~ Facior 3

Factor 5

Factor 7 Factor 8
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APPENDIX B: SURVEY INSTRUMENT

Demogr aphics

1. Englishismy primary language (1=Y es, 2=No)

2. My SAM usernameis

3. My gender (1=Mae, 2=Female)

4. Myageis

5. My academic year (1=Freshman, 2=Sophomore, 3=Junior, 4=Senior)

6. My current GPA:

7. My Internet connection type (1=Did-up, 2=Cable/DSL, 3=T1 or better, 4=Don't know)
8. Number of years using the Internet (<1, 1,2,3,4,5,6,7,8,9,>9)

9. Experiencewith Internet (1=No, 2=Little, 3=Some, 4=Much, 5=Extensive)

Computing Skills

10. Basic skillslike typing a document, etc. (1=strongly disagree, 2=dightly disagree, 3=indifferent, 4=dightly agree,
5=strongly agree)

11. Install programs, etc. (same 5pt. scale)

12. Set up virus checkers, etc. (same 5pt. scale)

13. Ingall networks, etc. (same 5pt. scale)

14. Ingall new hardware (same 5pt. scal€)

SAM Expertise

15. Learning SAM was easy (same 5pt. scale)

16. Navigating and accomplishing SAM tasksis easy (same 5pt. scale)

17. What SAM tellsmeis clear and understandable (same 5pt. scale)

18. Overdl, | find SAM easy to use (same 5pt. scale)

19. SAM helps me prepare for assessments (same 5pt. scale)

20. SAM easily trains me on M S Office basic functions (same 5pt. scale)

21. SAM decreased thetimeto learn M S Office functions (same 5pt. scal€)

22. SAM improved my ahility to use MS Office (same 5pt. scale)

23. | use SAM technica support often (same 5pt. scale)

24. SAM tech support helps me well and timely with SAM problems (same 5pt. scale)
25. SAM tech support is very accessible and knowledgeable (same 5pt. scale)

26. | preparefor classes and assessments well (same 5pt. scale)

28. | receive help from other students while doing assessments (same 5pt. scale)

29. | receive help from SAM/IT tech support while doing assessments (same 5pt. scale)
30. | receive help from my instructor while doing assessments (same 5pt. scale)

31. SAM training reflects what is covered in assessments (same 5pt. scal€)

32. SAM training prepares mewell for assessments (same 5pt. scale)

33. | use SAM training often (same 5pt. scale)

37. | do assessments (1=on my own computer, 2=in the lab, 3=at a friend's house, 4=elsewhere).

Self-Efficacy

27. 1 work very hard and persistently in C1S1025 (same 5pt. scale)

34. 1 am certain | can magter the skillsin CI1S1025 (same 5pt. scale)

35. | often discuss CI1S1025 content with friends/family/etc. (same 5pt. scale)
36. | often receive general emotiona support from others (same 5pt. scale)
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