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ABSTRACT

We discuss data quality issues that emerge when applying text mining classification methods for automated ICD-9-CM
coding. In particular our work investigates the extent to which errors in input text data propagate to the classification model.
Text classification techniques based on two Bayesian machine learning algorithms (naive Bayes and shrinkage) were applied
to a set of free-text outcome diagnoses, which were previously coded using the Spanish Edition of the International
Classification of Diseases – Clinical Modification (ICD-9-CM). A measure of predictive accuracy was calculated for each of
the text mining algorithms under analysis. Subsequently, the quality of the sample data was incrementally deteriorated by
simulating typographical errors in the text. The predictive accuracy was recomputed for each of the dirty samples for
comparison purposes. Our results suggest a low impact of errors on the performance of automatic coding by ICD-9-CM.
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INTRODUCTION

In order to benefit the most from Information Technology (IT), medical scenarios require that the large amounts of
information which are produced during physician-patient encounters, diagnostic testing and therapeutic procedures be made
readily available to computer systems. Researchers have resorted to the manual coding of information contained in medical
documents,  using  a  wide  variety  of  approaches.  One  of  the  most  widespread  of  such  systems  is  the  International
Classification of Diseases (ICD) family of classifications, and its adaptation the US produced Clinical Modification (ICD-9-
CM), based on World Health Organization’s 9th edition.

Coding has often been criticized as a poor way of both organizing and representing medical information. Whereas the latter is
true to a certain extent, the former deserves closer analysis. As has been said, coding as it is practiced at present is a manner
of classifying and indexing information. As is true to all classification schemes, coding indeed introduces biases in the
clustering, organization and presentation of data. In the present state of affairs, and as has already been mentioned above, the
better part of “raw” medical information still remains poorly structured or simply expressed in narrative form. Codes
represent a secondary abstraction of information otherwise more fully expressed through other means, namely free text.

One of the main problems with medical coding is that it is a time-consuming and expensive process requiring specially
trained human resources (Friedman, 2004). Classification schemes such as ICD-9-CM appear as deceptively simple code lists
but in reality are complex, rule-based systems for the assignation of one or more codes to well defined units of information,
as for example discharge diagnoses or procedures done on patients. Bibliography is ripe with examples of the lower precision
and correctness of coding when it is done by untrained personnel. Clinical documents, including discharge summaries, X-ray
or pathology reports, problem lists, and other semi-structured “blocks” of clinical information are recorded as free text, and
are prone to typographical errors and semantic misinterpretations of ambiguous terms and phrases.  Consequently, improving
machine readability of available free text information remains the centerpiece of the problem (Lussier, 2004).

Our purpose in this paper is to analyze the predictive power and robustness of Bayesian text classification models used for
automatic ICD9-CM coding, under circumstances in which data quality is at issue. Beginning with a dataset of free text
discharge diagnosis previously coded by human coders, we simulate common grammatical errors in order to produce a series
of “dirty” datasets, where the proportion of errors increased from 10% to 80% of the total word count.
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The following section provides an introduction to Bayesian text classification and the two algorithms under consideration
(i.e. naive Bayes and shrinkage). The next section describes the experimental setup and reports the results. The paper ends
with our conclusions, including future research  pointers1.

BAYESIAN TEXT CLASSIFICATION

The automated classification of free text documents is a classic statistical machine learning problem: a statistical model is
created using an algorithm and a training set of free text samples, each of them labeled with a given document class value; the
trained model is the tested using a collection of  labeled samples to verify the accuracy of the classification method. A variety
of statistical machine learning techniques have been proposed for text classification (see Yang, 1999). In this work we
concentrate on Bayesian classifiers, specifically naive Bayes and shrinkage-based naive Bayes  (McAllum et al, 1999).

Consider a data sample { }1 2, , .. ND d d d=  where each instance nd D∈  is represented by M attributes 1 2, ,.., MX X X , and

corresponds to a class value { }, i=1, |C|ic . Bayesian learners classify instances nd D∈  by computing the posterior

probability of each class P( | ) P( | ) P( )i i ic D D c c∝ ⋅ , and assigning the class value that holds the maximum a posteriori
(MAP) probability value. The priors P( )ic  can be estimated by computing frequency counts on the sample data set.  A naive
Bayes classifier simplifies the problem of computing the likelihood P( | )iD c  by assuming conditional independence among

attributes of the for sample D, and thus calculating P( | )iD c  as
1

M

ij
j

θ
=

∏ , where P( | )ij j ix cθ =   is the conditional probability

of each attribute value j jX x=  given the class ic . Each ijθ  can be estimated as the relative frequency of training samples

belonging to class ic  that carry attribute value j jX x= .  Using a Dirichlet prior probability distribution with parameters

1( , ..., )
ii ij ijrD α α  to regularize the sample in cases where there are very few or no instances containing pairs ( jx ; ic ), the

probability estimates are ( )îj ij ij ij ij
j j

N Nθ α α= + +
 
 
 
∑ ∑ .  The values ijN  are the number of sample instances for which

attribute jX  takes value jx , and class value is ic . Parameters ijα  can be seen as counts of fictitious cases. Assuming that, for

each class ic , counts are uniformly distributed over the M  attributes, 1ijα =  and ij
j

Mα =∑ , which results  in

( )ˆ 1ij ij ij
j

N N Mθ = + +
 
 
 
∑ (1)

As described by Mitchell (1997), Naive Bayes can be applied to text classification by adding the assumptions that each word
in a sample document is an attribute of the sample instance and that its probability of occurrence is independent of its
position in the sample document. If vocabulary V denotes the set of all distinct words occurring in all sample documents, and

kw identifies the kth word in vocabulary V, then P( | ) P( | )j k i k i ikX w c w c θ= = = .  The estimate îkθ  is calculated using the

following procedure: (i) organize the document sample into a set of concatenated documents { }i∆ , each of which belong to

class value { }, i=1, |C|ic ;  (ii) compute the estimate îkθ  as ( )1 | V |ik ik
k

N N+ + 
 
 
∑ , where ikN  is the number of times a

word kw  appears in  concatenated document i∆  , and  |V| is the size of the vocabulary. Any new document formed by a set of
words,   is subsequently classified according to the MAP rule:

|# of positions in document|

MAP
1

arg max P( ) P( | )
i

i q i
c C q

c c w c
∈ =

= ×
 
  

∏ (2)

1 Due to space limitations and the fact that this is ongoing research, we settle for just overviews at this time. We apologize if
we have inadvertently left out any material desired by prospective readers. However, we will provide complete coverage of
these topics at the conference.
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Although these assumptions introduce a major simplification, in practice Naive Bayes has proven to perform well when
compared with more sophisticated algorithms. See Mitchell (1997), Rish (2001) for more details.

Class Hierarchies and Shrinkage

For classification problems in which the number of classes is large, the estimates îkθ  are much less reliable, which in turn
affect the accuracy of the naive Bayes classifier. But if the group of classes is organized hierarchically, as in the case of
ICD9-CM, the hierarchical structure can be used to compute better probability estimates. Several authors have proposed
Bayesian approaches to hierarchical text classification, including Koller & Sahami (1997), and McCallum et al (1999).  In
this paper we focus on McCallum  et al ‘s shrinkage algorithm.

For each node in a hierarchy tree of r levels, a maximum likelihood estimate without regularization
( ) ( ) ( )ˆ  = / , 1...h h h
ik ik ik

k

N N h rθ =∑  is computed using all the document samples that belong to that hierarchy level. The estimates

along the path discount each child’s data from its parent’s before computing the parent’s estimate, in order to ensure that the
maximum likelihood estimates remain independent. A uniform distribution parameter (0)ˆ 1 | |ik Vθ =  is added, to deal with

unreliable estimates at the root level due to the presence of uncommon words.  The estimate of each leaf node îkθ  is  then

computed by interpolating (“shrinking”) its estimate based on the estimates of its (r+1) ancestors (0) (2) ( )ˆ ˆ ˆ{ , ,..., }r
ik ik ikθ θ θ  in the

tree path
(0) (0) (1) (1) ( ) ( )ˆ ˆ ˆ ˆ... r r

ik i ik i ik i ikθ λ θ λ θ λ θ= ⋅ + ⋅ + + ⋅ (3)

The interpolation weights (0) (1) ( ), ,..., r
i i iλ λ λ  among the ancestors of class ic  add to 1. The optimal weights ( ) , 1...s

i s kλ =  are
computed  using a simple variation of the EM algorithm.  For details of the algorithm see McCallum et al (1999).

EXPERIMENTAL SETUP

Data Source

A set of 11776 free-text outcome diagnoses occurring in 7380 hospitalizations was obtained. The list of discharge diagnoses
was obtained from discharge abstracts in which physicians recorded this information as free text phrases. Two experienced
coders assigned corresponding codes using the 1999 Spanish Edition of ICD-9-CM. ICD-9-CM is known as a hierarchical
coding system due to the fact that the codes which are effectively assigned to diagnosis may be aggregated into blocks of
decreasing level of granularity, thus forming a tree-like structure similar to the Internet newsgroup hierarchies. Figure 1
shows a snapshot of the computerized “ICD-Navigator” used by human coders, which illustrates the hierarchical organization
of ICD-9-CM. For this study, original codes were aggregated at the third and fourth level of the hierarchy (which roughly
correspond to the Section and 3-digit code levels of ICD-9-CM). The 3-level class hierarchy, contained a total of 408 leaf
codes, of which only 172 were effectively used in out dataset (that is, these codes were effectively assigned to patients); the
4-level hierarchy included 2687 leaf codes, of which  the data set included 651. Ten percent of the document sample (1178
documents) was randomly selected to be used as the test hold out. The remaining 10598 documents were used to train the text
classifiers. Both the training and test samples were preprocessed to eliminate excessively frequent words from the free text
diagnoses (e.g. articles and prepositions). The test data set was analyzed to check that both the vocabulary and the classes
were well represented in the training data set. We verified 79.7% of the words in the test data set vocabulary were present in
the training data set vocabulary; and that for both class hierarchies (3-level and 4-level), 97% of the classes in the test data set
were present in the training data set.

Dirty Data Simulation

Two kinds of dirty data were considered: (a) free text diagnoses with typos, misspellings or misleading abbreviations; (b)
erroneously coded diagnoses (wrong ICD-9-CM codes) due to coders’ lack of experience. We chose in this paper to focus on
text errors in diagnoses (option a), following these guidelines:

- We standardized the simulated percentage of damage by considering each word in each sample diagnose as a potential
target for perturbation (errors were limited to one per word).
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- We progressively deteriorated the document sample introducing typographical errors randomly selected among the list of
the most common errors in Spanish (commons transpositions and substitutions of letters). We assumed uniform
distribution of these errors in the sample.

- We generated 8 dirty data sets with perturbations of 10%, 20%, 30%, 40%, 50%, 60%, 70% and 80% of the cases.

Figure1: Spanish ICD9-CM browser. The successive levels of the hierarchy are easily
identified as Volume, Chapter, Section, and 3-, 4- and 5-digit level codes. The authors
explored automatic assignation at the Section level, which is usually employed in
epidemiological reports.

Model Generation and Performance Evaluation

During the training stage of the experiment, a model was built for every combination of text classifying algorithm (naive
Bayes and shrinkage), class hierarchy (3-level and 4-level)  and training data set (1 clean data set,  8 simulated dirty data
sets), 2 x 2 x 9 = 36 models all in all. The classifiers’ performance was measured by calculating their predictive accuracy.
Each of the 36 models was tested using the test data holdout and the predictive accuracy was measured as a mean value of the
percentage of successful predictions and an error bar given by the standard error (SE).

Results

Preliminary results of the classification analysis are presented in Table 1, and Figure 2. Table 1 shows the assessment of
predictive accuracy of the text classifier models, trained with clean and dirty data. The accuracy is provided as a point
estimate +/- SE.  Figure 2 displays the mean accuracy of the classifiers as a function of the percentage of dirty data.

As expected, the shrinkage algorithm outperforms naive Bayes for all combinations of clean and dirty data set and for both
types of class hierarchies (3-level and 4-level).

In the case of the clean data sets, for 3-level hierarchies (172 class classes) naive Bayes’ predictive accuracy was 78.41% and
Shrinkage reached  85.07%.For 4-level hierarchies ( 651 classes), naive Bayes’ predictions were accurate 67.92% of the
times, while Shrinkage made correct predictions in 82.08% of cases.
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Table 1. Predictive Accuracy of Text Classifiers

It is interesting to note that both algorithms prove to be surprisingly robust when subjected to training data with an increasing
amount of errors. In the case of the 3-level hierarchy data sets, the shrinkage based models maintained a considerably high
level of accuracy which remained practically constant even with training data sets containing 40% of errors and dropping an
additional 5% (79.18%) for 80% dirty data sets. For 4-level hierarchies, shrinkage accuracy went from 81.66% to 74.32% as
the data was increasingly deteriorated from 10% to 80%.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0% 10% 20% 30% 40% 50% 60% 70% 80%

% of dirty data

Pr
ed

ic
tiv

e 
Ac

cu
ra

cy
 (%

)  
   

   
.

NB 3 Levels

SH 3 Levels

NB 4 Levels

SH 4 Levels

Figure 2. Predictive Accuracy of Text Classifiers

For 3-level hierarchies, Naive Bayes yielded a predictive accuracy of  78.41% with 10% errors , of  75.41% at 40% and of
68.17% at 80%. For 4-level hierarchies, Naive Bayes was 66.21% accurate  with 10% errors and 53.92% accurate with 80%
errors.

CONCLUSION AND FURTHER RESEARCH

Our present results reinforce our previous conclusions regarding automated coding using statistical language processing
methods. The increase in number of cases for both the training and test sets has not altered our previous results with clean
data in a significant manner (March et al, 2004). Although our conclusions regarding the influence of “dirty” data are
preliminary and require further investigation, a priori, the results suggest that with enough training data and adequate text
classification algorithms, the quality of training data is not relevant to guarantee high levels of predictive accuracy.
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