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ABSTRACT

We describe various industrial and business applications of a common approach for learning the probability distributions and
the structure of Bayesian networks. After describing the Bayesian learning theory, we explain how the parameters learned
with this method can be used for prediction tasks in various application domains. In the first domain we learn the structure
and the probability distribution of a dynamic Bayesian network to diagnose faults in a generic electrical power distribution
network. In the second domain, we learn the probability distributions of a Bayesian network in a multi-agent system for the
profiling of users in the procurement and contracting for the USA defense acquisition community. In the third application we
describe a help-desk on-line information system for managing a hotel chain using Bayesian reasoning to assign the best
technician to answer client requests. With these applications we show how a theoretical Bayesian framework can be
integrated into on-line information systems and scaled-up to solve real world problems.

Keywords

Diagnosis, user profiling, data mining, Bayesian learning

INTRODUCTION

Bayesian probabilistic inference has become a common approach for representing and reasoning with uncertain knowledge in
multi-agent and intelligent systems (Pearl, 1988). Bayesian inference uses a Bayesian network representation to make
inferences about how likely it is that a hypothesis that explains a phenomenon will be true, given certain evidence gathered
from the environment. A Bayesian network is a representation technique of uncertain knowledge. The nodes of the network
represent random variables and the arcs represent dependencies among variables. The dependencies in a Bayesian network
may represent causal relationships, where the arrows point from causes to effects. Bayesian inference is commonly applied
for diagnostic, classification, prediction, information retrieval and user profiling tasks, among others. In diagnosis, symptoms
are observed and we speculate about possible causes using a kind of evidential inference called abduction. In abductive
reasoning, we observe certain evidence, and from that evidence, we hypothesize about the possible causes (Poole, 1998).
Some hypotheses (causes) are more likely that others, and this is modeled by defining a probability distribution over the
hypotheses. Bayesian inference is then used to find the most probable cause (hypothesis) given the evidence. In classification
tasks, we are given a set of classes, a set of attributes that characterizes the classes, and for each attribute, a finite domain
from which each attribute takes its values. The classes follow a probability distribution which indicates which classes are
more likely that others. Each of the attributes is characterized by a probability distribution over the values it takes. When a
new case is presented (a case is given by assigning a value to each of the attributes), we want to assign the case a class. We
use Bayesian inference to find the probability distribution of this case membership with respect to the classes. We assign the
case the class with the highest probability. In a prediction task, we model a problem with a Bayesian network where the
arrow points in the causal direction from causes to effects. When we observe some evidence in the environment, we reason
abductively (from effects to causes) to find the causes that explain the observations, and once the cause is identified, we
reason in the causal direction (from causes to effects) in order to predict the values of other variables that are not observed in
the environment, but that are true in that environment. For instance, if we observe fever in a patient, we may abduct that the
patient  has  a  blood  infection,  and  if  that  is  the  case,  we  may  predict  the  presence  of  a  virus  in  the  patient’s  blood.  In
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information retrieval, we want to locate the information that is relevant to answer a query from a user. We fetch the
information that is more likely to answer the current question. Another important application of prediction with Bayesian
networks is in user profiling. The objective is to design a network that models user habits so that we can predict user’s
preferences from observed data of user’s behavior. Thus, in the diagnosis, classification, prediction tasks, information
retrieval or user profiling tasks, we find that the hypothesis (causes) are noisy and that Bayesian inference is able to deal with
such environments, by using robust reasoning methods, founded in the well-known, mathematical principles, provided by
probability theory.

Bayesian networks and Bayesian inference are used as a knowledge representation as well as an automated reasoning method
for uncertain domains, respectively. In one approach to Bayesian modeling, human experts are responsible for designing the
network structure by identifying the variables and finding the dependencies among the variables, and also, they are
responsible for judging and calculating the conditional probabilities associated with each node. In recent years, attempts have
been made to automate both parameters, the design of the network structure, as well as the calculation of the conditional
probabilities (Cooper, 1992; Buntine, 1994). This automation process is known as Bayesian learning. Thus, we want to learn
these parameters in order to facilitate the designer the use of Bayesian networks in designing intelligent systems for various
tasks.

This paper is organized as follows: section 2 describes Bayesian networks; section 3 explains how to learn the two Bayesian
parameters: the probability distributions given a network structure, and the structure of a Bayesian network from a database;
section 4 explains how a dynamic Bayesian network can be learned for diagnosing faults in an electrical power distribution
network; section 5 describes the learning of probability distributions for profiling users in the procurement and contracting
for the USA defense acquisition community; section 6 presents a Bayesian on-line help desk information systems for hotel
operations; section 7 presents the conclusions

BAYESIAN NETWORKS

The Bayes theorem allows us to calculate the posterior probability distribution of a hypothesis given a set of observations
(data) from the environment. The Bayes rule is:

P(hyp | data, K) = P(data | hyp, K) x P(hyp | K) / P(data | K)

K represents background knowledge that has been acquired from previous observations or inferences, and data is the actual
observation. The likelihood P(data | hyp, K) is the probability that the hypothesis would have produced these data. It is high
when the hypothesis function is a good fit of the data, and it is low when the hypothesis function would have predicted
different data. The prior P(hyp|K) encodes the learning bias. This factor is needed in order to bias the theory towards simple
hypothesis functions. The denominator P(data|K) is a normalizing constant to make sure that the probabilities sum to one. If
data arrives sequentially, then the Bayes rule gives us a principled way of updating the posterior probability of the hypothesis
given the evidence provided in data, an given that we have stored in K previous knowledge. Thus, P(hyp | d1, d2,..., dn, K1,
..., Km), where di represents the data elements and Kj represents the background knowledge elements, can be calculated
using a generalized version of the Bayes rule. The calculation of the right-hand side of the rules becomes computationally
intractable. However, a Bayesian network facilitates these calculations.

Technically speaking, a Bayesian network is an acyclic directed graph (DAG), where nodes denote random variables and
arcs represent dependencies between the variables. Associated with each node in the network there is a Conditional
Probability Table (CPT) that gives the probability that the random variable associated to that node takes a given value, given
its parents. Using these CPTs, an efficient Bayesian inference algorithm exists that takes advantage of the independence
assumptions modelled by a Bayesian network, to avoid the combinatorial explosion and the intractability that arises in
calculating the joint probability distribution, when the number of random variables is large. The independence assumption
embedded in a Bayesian network is that each random variable is independent of its non-descendants given its parents. Let
x1,...,xn be  a  set  of  random  variables  in  a  given  domain,  and  let P(x1,...,xn) be their joint probability distribution. If we
totally order the variables and apply the rule-chain, then we have:

P(x1,...,xn) = P(x1) P(x2 | x1) P(x3 | x1, x2) ... P(xn | x1, ... ,xn-1)

For each random variable xi, we assume that there is some minimal set ∏xi ⊆ x1,...,xn} such that P(x1 | x1, ... , xi-1) = P(xi
| ∏xi). That is, once we know the values of the variables in ∏xi, knowing the values of other predecessors of xi in the total
ordering, will not change our belief in xi. The elements of the set ∏xi are known as the parents of the variable xi. We say that
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xi is conditionally independent of its predecessors given its parents. We can create a graph where there is an arc from each
parent of a node into that node. Such a graph, together with the CTPs given by P(xi | ∏xi) is known as a Bayesian network
(BN).

LEARNING BAYESIAN PARAMETERS

In supervised inductive learning we want to approximate an unknown function f.  We are given a set of examples (x, f(x))
where x is  a  value  and f(x) is the value returned by the unknown function f when applied to x. The supervised inductive
learning problem consists of finding a function h that approximates the unknown function f,  given a  set  of  cases  of f in  a
database D. The function h is called a hypothesis. There can be many hypotheses that approximates f. The set of these
hypotheses is known as the hypotheses space. Finding a hypothesis that approximates f can be seen as a search problem over
the hypotheses space. The database of cases D is split into two sets--the training set of cases which is used to construct the
hypothesis, and the test set, which is used to test an hypothesis, once it has been built. Since we know the value f(x) for each
case x in the test set, we can compare f(x) against h(x) to see how good the hypothesis h is. In Bayesian learning, instead of
constructing a hypothesis h as in most learning systems, a posterior probability distribution is constructed over the space of
possible hypotheses. There are at least two different approaches that can be taken in Bayesian inference. One is to choose the
hypothesis that is most likely given the data. The other approach is to average over all hypotheses based on their posterior
probabilities. Frequently, the structure and the probability distributions in the CPTs are either known or calculated by experts.
However, when constructing a Bayesian network we can learn these two parameters.

Learning the probability distribution

Let’s define a BN by a set of random variables X={X1, X2, ..., Xn} and a network structure S defining a graph of conditional
dependencies among the elements of X. Each variable Xi takes  one  of  a  possible  set  of m values xi1, ..., xim.  Let D be  a
database of cases D = {C1, C2, ..., Cl} where each case Cj = {x1j, ..., xmj} is a set of entry values. We assume that the cases
are mutually independent. Given a network structure S, the task is to learn the conditional probabilities defining the
dependencies in the BN, from the database D. We regard the conditional probabilities as a set of parameters θ = {θ1, ..., θk}
so that the probability distribution for each case is:

P(X=Cj | θ) = Π(i=1 to n) p(xij | pa(xi), θi)

θi parameterizes the probability of xij given the parent configuration pa(xi). We want to assess these parameters θi induced by
the database D, over the known network structure S. The classical statistical parameter estimation provides the basis to learn
these parameters. When the database is complete, the common approach is Maximum Likelihood which returns the parameter
values that make the database most likely. Given the values of X in the database D, the joint probability of D is:

P(D | θ) = Π(j=1 to l) p(X=Cj | θ)

This is a function of θ only, usually called the likelihood function l(θ). The Maximum Likelihood (ML) estimate of θ is the
value which maximized l(θ). For discrete variables, the ML estimates of the conditional probabilities are the observed
frequencies of the relevant cases in the database. Let n(xij | pa(xi)) be the observed frequency of cases in the database with xij,
given the parent configuration pa(xi), and let n(pa(xi)) be the observed frequency of cases with pa(xi). The ML estimate of
the conditional probability of xij | pa(xi) is simply n(xij | pa(xi)) / n(pa(xi)).

The Bayesian approach to the learning of probability distributions extends the classical statistical parameter estimation
technique in two ways: (1) the set of parameters θ are regarded as random variables, and (2) the likelihood is augmented with
a prior π(θ) representing the observer’s belief about the parameters before observing any data. Given the cases of the
database, the prior density is updated in the posterior density using Bayes rule:

π(θ | D) = π(θ)p(D | θ) / p(D), where P(D) = ∫π(θ)p(D | θ) dθ

The Bayesian estimate of θ is  then  the  expectation  of θ under the posterior distribution. Common assumptions in the
Bayesian approach to learn probabilities with discrete variables are that the parameters (1) are independent from each other,
and (2) have a Dirichlet distribution, which simplifies to a Beta distribution for Boolean variables.

If the database is complete, that is, there are no missing data, the posterior distribution of the parameters can be computed
exactly using standard conjugate analysis. When some of the entries in the database are missing, we have to face a set of
possible complete databases, one for each possible value of the variable for which the datum is missing. Several approaches
have been developed for dealing with the situation of incomplete databases (Spiegelhalter and Lauritzen, 1990)
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Learning the structure of Bayesian networks

There are at least two approaches to learn the structure of a Bayesian network: the information content approach, where the
dependencies are derived based on the amount of information carried between the variables, and the Bayesian approach. The
system Power Constructor (Cheng, 1999) implements the information content approach. Here we describe the Bayesian
approach, which has been implemented in systems like Bayesian Knowledge Discoverer.

Suppose we are given a database of n cases D={x1, ..., xn} from  which  we  wish  to  learn  a  structure S of conditional
dependencies among the variables in the database. If p(S) is our prior belief about a particular structure S, we can use the
information in the database D to compute the posterior probability of S given the data:

P(M | D) = p(M, D) / p(D)

We choose the structure with the highest posterior probability. When we compare two candidate structures S1 and S2, we
choose S1 if the Bayes factor P(S1, D) / P(S2, D) is  greater  that 1. P(S, D) can be easily computed if the conditional
probabilities defining S are generated as random variables θijk whose prior distribution represents the observer’s belief
before seeing any data. The joint probability of a case xk can then be written in terms of the random vector θ={θijk} as:

P(xk | θ) = Π(i=1 to I) θijk

This parameterization of the probabilities defining S allow us to write:

P(S, D) = ∫ p(S, D, θ) dθ = p(S) ∫ p(θ | S) p(D | θ) dθ

Where p(θ | D) is the prior density of θ, and p(D | θ) is the sampling model. The integral is defined in the parameter space
whose dimension depends on the complexity of the network. A solution in closed form exists if, (1) the database is complete,
(2) the cases are independent given θ, (3) the prior distribution of the parameters is conjugate to the sampling model p(D | θ),
and (4) the parameters are independent. Details of the calculation can be found in (Cooper and Herskovitz, 1992). (Ramoni
and Sebastiani, 2000) have developed a method to learn Bayesian structures when the database is incomplete.

Bayesian classifiers

Classification is a common task performed by knowledge discovery systems. It consists of assigning a class label to a set of
unclassified cases. Classification typically involves two steps: first, the system is trained on a set of data and then it is used
to classify a new set of unclassified cases. A Bayesian classifier is trained by estimating the conditional probability
distribution of each attribute, given the class label, from a data base. The estimation of these probabilities is analogous to the
calculation of  the weights is a neural network. A case is classified from its set of attribute values, by computing the posterior
probability of each class label given the attribute values, using the Bayes rule. The case is then given the class with the
highest posterior probability. The simplifying assumption underlying Bayesian classifiers is that the classes are mutually
exclusive and exhaustive and that the attributes are conditionally independent once the class is known. These assumptions
have been regarded too strong and have dismissed Bayesian classifiers as naive, useful just for evaluating more sophisticated
techniques. But despite these theoretical limitations, recent empirical evaluations have found Bayesian classifiers
surprisingly accurate (Friedman et al., 1997). A Bayesian classifier is defined by a set C of  classes  and  by  a  set A of
attributes. We denote a generic class by cj, and a generic attribute by Ai. The Bayesian assumptions about mutually exclusive
and exhaustive classes and conditionally independent attributes are made. This way, the set of classes C can be treated as a
stochastic variable taking one of the values ci with a probability distribution that represents the unknown state of the world.
The database of cases are used to determine the probabilities P(cj) and P(Ai | cj) for each attribute Ai. These probabilities are
determined by counting the number of instances. All of the attributes depend on their class only, and no connections among
attributes are allowed. Figure 1 shows the Bayesian network assumed by a naive Bayesian classifier.

Suppose we observe a new case with A1=v1, A2=v2, ..., Ak=vk. We use the Bayes rule to determine the posterior probability
of the class cj of the new case conditioned on the values of the attributes, as follows:

P(cj | A1=v1,..., Ak=vk) = P(A1=v1,...,Ak=vk | cj)P(cj) / P(A1=v1,..., Ak=vk)

Using the independence assumption this simplifies to:

P(cj | A1=v1,..., Ak=vk) = P(A1=v1 | cj) x...x P(Ak=vk | cj)P(cj) / P(A1=v1,..., Ak=vk)

The values P(A1=vi | cj) are obtained from the CPTs. The denominator P(A1=v1,..., Ak=vk) is a normalizing factor to
ensure that the probabilities add to one. Ramoni and Sebastiani proposed a robust Bayesian classifier called ROC that is able
to deal with incomplete databases, with no assumption about the pattern of missing data (Ramoni and Sebastiani, 1999).
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Figure 1 Bayesian network for a naive Bayesian classifier

BAYESIAN DIAGNOSIS IN POWER DISTRIBUTION NETWORKS

Bayesian networks have been frequently applied for the task of fault diagnosis. Diagnosis is seen as an evidential reasoning
task, where some parts of the system are observed and we want to make inferences about other hidden parts of the system.
We use Bayesian networks to model a problem domain with either a causal model, or an evidential model, or both. We use
this model for doing either evidential or causal reasoning for diagnosing system faults as shown in figure 2.

Figure 2.Causal and evidential reasoning in diagnosis

Evidential and causal reasoning are combined for diagnosis. For instance, a medical doctor may observe symptoms in a
patient, determine possible diseases, and predict symptoms which have not manifested. The doctor then looks for the
presence of these new symptoms following a perception cycle. If the Bayesian network is used as a causal model then we use
abduction to reason from observations to causes and we use model-based reasoning to make predictions in the causal
direction. Poole proposed the Independent Choice Logic (ICL), a framework for modeling multiple agents under uncertainty.
ICL combines Bayesian networks and first-order logic representations, as well as influence diagrams, dynamic systems,
decision making and game playing (Poole, 1997). One of the applications of ICL is in multiple fault diagnosis. A
methodology based on a dynamic version of ICL was developed by Garza (Garza, 2001) and applied it in diagnosing faults
in electric power transmission networks (Garza et al., 2000). The methodology comprises three steps. In the first step, the
problem is modeled causally, using the ICL representation, a set of Horn-logic rules encoding probabilistic information. In
the second step, the ICL system is used to generate a set of explanations of possible causes from observed symptoms. Since
the search space of explanations grows exponentially in the number of variables, heuristics based on probability
maximization, entropy and knowledge of the domain are used to prune the search space. In the third step, a causal reasoning
is conducted by using Dynamic Bayesian networks to analyze continuous signals, to collapse the remaining explanations
from step 2, into a single explanation that explains the observed symptoms. This methodology has been applied to the
diagnosis of faults in power transmission network, of a complexity equivalent to an electric network in a city area. This
problem is documented by IEEE as a benchmark problem in system diagnosis. Other problems in diagnosing industrial
machinery are also tackled with this methodology. (Garza et al., 2005).
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BAYESIAN USER PROFILING IN THE MACS SYSTEM

Other important application area of Bayesian networks is user profiling (user modeling). The objective is to develop a model
of user habits and use this model to predict user behavior, from observed user action. This is also an evidential and causal
reasoning task. Thus, the Bayesian approach to user profiling is similar to the Bayesian approaches for classification and
diagnosis. Heckerman and Horvitz describe the use of a Bayesian approach to modeling the relationship between words in a
query from a user who asks for assistance, and the informational goals of the user (Heckerman and Horvitz, 1998). Their
work was used by the Microsoft Office to help Excel users when using a spreadsheet. Rather than using key-words for which
a full list of synonymous is likely not to be available, they proposed a probabilistic approach for diagnosing user’s problems
given a query, by inferring a probability distribution over concepts in the query.

Following these ideas, we describe Bayesian learning for user profiling in the system Multi-Agent COTR System for Defense
Contracting (MACS) (Liebowitz et al, 2000). The MACS system is a multiagent-based system for assisting Contracting
Officers´ Technical Representatives (COTRs) in the pre-award phase of defense contracting and procurement. The system
architecture consists of a user agent and a set of five specialty agents. The user agent interacts with the COTR and broadcasts
a COTR’s query to the various specialty agents, who analyze the query so that hopefully, one of them will provide an answer.
We enhance the functionality of the user agent by having it to “know” more about the COTR and by having it collaborate
with the specialty agents in deciding how to answer a query, instead of just broadcasting the query. The former, (knowing
more about the COTR) is a user profiling function that can be obtained by Bayesian learning, and is described in this section.
The latter, (cooperating with the specialty agents) is accomplished with a type of Bayesian learning technique for multi-agent
systems and is explained in (Cantu, 2002).

All the knowledge and reasoning required to answer the query resides within the specialty agent that means that a specialty
domain is independent of the rest of the specialty domains. The actions of the specialty agents comprise mainly the reasoning
that is carried out and the knowledge that is inferred in order to answer a query.  The main agent’s actions are summarized as
follows:

(1) Forms agents. How to identify the forms needed to complete the contract request based on characteristics of the contract.

(2) Justification agent. How to determine whether a justification and approval is required to complete the procurement
request

(3) Evaluation agent. Determining an evaluation function and its weight parameters or an evaluation criteria

(4) Synopsis agent. Under what circumstances is a synopsis required for completion of a procurement request package

(5) Type of contract agent. How to classify a contract based on its main attribute values

The learning capability that we add to MACS consists of having the user agent identify the specialty agent probabilistically,
by considering the specialty domains as random variables with a probability distribution, given the evidence appearing in the
query. This is done by a naive Bayesian classifier. We infer user’s goals from user’s queries in free-text format using a naive
Bayesian classifier. The user agent uses a Bayesian model to identify the specialty agent given the evidence appearing in the
query. This model shows a causal relationship between the specialty agent domains and the evidence in the query. There is an
ontology for the specialty agents that includes a goal. Each specialty agent is described by a set of attributes that are terms
that typically appear in a query directed to that specialty agent. The corpus of queries stored in the US Defense Acquisition
DeskbookWeb page, provided the information to define the classes, the attributes and finding the necessary probabilities
required by Bayesian inference. The structure of the network and the probabilities are learned from this database of queries
using the algorithms described in section 2 (Cantu, 2002). The problem of learning and inference in multi-agent systems in
similar problems is  now tackled with the concept of electronic institutions (Robles et al, 2005b).

BAYESIAN REASONING FOR AN ON-LINE HELPDESK

A Bayesian Reasoning Framework (BRF) is a working environment developed by Robles in which an on-line information
system learns relations that exist in data and uses that knowledge to support business decision processes using Bayesian
Inference (Robles, 2003). The on-line information system described in this study manages the operation of a chain of hotels
in Latin America. BRF was used to replace a manual help-desk sub-system of the hotel management system by an automated
on-line help desk.  The BRF help desk is responsible for assigning the best technician for each client service request about
system operation. The assignment is made by an autonomous Bayesian agent that was modeled using the allocation inference
template of Common KADS (Schreiber et al., 2000). BRF uses a multi-layer architecture and includes a Bayesian Reasoning
agent for which we implemented the techniques of section 2 for learning the Bayesian probabilities for inferring the best
technician allocation. The help desk system uses a Bayesian network whose probabilities are learned by the autonomous
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agent  using  Bayesian  learning.  BRF  comprises  a  three-layer  environment  with  business  information  systems  at  the  top,  a
middle-ware Bayesian reasoning techniques server, and a Bayesian reasoning engine at the bottom. The main goal of the
helpdesk system is to provide technical support service through the internet to users of the hotel management information
system. Each hotel has from 10 to 40 users whose technical support requirements are attended by the helpdesk system. We
use 9,000 data records produced by 3 years of normal help desk system operation, 7,000 were used to learn the dependencies
involved in the advisors assignation process and 2,000 were used for testing the generated assignations by the inference
algorithm. We found that the performance of the help desk based on BRF is at least as good as the performance of its manual
counterpart. (Robles et al., 2005a). Extensions of BRF have been used by an on-line hospital management information
systems that uses multi-agent systems for modeling electronic institutions (Robles et al, 2005b).

Other applications of Bayesian learning using the theory and algorithms described in this paper have been developed but are
not included because of space limitations. Among these applications are chemical process control (Morales et al., 2004a),
autonomous robot navigation (Morales et al., 2004b) and user authentication by learning key-stroke patterns (Gutierrez et al,
2002).

CONCLUSION

We have described industrial and business applications of a common approach for learning the probability distribution and
the structure of a Bayesian network. We have described how learning the probability distributions and the structure of a
Bayesian network can be done from data, and have presented three applications: diagnosing faults in a electrical power
distribution network, the profiling of users in the procurement and contracting for the USA defense acquisition community
and in an on-line help desk information system for managing the operation of a hotel chain. With these applications we show
how a theoretical Bayesian framework can be integrated into on-line information systems and scaled-up to solve real world
problems
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