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ABSTRACT 

This paper explores the methodology of using kernels and Support Vector Machine (SVM) for intrusion detection. A new 
insight into two well known anomaly detection algorithms - STIDE and Markov Chain anomaly detectors, is achieved using 
kernel theory.   

We  introduce  two  new  classes  of  kernels  used  for  intrusion  detection – STIDE kernel and Markov Chain kernel.   
These  kernels  combined  with  SVM  are presented  to  achieve  improvements  over  STIDE  and  Markov  Chain  
anomaly  detectors.   We  provide  empirical evidence that the new anomaly detectors are able to achieve better results than 
conventional anomaly detectors and behave robustly over noisy training data. 

Keywords 

Anomaly intrusion detection, Support Vector Machine, kernel method. 

INTRODUCTION 

The growing number of attacks on computers and networks has made the study of intrusion detection techniques a research 
priority.  Intrusion detection aims to find the activities that compromise the integrity, confidentiality or availability of a 
system.  There are many existing techniques for intrusion detection, which are classified into two classes:  misuse detection 
and anomaly detection. 

In  misuse  detection,  the  sequences  of  events  that  characterize  an  attack  must  be  defined  by  experts  in  the 
intrusion  detection  domain.  System  behaviors  are  compared  to  the  known  attack  patterns,  also  called  intrusion 
signatures, to find attacks.  Misuse detection can detect known attacks accurately; however, it has no ability over the novel 
attacks. 

Anomaly  detection,  on  the  other  hand,  detects  attacks  based  on  normal  profiles  of  users  or  systems.   This 
approach typically consists of two phases.  In the training phase, the normal profile is built based on user or system 
behaviors in normal situation.  Statistical methods and machine learning methods are often used in building and learning  
the  profile  from  normal  system  behaviors.   In  the  testing  phase,  the  system  behaviors  are  compared  to the normal 
profile.  When a sufficient deviation from the normal profile is found, an attack alarm is raised.  Unlike misuse  detection,  
anomaly  detection  can  catch  previously  unknown  attacks.   However,  the  accuracy  of  anomaly detection depends on 
the exactness of normal profiles.  Because of following reasons, the normal profiles are usually not accurate and can cause 
high false alarm rates: 

•  Normal training data is not sufficient to cover all the normal behaviors. 
•  Normal system and user behaviors change over time. 

•  Attackers  can  insert  their  behaviors  slowly,  so  the  normal  data  becomes  noisy  with  intrusion  data.  The 
anomaly detector trained with the noisy data will accept some attacker activities as normal. 

STIDE, developed at University of New Mexico, and Markov Chain anomaly detectors, introduced by Carnegie Mellon 
University, are two well-known anomaly detectors for UNIX privileged system programs [1, 2].  STIDE and Markov  Chain  
anomaly  detectors  work  very  well  when  a  testing  data  set  is  similar  to  the  training  data  set,  but have the problem 
of high false alarm rates when only limited normal training data is provided. 
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A new insight is provided into the two well known anomaly detection algorithms - STIDE and Markov Chain anomaly 
detectors using the kernel theory.  This paper starts from the analysis of STIDE and Markov Chain anomaly detectors, and 
answers the following questions: 

•  What is the theoretical basis of STIDE and Markov Chain anomaly detectors from the statistical learning point of 
view? 

•  What limitations do STIDE and Markov Chain anomaly detectors have? 

•  How can we improve based on STIDE and Markov Chain anomaly detectors? 

This paper then presents two anomaly detectors which are based on kernel method and Support Vector Machine (SVM) 
learning algorithms and have a higher detection rate  (rate of identified attacks) and lower false alarm  rate (rate of normal 
instances classified as anomalies) than STIDE and Markov Chain anomaly detectors. 

An  overview  of  kernel  method  and  SVM is given first.  Then we present the analysis of STIDE and Markov Chain 
anomaly detector using kernel theory and introduce  STIDE  kernel and Markov Chain kernel based  SVM  for  anomaly  
detection. After that, the experimental results is demonstrated. Then we conclude the paper with future research direction. 

BACKGROUND 

Kernel methods 
In some optimization functions, e.g, dual presentation, the data points appear only as dot products.  A  kernel function is 
defined to return the value of the dot product between the images of the two arguments:  K(x1, x2) =<Φ(x1), Φ(x2)> ,  where  
Φ(x)  is  a  mapping  function  from  one  feature  space  F  to  another  feature  space  H. The kernel function can be  used  
without  knowing  the  mapping  function  or  the  feature  space  mapped  to.  The  kernel function can facilitate the use of 
sparse feature space [3].  Many discriminative machine learning algorithms, such as SVM and Probably Approximately 
Correct (PAC) algorithm [4, 5], make use of kernel methods. Using these kernel based learning algorithms, only dot products 
of feature vectors need to be calculated. The high dimensional feature vectors need not to be calculated. This leads to the 
advantage of  computational efficiency. 

The most popular kernel functions include linear kernels, polynomial kernels and radial basis kernels [3]. The linear kernels 
k(x,y) = <x, y> are the simplest kernel function. In a linear kernel, an input vector maps to itself, i.e, Φ(x) = x. The 
polynomial kernels k(x,y) = <x, y>d are more complicated than linear kernel, and they usually have better generalization 
performance than linear kernels in classification [3]. The radial basis kernels k(x,y)=e-||x-y||2/2δ are more complicated than 
polynomial kernels. These kernels are called standard kernels since they are not specifically designed for one domain, instead 
they can be used in many domains, such as natural language processing, speech recognition and computational biology. 

However, recently, there has been considerable interest in the development of application based kernels for specific 
applications, for instance, protein classification in computational biology [6].  A family of string kernels for protein 
classification are introduced, such as spectrum kernels, restricted gappy kernels, substitution kernels and wildcard kernels [7].  
They are demonstrated to be very effective for matching protein types.  

Support Vector Machine 
SVM  was  first  introduced  by  Vapnik  [9]  and  has  been  used  with  great  success  for  pattern  recognition  fields, such 
as handwriting recognition, speech recognition and protein homology detection [4, 6]. Given a set of labeled training  
vectors,  SVMs  learn  a  linear  classification  function. SVMs  have  viewed  the  classification  problem  as a  quadratic  
optimization  problem. It  has  exhibited  excellent  accuracy  on  test  sets  in  practice  and  have  strong theoretical 
motivation in statistical learning theory [10]. 

SVM  method  originates  from  the  perceptron  algorithm. Perceptron  algorithm  works  by  adding  misclassified positive 
or subtracting misclassified negative examples to an arbitrary initial weight vector.  In perceptron based learning, the 
learning problem is ill posed:  finding one hyperplane that separates the input instances into one of two classes correctly in 
feature space. Many such hyperplanes exist.  A principled way to choose the best possible hyperplane is needed. According 
to statistical learning theory, a hyperplane (classifier) with the best generalization ability is considered as the best possible 
hyperplane. 

Generalization ability is the “Capacity”  of a classifier  - the ability  to  learn  ANY  training  set  without  error.  The 
bounds on error of classification suggest the possibility of improving generalization by maximizing the margin.  The margin 
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is the distance from the closest examples to the hyperplane.  The risk of overfitting, which means classifiers drawn  from  
the  training  data  behave  considerably  better  on  the  training  instances  than  the  testing  instances, can  be  minimized  
by  choosing  the  maximal  margin  hyperplane  in  feature  space  [4].   SVMs  improve  “Capacity” by increasing the 
margin and lowering the classification error,  and this optimization problem is solved using the Sequential  Minimal  
Optimization  algorithm.  More  details  about  SVM  can  be  found  in  [11].   

Some  research  on  SVM  explored  how  to  generate  new  features  based  on  training  data  for  intrusion  detection [13], 
and some research studied how to select important features to improve the efficiency of learning in intrusion detection [14]. 
Earlier research has also studied using SVM and standard kernels,  such as radial basis kernel and polynomial kernel,  for  
intrusion  detection  [15].   The  essentials  of  kernel  method  is  to  map  data  into  a  linearly  separable feature  space.   
In  an  ideal  mapping,  the  high  dimension  feature  space  should  represent  more  structure,  which means  knowledge  in  
this  domain.   In  intrusion  detection  domain,  the  knowledge  should  include  order  and  time information.  This paper 
focuses on exploring the kernels specially for anomaly detection, and combine the kernels with SVM to detect anomaly. 

MODEL OF STIDE ANOMALY DETECTOR 

We define a kernel based on STIDE anomaly detector and also present an approach of combining the new kernel with one-
class SVM for anomaly detection. 

STIDE anomaly detector 
In  anomaly  detection  for  system  call  sequences,  an  alphabet  is  used  to  represent  system  calls;  a  sequence  of 
alphabet corresponds to a sequence of system calls, and sequences are collected using trace utility in UNIX. Normal 
sequences are obtained from normal execution of a program and abnormal sequences are generated from abnormal 
execution of a program. 

STIDE  anomaly  detector  uses  a  fixed-size  sliding  window  of  size  k  to  generate  all  the  subsequences  with  size k  
from  the  training  data  to  form  a  normal  k-size  subsequences  database  [16].  Given  a  sequence  of  testing  data, 
anomalies  are  detected  by  sliding  a  window  of  size  k  along  the  testing  data:   if  the  number  of  subsequences  of 
size k  not existing in the normal database is bigger than a certain predetermined anomaly threshold,  δ, then the detector 
declares that an anomaly has occurred, and the current position in the test data can be used to provide information about 
where  the anomaly occurred. 

Earlier research results proved that this STIDE anomaly detector has limited detection coverage [2].  Following the 
definitions in [2], a foreign  sequence  is a sequence whose individual symbols appear in the training sequence, but the 
foreign sequence does not itself appear in the training sequence.  We say a sequence is  normal  if it is not foreign.  A 
minimal  foreign sequence is a foreign sequence whose proper subsequences are all normal.  The STIDE anomaly detector 
has the following detection coverage [2]: 

1.  If the largest minimal foreign sequence in the anomaly space has length M, then a STIDE anomaly detector with window 
size N  >= M  can correctly classify any sequence. 

2.  If the anomaly space contains a minimal foreign sequence of length M, then a STIDE anomaly detector with window 
size N  < M  cannot correctly classify all sequences. 

 STIDE kernel 
Let alphabet set Z represents all the possible system calls that appear in the privileged daemon and  k  be the sliding 
window size used by the STIDE model.  The input space Z* is a space of sequences of characters from the alphabet Z. The 
k-STIDE kernel maps from Z* to a |Z |k -dimensional feature vector space. 

The feature map is defined as follows: 

Φk(s) = (e(s k )) sk ∈A

where s ∈ Z*; A⊆ Z k ; e(sk ) is 1 when sk  is a subsequence of sequence s or 0 otherwise. The k-STIDE kernel is then:     

Kk (s1 , s2 ) =< Φk (s1 ), Φk (s2 ) > 

According to the definition in [8], the k-STIDE kernel K  is a PDS kernel since K (x, y) =< Φk (x), Φk (y) > holds with the 
mapping function Φk (s). 
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From  kernel  method  point  of  view,  the  original  STIDE  anomaly  detector  [16]  can  be  expressed  based  on  the 
kernel  we  defined.   The  STIDE  anomaly  detector  uses  the  feature  mapping  defined  above  to  calculate  a  vector 

(e(s k ))sk∈A,  where  A  is  the  set  of  all  k-size  subsequences  from  alphabet  Z  that  exist  in  the  privileged  daemons; 

e(s k ) is 1 when s k  is a subsequence of s or 0 otherwise. 

Also, the STIDE anomaly detector uses a simple linear threshold function with the mapping method described above.  

In the training phase, a vector v is calculated:  v(s) =  (e(s k ))sk∈A

where s ∈ Z*; A⊆ Z k ; e(sk ) is 1 when sk  is a subsequence of s or 0 otherwise. 

In the testing phase, for each sequence s in testing data, a vector v' is calculated as v' =  Φk (s). 

The  dot  product  of  v'  and  the  vector  v  is  compared  against  an  anomaly  threshold  δ.  When  there  is  one  dot 
product bigger than or equal to the anomaly threshold, an anomaly is raised, i.e., the linear threshold function for anomaly 
detection is:   

<v',v> >= δ, anomaly; <v',v> < δ, normal. 

Using STIDE anomaly detector, consider following example: 

alphabet={a, b, c}, window size k=2 

New feature space Zk :  {aa, ab, ac, ba, bb, bc, ca, cb, cc} 

Training  phase: 

Normal processes:  abbabb, bcccc 

N={ab,ba,bb,bc,cc} is the normal sequences database, so v = (0, 1, 0, 1, 1, 1, 0, 0, 1) 

Linear threshold function: <v',v> >=2, anomaly; otherwise, normal (anomaly threshold is 2). 

Testing  phase: 

abcca  ?  v' = (1, 0, 0, 0, 0, 1, 1, 0, 1), so <v',v> = 1, it is normal. 

aacca  ?  v' = (0, 1, 1, 0, 0, 0, 1, 0, 1) , so <v',v> = 3, it is abnormal. 

Thus, STIDE anomaly detector compares every new instance with a standard abnormal vector, when the number of matches 
is bigger than a predetermined threshold, an alarm is raised. 

It can be seen that the STIDE anomaly detector simply memorizes the observed patterns and all mismatches are considered 
as abnormalities. When the number of abnormalities are over a threshold, an anomaly is reported. Therefore, STIDE 
anomaly detector does not provide good generalization ability, which causes high false alarm rate since unseen normal 
patterns are classified as abnormalities. Thus, we consider to use Support Vector Machine to substitute STIDE’s threshold 
approach and at the same time keep the kernel function(feature mapping) of STIDE anomaly detector. Because Support 
Vector Machine method aims to maximize its generalization capability, SVM can achieve less false alarm rate than STIDE, 
when SVM also uses STIDE kernel. 

Efficient computation of STIDE kernel 
Since the system call sequence length (same as the system call sequence) is k and the alphabet is Z, there can be  |Z| k   
permutation  of  all  possible  system  call  sequences,  which  means,  the  vector  length  is  |Z|k   .   To  calculate STIDE 
kernel, the whole vector needs to be calculated.  So the algorithm complexity is  O(|Z |k ), which increases exponentially 
with sliding window size k and can be impractical to be calculated when k get higher than 4 with alphabet size above 100. 

To  calculate  k-STIDE  kernel  efficiently,  all  the  subsequences  of  size  k  that  do  not  exist  in  the  log  file  of  the 
privileged  system  program  can  be  neglected.   This  saves  tremendous  space  and  computation  time.   Thus,  the 
complexity  of  the  k-STIDE  kernel  method  is  reduced  to  O(|N|)  where  N  is  the  set  of  all  the  subsequences  with 
size k that exist in the traces of the privileged system program. 

MODEL OF MARKOV CHAIN ANOMALY DETECTOR 
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Markov  Chain  models  have  been  used  for  anomaly  detection  for  system  call  sequences  of  privileged  system 
programs in UNIX [2].  We define a Markov Chain kernel in this section. 

Markov Chain anomaly detector 

The Markov-based detector described in [2] uses a fixed-size detector window of size  k  to build a discrete-time Markov  
chain,  as  follows.   Each  state  of  the  Markov  chain  is  a  sequence  with  size  k  appearing  in  the  training data.  The 
probability of transition from state  s = (a1 , a2 , . . . , ak ) to state s'  = (a2 , . . . , ak , ak+1 ) is computed as p(s, s ' )=F(s,s')/F(s), 
where F (s, s') is the number of times the sequence (a1 , . . . , ak+1 ) appears in the training data, and F (s) is the number of 
times the sequence (a1 , . . . , ak ) appears in the training data.  Given a sequence of test data, anomalies are detected by 
sliding a window of size k along the test data:  the current state s is given by the current k  symbols,  the next state  s'   is 
given by the  k  symbols after sliding the window by one position,  and the surprise factor  is calculated as 1 − p(s, s'  ).  If 
the surprise factor is above a selected  anomaly  threshold,  then the detector declares that an anomaly has occurred,  and the 
current position in the testing data can be used to provide information about where  the anomaly occurred. 

Early  works  have  proved  this  Markov  Chain  anomaly  detector  can  achieve  better  detection  accuracy  than the  
STIDE  model  [2].   The  reason  is  Markov  Chain  model  builds  the  normality  by  recording  not  only  which 
subsequences are normal, but also the probability of occurrences of the subsequences.  We have proved the Markov Chain 
anomaly detector has the following detection coverage [17]: 

1.  If  the  largest  minimal  foreign  sequence  in  the  anomaly  space  has  length  M,  then  a  Markov-based  detector with 
window size N  >= M − 1 can correctly classify any sequence. 

2.  If the anomaly space contains a minimal foreign sequence of length  M , then a Markov-based detector with window size 
N  < M − 1 cannot correctly classify all sequences. 

Markov Chain kernel 

Let  alphabet  set  Z  represents  all  the  possible  system  calls  that  appear  in  the  privileged  system  program  and k  be  
the  sliding  window  size  used  by  the  Markov  Chain  model.   The  input  space  Z*  is  a  space  of  sequences  of 
characters from the alphabet Z. The k-Markov Chain kernel maps from Z* to a (|Z |k )2 -dimensional feature vector space. 

The feature map is defined as follows: Φk(s) = (p(s k , s' k) s k , s k' ∈N), where s∈Z* ; A⊆ Zk; s k , s' k are two states in Markov 
Chain, and each of them represents a k-size sequence from alphabet Z; N are the state set of the Markov Chain; p(s k , s' k) is 
the probability of transition from state s k to state s ' k  in sequence s. 
The k-Markov Chain kernel is:    K k (s1 , s2 ) =< Φk (s1 ), Φk (s2 )>. 
According  to  the  definition  in  [8],  a  kernel  K  is  a  PDS  kernel  provided  that  there  exists  a  mapping  function  Φ 
that K (x, y) =< Φ (x), Φ (y) > holds.  The k-Markov Chain kernel K  is a PDS kernel since the above mapping function Φk(s)  
maps  from  a  system  call  sequence  space  to  another  system  call  sequence  feature  space  and  the Markov Chain kernel 
K (x, y) =< Φ(x), Φ (y) >. 

The original Markov Chain anomaly detector can be described using the feature mapping we defined above to calculate  a  
probability  vector  (p(s, a' ))a' ∈A  where  s  is  a  state  that  represents  a  k-size  sequence  from  alphabet  Z that exists in 
the privileged daemons and p(s, a') is the probability of transition from the state s = (a1 , a2 , . . . , ak ) to the state s' = (a2 , . . 
. , ak , a' ). 

The Markov Chain anomaly detector uses a simple linear threshold function.  In the training phase, a family of probability 
vectors are calculated:  vi  = (p(s, a' ))a'∈Z , 1 <= i <= |N | * |Z |  where s is a state that represents a k-size sequence from 
alphabet Z that exists in the program execution; p(s, a') is the probability of transition from state s = (a1 , a2 , . . . , ak ) to 
state s0  = (a2 , . . . , ak , a') if the index of p(s, a' ) in the vector is also i, or 0 otherwise.  So for this family of probability 
vectors, there is at most one non-zero element in each vector. 

In the testing phase,  for each system sequence  s in the testing data,  a probability vector  v,  which represents the features 
of the subsequence transition probability in s, is calculated using the feature mapping:  v = Φk (s) as described earlier. 

The  dot  product  of  v' and  each  vector  v  in  the  family  of  the  probability  vectors  is  compared  against  a  preselected  
anomaly  threshold  δ.   When  there  is  a  dot  product  value  bigger  than  or  equal  to  the  anomaly  threshold,  an  
anomaly  is  reported,  i.e.,  the  linear  threshold  function  for  anomaly  detection  is:   min {< v' , v >} >=δ, anomaly; 
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otherwise, normal. 

Efficient computation of Markov Chain kernel 
For Markov Chain method,  since the system call sequence length (same as the system call sequence) is k and the alphabet 
size is  |Z |,  there can be |Z |k  permutation of all possible system call sequences.  The Markov Chain method needs to 
calculate all the possible transitions between each system call sequence, which means, the vector length  is  O((|Z |k )2 ),  so  
the  algorithm  complexity  is  O((|Z |k )2 ).  This  computation  soon  becomes  infeasible  with the increase of the size of the 
sliding window. 

To  calculate  k-Markov  Chain  kernel  efficiently,  all  the  subsequences  of  size  k  that  do  not  exist  in  the  traces of  
privileged  system  program  in  training  and  testing  data  sets  can  be  neglected  as  with  the  STIDE  kernel.  For state 
sk  = (a1 , a2 , . . . , ak ), only states s'  = (a2 , . . . , ak , a' ) where a' ∈ Z  can be its subsequent state.  So p(sk, s' k ) can  be  
represented  by  p(sk , a' ),  which  can  be  computed  as  F (sk , a' )/F (sk ),  where  F (sk , a' )  is  the  number  of times the 
sequence (a1 , a2 , . . . , ak , a') appears in the training data, and F (sk ) is the number of times the sequence (a1 , a2 , . . . , ak ) 
appears in the training data.  Thus, the complexity of the k-Markov Chain kernel method is reduced to O(|A|*|Z |) where A 
is the set of all the subsequences with size-k that exist in the privileged system program. 

DISADVANTAGES OF STIDE AND MARKOV CHAIN ANOMALY DETECTORS 

The  disadvantage  of  STIDE  and  Markov  Chain  anomaly  detectors  is  their  over-simplicity.   They  completely depend  
on  the  training  data  thus  have  the  over-fitting  problem.    By  substituting  the  simple  linear  threshold function with 
SVM, which is proved to be very effective in statistical learning, improvement can be achieved over the STIDE and 
Markov Chain anomaly detectors.  Using SVM method, the generalization capability is maximized, so the overfitting 
problem is overcomed greatly. 

Another  disadvantage  of  STIDE  and  Markov  Chain  anomaly  detectors  is  the  selection  of  a  threshold.   The 
threshold is critical in these two approaches, however, there is no efficient and effective method for selection of a proper 
threshold.  Using SVM method combined with STIDE and Markov Chain kernel, the threshold is no longer needed. 

 

EXPERIMENT ON SVM BASED ANOMALY DETECTORS 

STIDE and Markov Chain kernel are both PDS kernels, or they satisfy Mercer’s condition, which guarantees the 
convergence of a SVM algorithm.  We use a publicly available SVM software SVMlight, which is an implementation of  
Vanik’s  Support  Vector  Machine.   The  optimization  algorithm  used  in  SVMlight  are  described  in  [18].   The 
algorithm  has  scalable  memory  requirements  and  can  handle  problems  with  many  thousands  of  support  vectors 
efficiently. 

We  test  our  approaches  and  compare  them  with  the  STIDE  and  Markov  Chain  anomaly  detectors  on  the synthetic 
and live sendmail data set of UNM [19].  UNM sendmail data includes hundreds of normal execution of sendmail daemons 
and several traces of sendmail daemons that are attacked.  In each experiment, 10 normal traces and  5  abnormal  traces  are  
randomly  drawn  from  this  UNM  data  set. We can employ more traces in training but that  only 10 normal traces and 5 
abnormal traces since more training data    We  compare  the  performance  of  the  four anomaly detectors - STIDE, 
Markov Chain detector, STIDE kernel based SVM and Markov kernel based SVM - on UNM  synthetic and  live sendmail  
data.  Table 1  shows  the  comparison  results  using  the  UNM  data  set.  The experiment demonstrates STIDE and 
Markov kernel based SVM has better performance than STIDE and Markov Chain anomaly detectors. 

We  also  test  the  combination  of  SVM  with  polynomial  kernel  and  radial  basis  kernel.   For  the  SVM  with 
polynomial and radial basis kernel, we simply use system call as feature space.  The input vector is v(s) = (e(a))a∈Z where Z 
represents the system call alphabet, e(a) is 1 when subsequence a exists in the normal training data and is 0 otherwise. Table 
2 shows the comparison between STIDE kernel based SVM, Markov kernel based SVM, polynomial kernel based SVM 
and radial basis kernel based SVM using the UNM dataset. 

This paper focuses on exploring meaningful kernels for anomaly detection.  Obviously, STIDE kernel and Markov Chain 
kernel capture more knowledge, such as time and order information, than standard kernels, which explains why  experiment  
2  show  our  STIDE  and  Markov  Chain  kernel  achieve  better  accuracy  than  the  SVM  anomaly detector based on 
polynomial kernels and radial basis kernels. 
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 Precision rate Detection rate False alarm 

STIDE 83.9% 74% 6.2% 

Markov Chain 86.8% 78% 4.5% 

STIDE kernel SVM 87.7% 77.8% 2.4% 

Markov kernel SVM 94% 90% 2% 

 

Table  1.  Comparison  of  STIDE,  Markov  Chain,  STIDE  kernel  based,  Markov  Chain  kernel  based anomaly 
detector(using a threshold 0.0001 for one-class SVM) 

 

 Precision rate Detection rate False alarm 

Polynomial kernel SVM 86.7% 77% 3.6% 

Radial basis kernel SVM 89.3% 81.1% 2.6% 

STIDE kernel SVM 87.7% 77.8% 2.4% 

Markov kernel SVM 94% 90% 2% 

 

Table 2. Comparison of polynomial kernel, radial basis kernel, STIDE kernel and Markov Chain kernel based 
anomaly detector (using a threshold 0.0001 for one-class SVM) 

 

CONCLUSION AND FUTURE WORK 

This paper presents the existing methods for anomaly intrusion detection, namely, STIDE anomaly detector and Markov 
Chain anomaly detector, points out the weakness of the two methods, and presents our novel method using kernel  method  
and  SVM.  This  research  investigates  meaningful  kernels  for  intrusion  detection.  We  identify  two kernels that can 
represent the similarity of system call sequences.  We also experiment on combining STIDE kernel and  Markov  Chain  
kernel  with  SVM  to  improve  the  classification  result.   We  believe  our  results  provide  strong evidence that STIDE 
kernels and Markov Chain kernels, in conjunction with SVMs, could offer a more accurate and effective alternative to 
conventional anomaly detection algorithm (STIDE and Markov Chain method) for detecting anomalies in system call 
sequences. The threshold is still critical for one-class SVM for the result. The automatic generation of threshold is an 
interesting research direction in the future. 
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