
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2004 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2004

Software Stability: Recovering General Patterns of
Business
Aseem Daga
Brunel University

Sergio de Cesare
Brunel University

Mark Lycett
Brunel University

Chris Partridge
Brunel University

Follow this and additional works at: http://aisel.aisnet.org/amcis2004

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2004 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Daga, Aseem; de Cesare, Sergio; Lycett, Mark; and Partridge, Chris, "Software Stability: Recovering General Patterns of Business"
(2004). AMCIS 2004 Proceedings. 532.
http://aisel.aisnet.org/amcis2004/532

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301339676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2004%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2004?utm_source=aisel.aisnet.org%2Famcis2004%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2004%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2004%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2004?utm_source=aisel.aisnet.org%2Famcis2004%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2004/532?utm_source=aisel.aisnet.org%2Famcis2004%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Daga et al. Software Stability: Recovering General Patterns of Business

Software Stability:
Recovering General Patterns of Business
Aseem Daga

Brunel University
Department of Information Systems and Computing

Uxbridge, Middlsex, UK
UB8 3PH

Aseem.Daga@brunel.ac.uk

Sergio de Cesare
Brunel University

Department of Information Systems and Computing
Uxbridge, Middlsex, UK

UB8 3PH
Sergio.deCesare @brunel.ac.uk

Mark Lycett

Brunel University
Department of Information Systems and Computing

Uxbridge, Middlsex, UK
UB8 3PH

Mark.Lycett @brunel.ac.uk

Chris Partridge
Brunel University

Department of Information Systems and Computing
Uxbridge, Middlsex, UK

UB8 3PH
Chris.Partridge @brunel.ac.uk

ABSTRACT

With re-engineering of software systems becoming quite pronounced amongst organisations, a software stability approach is
required to balance the seemingly contradictory goals of stability over the software lifecycle with the need for adaptability,
extensibility and interoperability. This paper addresses the issue of how software stability can be achieved over time by
outlining an approach to evolving General Business Patterns (GBPs) from the empirical content contained within legacy
systems. GBPs are patterns of business objects that are (directionally) stable across contexts of use. The approach is rooted in
developing patterns by extracting the business knowledge embedded in existing software systems. The process of developing
this business knowledge is done via the careful use of ontology, which provides a way to reap the benefits of clear semantic
expression. A worked example is presented to show how stability is achieved via a process of ‘interpretation’ and
‘sophistication’. The outcome of the process demonstrates how the balance that stability seeks can be achieved.

Keywords

Content Sophistication, Legacy Transformation, Content re-engineering and Ontology-Based Approach.

INTRODUCTION

Change in the business environment, often in connection with changes in technology approaches, causes entire software
programs to be re-engineered – often at significant cost to the organisation (Fayad and Altman, 2001). Typically, re-
engineering is oriented toward meeting emerging adaptability, extensibility and interoperability requirements. The cycle of
change can often be destructive in nature, however, as existing systems become more complex and increasingly difficult to
understand. With this background, the notion of software stability has emerged as a means of identifying the enduring aspects
of a system while acknowledging the need for adaptability and extensibility (Fayad and Wu, 2002). Unsurprisingly, given
the relative youth of the stability concept, many questions exist in relation to its purpose, role, achievement and the like.

This paper addresses the issue of how software stability can be achieved over time by outlining an approach to evolving
General Business Patterns (GBPs) – patterns of business objects that are (directionally) stable across contexts of use. The
approach called ‘Content Sophistication’ (CS), is rooted in developing patterns from the business knowledge that is
embedded in existing software systems – and is based upon initial work described in Partridge (1996). CS is an ontology-
based approach that focuses on the extraction of business content from existing system(s) and improving it along several
dimensions.

The paper begins by noting the importance of the stability concept in the context of existing software systems. Section 2
outlines the motivation for the approach to stability and describes the approach to the evolution of GBPs, called
sophistication. Section 3 describes the concepts of interpretation and sophistication. Section 4 provides an illustration of the
sophistication process, via a condensed worked example, and describes how the process of evolution works. Section 5 notes

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4278

Daga et al. Software Stability: Recovering General Patterns of Business

the theoretical and practical implications of the research. Lastly, conclusions and future direction of the research are
presented.

STABILITY AND THE IMPORTANCE OF EXISTING SYSTEMS

It is stated that stability, currently expressed via business objects and enduring themes, has the potential to reduce or
eliminate the re-engineering cycles commonplace in software engineering projects (Fayad and Wu, 2002). There is
significant cost and effort associated with re-engineering, and much of the literature in the area focuses on the problems that
the re-engineering effort aims to overcome. These problems include observations that (a) many applications are not easily
integrated and were built during a prior era’s technology, (b) plans and documentation are either poor or non-existent and (c)
the architecture is insufficiently flexible to meet the challenges of anticipated future change (O’Callaghan, 1999).

Many existing systems, however, are now business critical – they deliver significant business value via the embodiment of
substantial corporate knowledge in the form of business objects, processes, rules, events and the like. Moreover, the corporate
knowledge that they embody is proven in the corporate working context on a daily basis. Given that many such systems have
been in operation for years, we propose that the roots of stability lie in systems that exist and that re-engineering efforts can
be seen as a proactive means for mining aspects of stability. The difficulty with mining stability from existing systems is that
we have not had the conceptual tools to undertake such work – it is this area that our effort addresses.

THE CONCEPT OF SOPHISTICATION

The danger with current re-engineering projects lies in their inability to capture the business knowledge expressed through
business content in a technology independent fashion. Existing approaches unlock a system view of the business from one
technology set, make some changes to aspects of content and/or behaviour, and subsequently lock the revised view into
another technology set (Bisbal, Grimson, Lawless, Wu, 1999; Brodie and Stonebraker, 1993; Ganti and Brayman 1995;
Tilley and Smith, 1995). The effort does not generally consider what the system refers to from a business perspective. This
consideration provides a key point of departure for understanding and generating business content that is stable. This inability
to provide a stable business view has meant that there is a clear need for a different perspective, which is dealt here through
the ‘Content Sophistication’ (CS) approach. The CS approach aims to extract business content (in the form of type and
individual level content) from systems and improve this content along several sophistication dimensions. The CS approach
operates at a computationally independent level, producing business models that are independent of any type of technology or
platform.

The CS approach builds upon the work of the REV-ENGTM methodology (Partridge, 1996), which provides a re-engineering
perspective on how to use business objects and General Business Patterns (GBP) to re-engineer existing systems into
business models. The CS approach has redefined the REV-ENGTM process in a more systematic manner with well-defined
workflows, activities, roles and responsibilities. Business objects refer to the things that exist in the real world and as a result
have meaning and usage to the business (e.g., post code, location). GBPs are patterns that define a set of related business
objects (e.g., the pattern Geo-Political Region (GPR) expresses a relation between location and postal code amongst others).
Another important aspect is the ontological underpinning of the CS approach. CS is based on the philosophical notion of
ontology (Honderich, 1995), which is regarded as a study of a set of things whose existence can be acknowledged by a
particular theory or system of thought. This can be explained through a database example. The database can be viewed as the
“theory” that recognizes the underlying set of things that form part of the database – its ontology. The primary aim is to seek
truth and develop theories that provide a description of real-world entities and the relations that exist between these entities.
The CS approach uses ontology as the basis for understanding, modelling and sophisticating content that corresponds to
objects that exist in the real-world or business. The ontological aspects of the CS approach works at two levels. At an initial
level ontology provides a process for analysing and clearly deciphering the real-world semantics (business knowledge) that is
hidden in the content. A clear understanding of semantics of the business content clarifies the applications’ ontological
assumptions - the identification of the entities and relations that the content describes in the real world. At another level, to
provide a model perspective, the relevant entities and relations of the ontology are modelled within a conceptual framework
(ontological model), which maps the things in the ontology to their corresponding representation in the model. As a result the
conceptual framework directly reflects the ontology. As such ontology provides a common conceptual framework across
applications for analysing the objects their content describe.

Stability is achieved by applying the ontological process of interpretation and sophistication. In outline terms, interpretation
is defined as identifying the business objects that the system commits to existing. The interpretation process works its way
through the system identifying both the explicit and implicit business content. This process ensures completeness, i.e., all
business content represented at a system level is captured in the final business model. For interpretation (and subsequent

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4279

Daga et al. Software Stability: Recovering General Patterns of Business

sophistication) it is essential that the business content is analysed at two levels: (1) individual level content (such as the
‘United Kingdom’) and (2) type level content (such as ‘Countries’). Interpretation offers the opportunity to understand the
semantics of the content and highlights the system’s view of the world (Application’s Ontology). This provides the premise
for the sophistication of the business content.

Sophistication can be defined as the process of improving a business model - by removing the gap that exists between the
system’s view of the real world and the things as they exist in the real (business) world (Migrated Business Ontology). This
gap is called the sophistication gap and by removing this gap, sophistication aims to provide better theories and a more
precise representation of the real world. Sophistication thus provides the underpinnings for stability and improvements lie
along the following dimensions:

• Explanatory power. The ability of the improved model can give increased meaning to the things and the relationships
expressed.

• Fruitfulness. The degree to which the improved model can meet currently unspecified requirements or is easily extendable
to do so.

• Generality. The degree by which the scope of the types in the improved model can be increased without the loss of
information.

• Objectivity. The ability of the model to provide a more objective (shared) understanding of the world.
• Precision. The ability of the improved model to give a more precise picture of the business object: in particular, to index a

thing to its mode of existence as opposed to its mode of representation and/or application.
• Simplicity. The degree by which the model can be made less complex.
Analysis of existing systems leads to the observation of sophistication gaps, categorised as follows. For each category,
techniques and heuristics have been developed to liberate a model along the dimensions above.

• Generalisation. Redundancy analysis of things to produce a smaller collection that is more general but which typically
contains more inherent information.

• Interpretation. Index-based analysis where information is treated as content rather than as a representation in order to tie
that content back to what is represented (understanding the mode of existence).

• Destratification. Relationship-based analysis of things to better express the natural overlaps between them, removing the
constraints of artificial hierarchies.

• Temporalisation. Spatio-temporal analysis of things to express natural temporal stages (relationships between things in
time) in a systematic fashion.

THE PROCESS AND OUTCOMES OF SOPHISTICATION

The identification of sophistication gaps and action taken in respect of them leads to the development of business objects and
patterns of business objects, called General Business Patterns (GBPs). Sophistication gaps and actions are best understood in
the context of a small example. To highlight its practical significance, CS is explained through an example of Sophistication
Instance (SI). SI is a CS artifact whose purpose is to enable the benefits of content sophistication to be easily presented to and
understood by a business audience. The SI presented in this section is part of the re-engineering work undertaken to renovate
a large financial system, henceforth referred to as ‘Isure’ and the company as ‘Megabank’. Megabank is a large information
technology solution and services company with interest in a number of vertical markets. Isure is a large financial system
developed, maintained and managed by Megabank. The system originally written in state of the art technology around 20
years back is however rendered monolithic, based on obsolete technology and difficult to manage today. Client feedback,
market directions and the long-term business objectives of the company have resulted in a business goal to migrate the
system towards modern technical platforms. This has presented a situation to model the systems in a technology agnostic
fashion, thus insulating the risk of being dependent on any specific technology. The SI described here concentrates on GPR-
TME GBP, a combination of the GPR and Time GBP, as it is regarded as simple enough to be easily understandable, while
also being rich enough to demonstrate the feasibility of the approach. The GPR-TME GBP has emerged from the process of
applying CS to the existing system.

Once the decision is made to renovate the system, it is important to lay down the groundwork for CS. The target system is
divided into manageable work units called segments. Figure 1 shows a typical segmentation of the Isure system. Isure can be
divided into a number of segments or work units, deemed necessary when analysing the system. Each segment is further

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4280

Daga et al. Software Stability: Recovering General Patterns of Business

composed of one or more fragments that display similar characteristics corresponding to the segment, e.g., the GPR segment
consists of fragments CNTRY (Country Detail) and CNTGM (Country Group).

Figure 1. Typical System Segmentation

The part that this SI is focusing on is a lack of generalisation (one of the categories of lack of sophistication) in the fragment
CYDRY - Country Standard Holiday. It also illustrates how the process can involve a number of types of sophistication. In
this case, the central sophistication type is generalisation, but destratification is also involved. The SI part contains the
fragment CYDRY, the fragment CNTRY - Country Table upon which CYDRY is dependent and CYDRY’s dataitems Day-
Month-s (Holiday Date).

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4281

Daga et al. Software Stability: Recovering General Patterns of Business

Figure 2. Isure System Fragment

Figure 2 provides an example interpretation of a fragment related to public holidays in the existing system. The CYDRY
fragment records the days and months of all the public holidays for a particular country. Note that the types CNTRY
(Country Detail) and CYDRY (Country Holiday) refer to interface specifications. The interpretation process has revealed a
generalisation gap between the Isure Application Ontology and the Migrated Business Ontology. The interface CNTRY is
implementation indexed, which means an implicit assumption is made while designing the system that the countries stored in
the CNTRY Fragment are disjoint. In reality however, there are countries that are not disjoint, the United Arab Emirates
(UAE) containing Abu Dhabi is an example or the United Kingdom (UK) containing Northern Ireland. This type of
disjointness constraint is common in computer systems and is known as stratification. The disjointness constraint does not
specify which countries are allowed to be set up in CNTRY, merely that whatever countries are set up must be disjoint.
Where two countries overlap, the disjointness constraint allows either of the two to be set up, but not both. This can lead to
different implementations having different incompatible CNTRY tables, even though the application level CNTRY
description is identical. This situation is called implementation indexing – where the table is indexed to the implementation
and even though the application level description is identical, different implementations will have different tables (that are
likely incompatible). The interface CYDRY is dependent on CNTRY and thus inherits the index on implementation and the
common business pattern (a kind of reflected stratification). As a result different implementations will have different country
public holiday calendars, which cannot be combined. Another gap that has emerged as a result of the interpretation process is
that the CYDRY’s Day-Month-s (Holiday Date) attribute is constrained to representing only country holidays and also only
days, which restricts the kind of Public Holiday that CYDRY can represent.

Given an understanding of the operational requirements of Isure, a number of competency questions (CQ) were asked of the
system that it could not accommodate:

• Can public holidays for both nesting (e.g. United Kingdom – 13 April 2001) and nested countries (e.g. Northern Ireland –
19 March 2001) be represented?

• Can non-country public holidays (e.g. Valencia - 22 January 2001) be represented?
• Can non-day public holidays (e.g. Turkey - 10 February 2001 half-day) be represented?
• Is it possible to recognise when a public holiday in a whole country (e.g. United Kingdom – 13 April 2001) impacts upon

residents of a part country (e.g. Northern Ireland)?

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4282

Daga et al. Software Stability: Recovering General Patterns of Business

The process of sophistication was then undertaken in the following manner, dealing with one aspect at a time. Firstly, country
was destratified so that the countries and their public holidays from the different implementations could be combined.
Secondly, countries were generalised so that non-country public holidays could be included. Lastly, days were generalised to
periods so that non-day holidays could be included. The result is shown in Figure 3, which is a significant improvement in
that the model is:

• More universal in that it is not implementation indexed as the original Isure system was – it will now work over multiple
implementations.

• More general as it works at the level of Geo-Political Regions rather than stratified country and public holiday patterns.
• Simpler in that it no longer needs to deal with the stratified country and public holiday patterns.
• More precise in that it is (a) a more faithful representation of the common-sense notion of a public holiday and (b) does not

include the spurious Isure public holidays stratification.

Figure 3. Generalized Country and Public Holidays

GBPs emerge from a process of harmonising the many fragments of the system selected for analysis and both business
objects and GBPs can be envisaged as (directionally) stable. In this particular case, Isure was examined against an existing
GBP called GPR. From a GBP perspective, stability is achieved via a process of constant comparison. This approach has
strong roots in the grounded theory approach (Glaser et al. 1967), where theory emerges from analysis of empirical content
and is refined in the context of additional empirical content until a saturation point is reached (i.e., new content does not
impact the model). To provide a basis for comparison, the ontology is represented within its conceptual framework. While
defining the conceptual framework is outside the scope of this paper, representing the ontology within its conceptual model is
beneficial for the following purposes. While on one hand, this allows a clear articulation of the entities and relations among
those entities, on the other hand, the framework provides the starting point for analysing the additional empirical content and
what entities their content describes.

In this case, (a) theory can be considered as a model that is conceived of and taken to be true (Bhaskar, 1978) and (b)
empirical content is drawn from existing financial service systems. True equates to more sophisticated in this case and the
notion of saturation needs to be considered from a pragmatic perspective. Consequently, we conceive of sophistication in
terms of maturity levels – where a single GBP might be sophisticated enough to provide interoperability across several

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4283

Daga et al. Software Stability: Recovering General Patterns of Business

systems within an organisation, several systems across organisations and/or several systems across several domains for
example.

THEORETICAL AND PRACTICAL IMPLICATIONS

The stability aspect within current re-engineering work remains quite low for a variety of reasons. The technology focus of
the current approaches coupled with negligence towards modelling aspects of business content has meant that systems remain
stable for a very short period of time. The CS approach provides a stable alternative to the current re-engineering approaches
and in light of this argument, the theoretical and practical implications of the CS approach are as follows:

• Stable General Business Patterns and Business Objects - The CS approach through its sophistication process aims to
provide a stable set of General Business Patterns and Business Objects that can be similarly recognised across various
systems and also different organisations. For example, the destratification of Country has resulted in a more universal and
practical view of Country and as a result is more stable that others.

• CIM focus – The CS approach works at the level of Computationally Independent Models (CIM), which highlight the
need for well developed business models to clearly portray the needs and requirements of the business and aims to separate
the business concerns from the application concerns.

• Semantic richness of business content – Applying the CS approach results in business content which is semantically
richer and more sophisticated and as a result can cater for future requirements that might emerge later on. Generalising the
‘Countries’ business object to GPR increases the semantic richness of the content and also means that there are fewer
objects to manage.

• Flexible and effective re-engineering - The CS approach is completely flexible, as it is not tied to any particular migration
or design tool. Considering the model-based approach of CS, any design tool, depending on the needs and familiarity can
be used. Moreover, given that the CS approach does not hinder on the general working of the system, the system can
remain operational while business models are developed using CS. The effectiveness of the CS approach is proportional to
the scope and the amount of time spent in analysing the existing system. Increases in scope can lead to better opportunities
for sophistication of the business content, which over time provide a more significant payback as economies of scope and
scale are increasingly achieved.

Although, the CS approach provides a number of benefits over the existing re-engineering approach, the success of the CS
approach is affected by several factors including the availability of both type and individual level content, business and
technical expertise of the existing system, and business modelling knowledge. The adoption of the CS approach is coupled
with a necessary learning curve. This learning curve is however necessary as the approach requires a new way of thinking
about systems development and so new development rules apply and new competences are required. Moreover, the level of
sophistication and its associated benefits are directly proportional to the application of the CS approach within real systems.
Since the approach is firmly grounded in content, the benefits are greater when the models are generalised out of several
systems.

SUMMARY AND CONCLUSION

Software stability concentrates on balancing the seemingly contradictory goals of stability over the software lifecycle with
the need for adaptability and extensibility (Fayad and Wu, 2002). This paper has outlined an approach for evolving stable
business objects and General Business Patterns from empirical reference content drawn from existing software systems.
Using a small example of a sophistication instance we have part-illustrated the process of sophistication and described how
the outcomes produce business objects and patterns that are (directionally) stable; and more explanatory, fruitful, general,
objective, precise and simple. The example has sought to illustrate fruitfulness and objectivity in particular.

The interested reader will have noted two things however: (1) we are operating at a computationally independent level and
(2) business content provides the focus of the work. The purpose of working at a computationally independent level is one of
ensuring that the outcomes can be tailored to any particular technology-set without being wed to it – that ‘wedding’ remains a
challenge for both industry and academia. While the Model Driven Architecture (MDA) underpins our thoughts, the whole
purpose of our approach is to liberate meaning in the business sense in order to ensure that systems represent the business in
the most precise and universal manner possible. In that light, we have purposely sought to separate what there is (business
content) from what the application does with it (application behaviour) as a positive step in achieving adaptability and
extensibility.

Our work related to application behaviour is much less mature at this point in time, but is inherent not least in the fruitfulness
of content – it is apparent that the model in Figure 2 works across multiple implementations and is rich enough semantically

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4284

Daga et al. Software Stability: Recovering General Patterns of Business

to both handle the existing system functionality and, at least, the functionality implicit in the competency questions above.
Future research will be aimed at identifying further general business patterns (e.g., a Product GBP) and consolidating the
ones already identified. While on one hand, this will allow the CS process to mature, on the other hand, at the same time it
will test the resilience of patterns already identified. Further work will also focus on the development of a software tool to
automate CS activities as well as combining CS with application-level development.

REFERENCES

1. Bhaskar, R. (1978) A Realist Theory of Science, The Harvester Press, Sussex.
2. Bisbal, J., Grimson, J., Lawless D. and Wu B. (1999) Legacy Information Systems: Issues and Directions, IEEE

Software, 16, 5, 103-111.
3. Brodie, M. and Stonebraker M. (1993) DARWIN: On the Incremental Migration of Legacy Information Systems, GTE

Labs Inc, March, TR-022-10-92-165.
4. Fayad, M. and Altman, A. (2001) An Introduction to Software Stability, Communications of the ACM, 44, 9, 95-98.
5. Fayad, M. and Wu, S. (2002) Merging Multiple Conventional Models in One Stable Model, Communications of the

ACM, 45, 9, 102-106.
6. Ganti, N. and Brayman W. (1995) Transition of Legacy Systems to a Distributed Architecture, John Wiley and Sons,

New York.
7. Glaser, B. G. and Strauss, A. L. (1967) The Discovery of Grounded Theory: Strategies for Qualitative Research,

Weidenfeld and Nicholson, London.
8. Honderich T. (ed.) (1995) Oxford Companion to Philosophy, Oxford University Press, Oxford.
9. O'Callaghan, A. J. (1999) Migrating Large-Scale Legacy Systems to Component-Based and Object Technology: The

Evolution of a Pattern Language, Communications of the Association of Information Systems, 2, 3.
10. Partridge, C. (1996) Business Objects: Re-Engineering for Reuse, Heinemann, Oxford.
11. Tilley, S. R. and Smith D. B. (1995) Perspectives on Legacy Systems Re-engineering, Software Engineering Institute,

Carnegie Mellon University: 15213-3890, 1-133.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4285

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2004

	Software Stability: Recovering General Patterns of Business
	Aseem Daga
	Sergio de Cesare
	Mark Lycett
	Chris Partridge
	Recommended Citation

	untitled

