
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2004 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2004

Philosophical Shifts in Software Development
Randall Brown
University of Texas at Arlington

Sridhar Nerur
University of Texas at Arlington

Craig Slinkman
University of Texas at Arlington

Follow this and additional works at: http://aisel.aisnet.org/amcis2004

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2004 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Brown, Randall; Nerur, Sridhar; and Slinkman, Craig, "Philosophical Shifts in Software Development" (2004). AMCIS 2004
Proceedings. 516.
http://aisel.aisnet.org/amcis2004/516

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301339671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2004%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2004?utm_source=aisel.aisnet.org%2Famcis2004%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2004%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2004%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2004?utm_source=aisel.aisnet.org%2Famcis2004%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2004/516?utm_source=aisel.aisnet.org%2Famcis2004%2F516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Brown et al. Philosophical Shifts in Software Development

Philosophical Shifts in Software Development

Randall Brown
University of Texas at Arlington

rwb6854@exchange.uta.edu

Sridhar Nerur
University of Texas at Arlington

snerur@uta.edu

Craig Slinkman
University of Texas at Arlington

slinkman@uta.edu

ABSTRACT

Drastic changes have occurred in the field of software development in the past few years. Concepts that have been proposed
in recent times are very different from what has been done in the past. The philosophical shifts underlying these changes
present many challenges – both technical and organizational. Such shifts are not peculiar to software development as parallels
in other disciplines exist. The goal of this paper is to articulate the changes from a philosophical perspective and to examine
the organizational implications that arise as a consequence. In particular, the article focuses on the conceptual differences
between traditional and contemporary approaches within the context of inquiring systems, the philosophy of science, general
systems theory, and soft systems methodology.

Keywords

Software development, agile methodologies, philosophical shifts, inquiring systems.

INTRODUCTION

Software development is a complex process that takes an inordinate amount of time, effort, and creativity. Software
researchers, not unlike researchers in other disciplines, initially were preoccupied with an engineering approach, based
entirely on the assumption that problem-solving is a mechanistic process where the steps can be pre-determined and fully
specified. Further, they assumed that a rational approach would lead to an optimal solution. Some of the concepts that have
been proposed in recent times are fundamentally opposed to this viewpoint (Highsmith, 2003).

Since the first computer was built, software has taken on an increasingly important role in our lives. The most obvious uses
of software are the applications used on computers, such as office automation, accounting, tax preparation, educational,
games, etc., Consumers are constantly demanding newer and more powerful versions of these software. This demand has put
a lot of pressure on software developers to more rapidly produce larger numbers of applications in a shorter amount of time,
and with fewer “bugs”. Competition has also been increasing, further pressuring the need for more, faster, and higher quality
applications. The advent of the internet and the increasing need to deploy e-commerce applications that exhibit very different
characteristics, such as high resilience to change and quick turnaround cycles, further demonstrates the importance and
complexity of software. Gaming systems, such as Nintendo, Game Boy, PS-2, etc. are also increasing in popularity and
variety, and there are thousands of games available for them. Such systems would be inconceivable without the rapid strides
that have been made in software development technologies.

Computer applications, however, are only the beginning. As computers pervade nearly all aspects of our lives, software must
follow. Things that we practically use everyday, such as watches, cars, vacuum cleaners, cell phones, kitchen appliances, and
stereo systems, are increasingly relying on sophisticated computer and software systems. In many cases, these technologies
are seamlessly integrated with our lives and we are often unaware of their presence. There are even refrigerators that can
monitor usage trends of items such as eggs and milk and can automatically place orders for groceries when supplies get low.
These have been just a few of the ways in which computers and software are driving the way we live. Computers are
ubiquitous, and so there is also software everywhere, and developers must continually question their assumptions and adopt
new ways of thinking.

A study of the philosophical underpinnings of software development is useful for several reasons. First, it allows us to
logically take stock of what has occurred thus far and where we are headed. Second, it enables us to have a better grasp of
what we as researchers are doing. Third, it provides insights into the challenges and barriers that are presented to

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4136

Brown et al. Philosophical Shifts in Software Development

organizations endeavoring to adopt these new approaches. Finally, by looking at similar epistemological patterns in other
disciplines we will have some indication of what the future holds for us.

The study proceeds as follows. In the next section, we review the developments in the field of software. This is followed by a
discussion on the conceptual differences between traditional and current philosophies of development, mainly from the
perspectives Inquiring Systems as outlined by Churchman (1971) and Soft Systems Methodology (SSM) as described by
Checkland (1981). The paper also touches on some of the concepts related to General Systems Theory as propounded by
Bertalanffy (1968). Finally, the Kuhnian Philosophy of Science (1970) is used to argue that recent philosophical shifts in
software development pose serious individual and organizational challenges.

EVOLUTION OF SOFTWARE APPROACHES

Fundamentally, there have been three broad approaches to software development. These are: 1) The structured approach, 2)
Object-Oriented Development, and 3) Agile Methodologies. We discuss the characteristics of each of these below.

The Structured Approach

These can be broken down into process-oriented and data-oriented approaches (Henderson-Sellers and Edwards, 1990).
Essentially, they treat data and procedures as separate entities. The process-oriented approach, epitomized by functional
decomposition, assumes that the system has a main function that can be systematically broken down into a hierarchy of
functions and sub-functions. There exists a boss-subordinate relationship between the functions and their sub-functions. This
is essentially a reductionistic approach that deals primarily with parts, i.e., functions. Relationships are given scant attention.
Deductive reasoning (moving from the general to the specific) is what guides this process. Analysis is the basis for this
approach, with little or no emphasis on synthesis. In the process oriented approach, primary emphasis is on algorithms.
Figure 1 shows an example of a banking application using the structured approach.

Banking
Application

Create
Account

Perform
Transaction

Create
Savings

Create
Checking

Deposit Withdraw

Deposit
Checking

Withdraw
Savings

Withdraw
Checking

Deposit
Savings

Figure 1: Traditional Design of a Simple Banking System

As shown in Figure 1, the system starts with one top-level function that is then systematically broken down into sub-
functions, which in turn are further decomposed into functions. There exists a boss-subordinate relationship between a
function and its sub-functions. The reductionistic bias with a predilection for “parts” is evident in the structured approach.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4137

Brown et al. Philosophical Shifts in Software Development

Object-Oriented Approach

As opposed to the structured approach, OO encapsulates data and procedures into a whole called an object (Henderson-
Sellers and Edwards, 1990). Objects are the primary sources of concern to developers in an OO system. Objects interact with
one another to accomplish the behaviors of a system. Objects that share common properties (i.e. attributes and behaviors) and
semantic relationships are grouped into an abstraction called a class (Booch, Rumbaugh, and Jacobson, 1999). The
decomposition of the system is in terms of classes and their relationships rather than as a hierarchy of functions (Booch,
1991). A tree-like representation of classes and their subclasses is the only hierarchy of interest in an OO system. Subclasses
in an OO system inherit the attributes and methods of their super classes. Figure 2 demonstrates the OO method of
decomposing the problem using the banking system as the domain of interest. The focus here is clearly on the relationships
between the classes, which are high-level abstractions that map on to real-world concepts relevant to the domain being
modeled (Richter, 1999).

Account Customer

- withdraw

Figure 2: OO Design of a Simple Banking System

In the OO approach, both analysis and synthesis play a very important role. For example, analysis is required to specialize a
class, while synthesis could be used to arrive at higher abstractions/generalizations by inducing common properties (i.e.
attributes and behaviors) as well as semantic relationships of the lower level objects/classes (Richter, 1999). OO emphasizes
modeling and is seen as a more holistic approach, with great emphasis on patterns/form than on substance or part. In other
words, the understanding of relationships is paramount in comprehending the behavior of the whole system. The system is
likely to display emergent properties that are not discernible by looking at a part (i.e. a class) in isolation. Abstraction,
decomposition, and inheritance play important roles in OO modeling, and these differ considerably from the way they are
employed in the structured approach.

In summary, OO exhibits the following characteristics that conceptually distinguish it from the structured approach discussed
above (Henderson-Sellers and Edwards, 1990; Korson and McGregor, 1990; Booch, 1991; Richter, 1999).

1. OO emphasizes modeling.
2. Decomposition in OO results in a web of classes and their relationships.
3. Behaviors in the system are accomplished through interactions between objects.
4. Abstractions are closely identifiable with real-world concepts present in the domain of interest.

Principles such as inheritance, generalization, specialization, and composition allow us to provide a semantically stronger
representation of the system being developed.

Agile Development

Increasing frustration with existing software practices compelled a few researchers to adopt an entirely new way of
developing software. This new approach is influenced considerably by some of the principles articulated in the theory of
complex adaptive systems and is geared towards imparting some of the characteristics of living systems to software
(Highsmith, 2002). This viewpoint is philosophically different from previous design traditions and promises to afford the
benefits of agility and adaptability in an environment where change is inevitable and constant (Cockburn and Highsmith,
2001a).

The philosophy of agile development values people over processes and tools, emphasizes working and deliverable software
over unnecessary documentation, urges the active involvement and participation of customers rather than negotiating

- deposit

Checking

Individual Corporate

Savings

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4138

Brown et al. Philosophical Shifts in Software Development

schedule and cost contracts with them, and, above all, recognizes the need to create change as well as acknowledge its
inevitability rather than attempt to eliminate it entirely by careful upfront planning (Cockburn and Highsmith, 2001a;
Highsmith 2002, 2003). These tenets are embodied in a host of methods, collectively called Agile Methodologies. Extreme
programming (XP), Scrum, Feature Design-Development (FDD), Crystal Methodologies, Dynamic Systems Development
Methodology (DSDM), Adaptive Software Development, and Lean programming are some examples of these methods.
While these ideas are new to the software development community, their antecedents may be traced back to systems thinking
and the theory of living and complex adaptive systems, and more recently to lean manufacturing techniques (Highsmith,
2002).

 Traditional Agile
Fundamental
Assumptions

Long and careful planning yields a sequence of
steps and their consequences
Project proceeds in linear fashion

Deterministic approach that eliminates
uncertainty through reasoning

Short, intense periods of planning at the
beginning of iteration
Feature driven and proceeds in an
iterative, evolutionary manner
Ambiguity/uncertainty reduced through
cycles of rapid feedback and
continuous improvement

Goal Optimization Adaptability/agility
Role of the project
manager

Traditional roles of controller, planner,
organizer, staffer, decision-maker, scheduler

Facilitator/leader in a synergistic,
collaborative environment

Mgmt Style Hierarchical “command-and-control” Leadership/collaboration
Process Model Waterfall, spiral, etc. Emphasizes linear

sequence of process steps.
Evolutionary-development model
proposed by Gilb

Decision-making
context

Unitary Pluralistic

Systems Thinking Hard-systems thinking Soft-systems thinking
Inquiring System Closer to Liebnitz and Locke Closer to Singerian philosophical

school
Organizational
Structure

Hierarchical control-oriented, mainly centralized
decision-making

Decentralized blending of cooperation
and autonomy

Thought process Driven by strict, predetermined rules established
by the process model, which basically makes
one react in predictable ways to unusual
situations that might arise

Urges developers to use patterns to
solve problems by relying on one’s
ability to innovate depending on the
contingency.

Dealing with
complexity

Assumes that complexity and ambiguities can be
predicted, measured, and corrected.

Deals with complexity and
uncertainties by using the ingenuity of
people and relies on rapid feedback and
adaptability.

Customer
involvement

Not directly involved in the development
process.

Mandatory, active participation
throughout the development

Team composition Relatively homogeneous Self-organizing teams involving
relevant stakeholders who may have
diverse perspectives and disparate
goals.

Assignment of
roles

Specific responsibilities for each role (e.g.,
architect, analyst, programmer, etc.)

No clear separation of roles

Table 1. Conceptual Differences Between Traditional and Agile Approaches

The agile approach is a significant departure from the other two approaches mentioned above. These differences arise from
their opposing conceptual and philosophical perspectives and have far-reaching implications for their assimilation in

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4139

Brown et al. Philosophical Shifts in Software Development

organizations. Therefore, it is imperative that managers understand the consequences of these differences. Table 1, drawn
from a variety of sources (Churchman, 1971; Burrell and Morgan, 1979, Checkland, 1979; Cavaleri and Obloj, 1993;
Cockburn and Highsmith, 2001a, b; Boehm, 2002; Highsmith, 2001, 2002, 2003; Orr, 2002; Larman, 2004), delineates the
fundamental dimensions that distinguish the agile approach from past practices. These distinctions provide the basis for our
discussions on the philosophical shifts that have occurred in software development.

PHILOSOPHICAL SHIFTS IN SOFTWARE DEVELOPMENT

In the context of this paper, the term traditional development refers to the structured and object-oriented approaches. In
reality, as shown in Figure 3, there exists a continuum from structured to OO to agile, with gradual philosophical shifts. The
philosophical perspectives delineated in this figure are from Churchman (1971), Burrell and Morgan (1979), Checkland
(1981), Cavaleri and Obloj (1993), and Kienholz (1999).

Structured Object-oriented Agile

(1960s to present) (1980s to present) (Late 1990s to present)

Reductionistic, analytical,
linear predetermined steps,
Logical positivist/ empiricist
philosophical tradition,
Analyst (Liebniz) / Realist
(Locke) Inquiring Systems,
Hard systems thinking

Focus on relationships,
collaboration, holistic, pluralistic
decision making environment, more
relativistic, combines Synthesist
(Hegel), Idealist (Kant), and
Pragmatist (Singer) inquiring
modes, Soft Systems thinking

Figure 3. Philosophical Shifts in Software Approaches

The continuum shows that significant conceptual changes have occurred in the field of software development since its
inception. Like many other disciplines (such as biology, linguistics, physics), the field has grappled with the tension between
substance and form, reductionism and holism, measurement versus assessment, objectivity as opposed to subjectivity in
design, and so forth. And, not unlike these other disciplines, there has been a gradual but evident shift in focus from parts to
relationships between parts, from a mechanistic view to an organic one arising from the realization that truly emergent
properties such as those that are present in living systems can be achieved only by imparting the characteristics of complex
adaptive systems to the software system being designed.

Traditional approaches to software were considerably influenced by engineering and scientific methods of inquiry, based on
the notion that all ambiguities could be resolved through reason and analysis. The approaches sought to find an optimal
solution by articulating a sequence of steps and by dealing with any anomalies that might arise in a predetermined way. Also,
these approaches placed a greater premium on processes and technologies than on people and their competencies. These
characteristics are in the spirit of the philosophical traditions of hard system thinking, which aligns itself with logical
positivism (Cavaleri and Obloj, 1993). From the perspective of Churchman’s inquiring systems, the deterministic
assumptions of the traditional development methods reflect the philosophical orientations of Liebniz and Locke (Churchman,
1971). The Liebnizian school with its reliance on analytical models and quantitative methods sought truth within the system,
thus relying on reductionistic principles using deductive logic. Locke’s realistic view sought confirmation of the truth outside
the system using inductive processes. Both Locke and Liebniz rely on data and facts (van Gigch, 1978).

The agile approach requires a new way of thinking. It questions some of the fundamental assumptions and wisdom that have
hitherto guided software development. The recognition that software systems are inherently complex and need to have
adaptive properties, much like living systems, has been one of the motivating factors for this revolutionary way of thinking
about software development. The antecedents may be traced to the works of Christopher Alexander (1979) on using patterns
in architecture (Beck, 1999), to the tenets of complex adaptive systems (Highsmith, 2002), and to systems thinking
(Highsmith, 2001).

The principles underlying agile development closely parallel the concepts characterizing the Soft Systems Methodology as
elucidated by Checkland (1981). The most prominent of these are the emphasis on people, on shared learning, on pluralistic
decision making contexts, and the idea of continuous improvement to solve the problem in incremental steps rather than

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4140

Brown et al. Philosophical Shifts in Software Development

relying on engineering and scientific approaches (Cavaleri and Obloj, 1993). In agile, it is not a pre-written, fully anticipated
requirements specification that guides development. Rather, requirements unfold in an incremental, iterative fashion based on
a dynamic prioritization of the desired features of the software product as determined by the stakeholders. Short cycles of
intense planning and development are followed by periods of reflection (sometimes referred to as reflection workshops)
during which an assessment of what worked and what didn’t is made (Beck, 1999; Highsmith, 2003). This is the mechanism
for providing rapid feedback, a valuable means of overcoming uncertainties and ambiguities that arise along the way
(Cockburn and Highsmith, 2001a). The increased emphasis on collaborative decision making and cooperative work habits
helps to integrate a wide variety of views and at the same time fosters an environment that is conducive to learning.

Unlike the logical positivists who firmly believe that logic and the resulting universal laws can dispel the ambiguities
surrounding a problem, the phenomenologists and relativists believe that the construction of reality occurs within oneself,
primarily through the use of past experience, personal knowledge, and thinking (Cavaleri and Obloj, 1993). The principles
behind Soft Systems Methodology (SSM) are based on phenomenological assumptions (Checkland, 1981). Checkland’s
clarification of the philosophical position of SSM also includes the philosophy of hermeneutics as proposed by Wilhelm
Dilthey. The following description of the hermeneutic circle by Checkland is similar to the evolution of the software product
through continuous improvement in the agile approach, a process that relies on shared learning through discovery.

“…the method comprising a circular process of discovery called ‘the hermeneutic circle’, a means of
perceiving social wholes as both wholes and parts. A preliminary overview of subject matter is used to
guide an examination of what the parts denote; this clarifies the concept of the whole, which at the end of
the cycle must be perceived so that all the parts can be related to it. Thus, there are no fixed or absolute
starting points, only an iterative cycle which gradually leads to increased understanding of social reality.”
(p. 276).

Thus, the agile approach, with its strong conceptual ties to SSM, is more closely aligned with the phenomenological and
hermeneutics schools of thought.

Agile encourages one to continually reexamine assumptions and to create change and use it to one’s advantage (Highsmith,
2002, 2003). Thus, the Hegelian philosophy of synthesizing opposing viewpoints (through argumentation and dialectics) is
embodied in agile practices. Effective decision making in the agile approach is overwhelmingly determined by the ability to
integrate the views of a disparate group of stakeholders, closely related to the philosophical traditions of the Kantian
inquiring system. Finally, the philosophy of not tackling the entire problem at once, but relying on iterative cycles of
continuous improvement through innovation and adaptation is in line with the Singerian philosophical mode of inquiry.

Characteristics Philosophical/Conceptual school or tradition
People-centric, focus on learning and
experimentation, reflection workshops,
incremental development

Soft Systems Methodology

Pluralistic decision making context Soft Systems Methodology, Kantian (Idealist) philosophy
Questioning assumptions and encouraging change Hegel (Synthesist) philosophy
Short-term incremental approach, continual
refinement of the system using innovation and
adaptation

Singer (Pragmatist) school of philosophy

Emphasis on relationships, synthesis of multiple
perspectives, focus on form (i.e. pattern) rather
than on substance (i.e. part)

Science of Design

Table 2: The Philosophical Orientation of Agile Development

The conceptual foundations of General Systems Theory (GST) include many of the notions previously discussed (van Gigch,
1978; Ulrich, 1980). In particular, the proponents of GST distinguish between the epistemology of the Science of Analysis
and that of the Science of Design. The Science of Analysis is an analytical quest for the truth, with reductionism and
objectivity being central to the modes of inquiry. On the other hand, the Science of Design looks at what the system ought to
be, relying on principles of synthesis, holism, and the subjective construction of reality in order to arrive at the “truth”.
Several aspects of the Science of Design are reflected in agile practices. A summary of the key characteristics of agile
methods and the philosophical schools with which they may be associated is shown in Table 2.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4141

Brown et al. Philosophical Shifts in Software Development

IMPLICATIONS/CONCLUSIONS

The increasing complexity of software is primarily because of all the changes that are occurring in the world of business.
There is a great demand on organizations to quickly produce high-quality applications that are resilient to changes,
particularly in a turbulent business environment. It is this need for alacrity in responding to various competing forces that has
compelled researchers to explore radically different ways of developing software. At the forefront of this revolution is the
agile methodology, an approach that questions the very fundamentals of everything that has been done before.

These new ways of thinking about software development have serious implications for decision making, inquiring into
problems and solving them, organizational strategies and structures, management style, etc. Software development is
essentially a social process in which the actions and behaviors of its participants are dictated to a large extent by beliefs,
assumptions, biases and values that are built over time. As these get reinforced, they shape the culture that pervades all
activities associated with software development. In addition, these values become ingrained in operational routines that are
difficult to change. As we have argued in the previous section, the agile approach is built on a philosophical foundation that
is different from the traditional one. Therefore, the transition to agile denotes a paradigm shift in the Kuhnian sense, one that
requires careful thought and the expenditure of enormous amounts of time and money.

The philosophy of science as expounded by Kuhn details the difficulties of abandoning a dominant paradigm in favor of a
new one. In particular, Kuhn’s observation that assumptions and beliefs are very difficult to change makes the issues of
adopting agile all the more challenging, as it entails very different ways of solving problems. Further, major organizational
reorientations have to occur for agile to be successful. For example, an organization that thrives on strict hierarchical control
may find it difficult to provide an environment that is conducive to collaborative decision making and cooperation among
diverse stakeholders that epitomizes the new philosophy of software development. A change in fundamental assumptions also
entails new problem-solving strategies, communication channels, roles and assignments, relationships, and so forth.

Margolis (1993) argues that habits of mind created from years of doing things in a particular way, within an established
framework of assumptions and values, are hard to change. This is similar to the concept of signature skills which are skills
that one becomes identified with in an organization. People are not easily persuaded to relinquish such skills because of their
emotional attachment to them (Leonard-Barton, 1995). Clearly, the path to agility has many barriers, not just technical but
also organizational. It is the latter that poses a greater challenge to the assimilation of agile methods.

REFERENCES

1. Alexander, C. (1979) The Timeless Way of Building, Oxford University Press, New York.
2. Beck, K. (1999) Embracing Change with Extreme Programming, Computer, 32, 10, 70-77.
3. Bertalanffy, L. von (1968) General Systems Theory, New York: Braziller.
4. Boehm, B. (2002) Get ready for agile methods, with care, Computer, 35, 1, 64-69.
5. Booch, Grady (1991) Object Oriented Design with Applications, The Benjamin/Cummings Publishing Company, Inc.
6. Booch, G., Rumbaugh, J., and Jacobson, I. (1999) The Unified Modeling Language User Guide, Addison-Wesley,

Reading, MA.
7. Burrell, G. and Morgan, G. (1079) Sociological Paradigms and Organizational Analysis, Heinemann, London.
8. Cavaleri, S. and Obloj, K. (1993) Management Systems: A Global Perspective, Wadsworth Publishing Company, CA.
9. Charette, R. (2001) The decision is in: Agile versus heavy methodologies, Cutter Consortium Agile Project Management

Executive Update, 2, 19.
10. Checkland, Peter (1981) Systems Thinking, Systems Practice, New York: John Wiley & Son.
11. Churchman, C. West (1971) The Design of Inquiring Systems, Basic Concepts of Systems and Organization, Basic

Books, New York.
12. Cockburn, A. and Highsmith, J. (2001a) Agile Software Development : The People Factor, Computer, 34, 11, 131-133.
13. Cockburn, A. and Highsmith, J. (2001b) Agile Software Development: The Business of Innovation”, Computer, 34, 9,

120-127.
14. Henderson-Sellers, Brian and Edwards, M. Julian, (1990) The Object-Oriented Systems Life Cycle, Communications of

the ACM, 33, 9, 142-159.
15. Highsmith, J. (2001) Order for Free: An Organic Model for Adaptation, in L.L. Constantine, Ed., Beyond chaos: the

expert edge in managing software development, Addison-Wesley, 251-257.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4142

Brown et al. Philosophical Shifts in Software Development

16. Highsmith, J. (2002) Agile Software Development Ecosystems. Addison-Wesley, Boston: MA.
17. Highsmith, J. (2003) Cutter Consortium Reports: Agile Project Management: Principles and Tools, 4, 2, Cutter

Consortium, Arlington, MA.
18. Kienholz, A. (1999) Systems ReThinking: An Inquiring Systems Approach to the Art and Practice of the Learning

Organization, www.cba.uh.edu/~parks/fis/inqre2a1.htm, Working Paper.
19. Korson, Tim and McGregor, D. John (1990) Understanding Object-Oriented: A Unifying Paradigm, Communications of

the ACM, 33, 9, 40-60.
20. Kuhn, S. Thomas (1970) The Structure of Scientific Revolutions, second edition, University of Chicago Press, Chicago.
21. Larman, C. (2004) Agile & Iterative Development: A Manager’s Guide, Pearson Education, Inc. (Addison-Wesley).
22. Leonard-Barton, D. (1995) Wellsprings of Knowledge: Building and Sustaining the Sources of Innovation, Harvard

Business School Press, Boston, MA.
23. MacCormack, A. (2001) Product-development practices that work: How Internet companies build software, MIT Sloan

Management Review, 42, 2, 75-84.
24. Margolis, H. (1993) Paradigm and Barriers: How Habits of Mind Govern Scientific Beliefs, University of Chicago

Press: Chicago.
25. Orr, K. (2002) CMM Versus Agile Development: Religious Wars and Software Development, Cutter Consortium Agile

Project Management Executive Report, 3, 7, Cutter Consortium, Arlington, MA.
26. Richter, C. (1999) Designing Flexible Object-Oriented Systems with UML, MacMillan Technical Publishing.
27. Ulrich, Werner (1980) The Metaphysics of Design: A Simon-Churchman ‘Debate’, Interfaces, 10, 2, 35-40.
28. van Gigch, John, P. (1978) Applied General Systems Theory, second edition, Harper, New York.

Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004 4143

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2004

	Philosophical Shifts in Software Development
	Randall Brown
	Sridhar Nerur
	Craig Slinkman
	Recommended Citation

	untitled

