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ABSTRACT 

This paper presents a novel approach that automatically assesses student class performance by analyzing keyword density in 
online class messages. Class performance of students is evaluated from three perspectives: the quality of their course work, 
the quantity of their efforts, and the activeness of their participation; three measures - keyword density, message length, and 
message count, are derived from class messages respectively. Noun phrases are extracted from the messages and weighted 
based on frequency and length. Keyword density is defined as the sum of weights of noun phrases appearing in a student’s 
messages. Message length and message count are the number of words and the number of messages in the student’s messages 
respectively. The three measures are combined into a linear model, in which each measure accounts for a certain proportion 
of a final score, called performance indicator. The experiment shows that there is a high correlation between the performance 
indicator scores and the actual grades assigned by instructors. The rank orders of students by the performance indicator score 
are highly correlated with those by the actual grades as well. Evidences of the supplemental role of the computer assigned 
grades are also found. 
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INTRODUCTION 

Advances in information technology have populated the online delivery of various types of classes, so called virtual 
classrooms (Hiltz, 1994), in which instructors and students interact with each other mainly by exchanging messages in 
natural language expression. Students’ work submitted online accounts for a large portion of their final grades. To assess 
students correctly, instructors have to read through all their messages and other online submissions, which can easily 
accumulate to a large volume over a course of one semester. In addition, instructors may have different grading preferences, 
which will introduce bias in grades. Combining the assessments from multiple judges has been proved useful to increase the 
correctness of the final decision (Winkler and Clemen, 2002), so in addition to the instructor who solely makes the judgments 
of student performance, a second grader is useful and necessary. Using a second human grader, however, is not feasible in 
most situations because of the cost and limit of human resources. Computer programs, therefore, could be a better alternative. 
They could supplement to the judgments made by the instructor, and help instructors improve their grading by alerting them 
with disagreements to the grades they assign.  

The idea of developing computer programs to grade student’s work was introduced in 1960s (Page, 1966). It has been a long-
time interest to researchers, and has been used widely in assessing various types of students’ works, such as computer 
programs (Jones, 2001), prose (Page, 1994), language tests (Bachman et al, 2002), and essays (Page and Petersen, 1995; 
Larkey, 1998; Foltz et al, 1999; Landauer and Psotka, 2000; and Burstein et al, 2003). However, although the goal of these 
approaches is to automatically assess student learning, most efforts have been focused on individual work assessment (e.g. an 
essay, a piece of program, etc.), despite that students’ course work accumulates over time. Correct assessment requires taking 
the entire volume of submissions into consideration. Recently the problem of text mining, a.k.a. text data mining (TDM) 
(Hearst, 1999) or knowledge discovery from text (KDT) (Feldman, 1995), is attracting increasing attention. With the large 
amount of class discussions and other documents (e.g. assignments, essays and projects) in text format, text mining 
techniques could be a solution for learning assessment. 

This paper addresses the problem of automated assessment of student learning within a period of learning process, and 
presents a novel approach, which assesses student learning by mining keyword density in their class messages. Our approach 
is, first, to extract conceptual entities, called keywords, from the class messages. Next, keywords are weighted according to 
their lengths and occurrences in the messages. The weight of a keyword reveals the importance of the corresponding concept. 
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Message length and message count are two other measures, and refer to the number of words and the number of messages 
respectively. The three measures are combined into a linear model, in which each measure accounts for a certain proportion 
of a final score, called performance indicator.  

The remainder of this paper is organized as follows. Section 2 presents the basic terminology, notation, and concepts 
concerning keyword density and the assessment model. In section 3, we discuss the experiment and evaluation method. 
Section 4 is the results and our analysis. Section 5 concludes the paper with some final remarks. 

ASSESSMENT MODEL 

The basic idea in this work is to access student learning by analyzing the messages and documents produced in the supporting 
e-learning systems. This section presents the assessment model, including the basic concepts concerning keyword density, 
message length, and message count, as well as the assessment model consisting of the three measures.  

The model assesses student learning from three aspects: the quality of their course work, the quantity of their efforts, and the 
activeness of their participation; the proposed three measures - keyword density, message length, and message count, are 
derived from the class messages to measure each assessment aspect respectively. 

Keyword Density Mining 

Keyword density measures the quality of a student’s work by analyzing the contents of the student’s messages. Similar 
content-based approaches are found in essay grading literature. They focus on the semantic relationships between words and 
the context. Manually graded training essays are required to construct a semantic space, which reflects the contextual usage 
of words. A test essay is compared to the documents in the space, and assigned with a score according to the grades of the 
nearest essay(s). Examples are the early work in Educational Testing Services (ETS) (Burstein et al, 1996) and the Latent 
Semantic Analysis (LSA) model (Landauer et al, 2000). However, the major characteristic of our approach is that it does not 
require training essays, which is expensive and nearly unavailable in our problem. In addition, our approach deals with not 
just one essay, but a set of class messages. Below we give the basic definitions of the concepts used throughout of the paper. 

Keyword 

We assume that quality of learning is revealed by the quality of messages generated by a student. The number of key 
concepts appearing in the messages reflects the knowledge range of the author, so the usage of key concepts could be an 
indicator for the learning quality. 

Evidences from language learning of children (Snow and Ferguson, 1997) and discourse analysis theories, e.g. Discourse 
Representation Theory, (Kamp, 1981) show that the primary concepts in text are carried by noun phrases. Therefore, noun 
phrases are considered the conceptual entities in text messages. We define keyword as a simple, non-recursive noun phrase, 
i.e. basic noun phrase. 

Identifying basic noun phrases from free text is well researched in the field of Natural Language Processing. We implement a 
noun phrase extractor, which combines both Markov-based (Church, 1988) and rule-based (Brill, 1992) approaches. It 
disambiguates a multi-part-of-speech (POS) word by examining its previous n (2~4) tokens against a list of manually defined 
syntactic rules. 

The free text is first tokenized. A simplified WordNet database (Fellbaum, 1998), which contains words divided into four 
categories (noun, verb, adjective, and adverb) and the number of senses of each word used in one of the categories, is used to 
assign the right POS tag. The initial POS tag for a word is determined by selecting the category with the maximum number of 
senses. If a word is found in more than one category, it is marked as a multi-tag word. 

The second stage is multi-tag disambiguation. For every multi-tag word, the sequence of the POS tags of the previous n 
tokens is examined against a list of predefined syntactic rules. For example, “hit” can be either a noun or a verb. If the 
previous word is a determiner (the, a, this, etc), it will be tagged as a noun rather than a verb and the multi-tag mark is 
removed. If none of the rules is matched, some heuristics are used to disambiguate the multi-tag words. For instance, if a 
word is found in both the noun and the verb category, but ends with “tion”, it is tagged as a noun. 

After tagging the text, the noun phrase extractor extracts noun phrases by selecting the sequence of POS tags that are of 
interest. The current sequence pattern is defined as [A] {N}, where A refers to Adjective, N refers to Noun, [ ] means 
optional, and { } means repetition. 
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Keyword Weighting Scheme 

In previous studies (Chen and Wu, 2004; Wu and Chen, 2004), keywords (noun phrases) are assumed equally important. In 
this study we borrow the idea of term weighting in information retrieval (Salton and Buckley, 1988) to assign different 
weights to keywords. The importance of a keyword is measured by its frequency. The more frequently a keyword is used, the 
more important it is. However, if a keyword is used by more students, it becomes less important in terms of differentiating 
one student’s contribution to the class concept base from others’. In other words, a student fully contributes to the class 
concept base by only adding new keywords that are not used by any other students. The contribution of adding a keyword to 
the concept base decreases when the number of its author(s) increases. The extreme situation is that when a keyword is used 
by all other students, adding it to the concept base results in no contribution at all.  

From another point of view, concepts contributed by more students tend to be more general ones. For instance, in a course of 
Information Systems, information systems is likely to be used by most of the students, while expert systems is used by only a 
few of them. Messages containing too many general concepts tend to be superficial, and lack of deep analysis and strong 
arguments. In class discussion and other course work, we encourage students to synthesize what they have learnt in the class 
and add in their own understanding of the course materials. Although the usage of more specific keywords does not 
necessarily result in high quality work, it is still preferred because it indicates that the student is brining in new concepts, not 
just repeating the existing ones. 

The length of a noun phrase should also be taken into consideration. Longer noun phrases are more descriptive than shorter 
ones. As we can see from a real example from the experiment, COCOMO software development model is more descriptive 
than development model, so we assign higher weights to longer phrases. 

Based on the analysis above, we assign weights to keywords as follows. 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅+=

n
Nflenw log)log(1  

where w is the weight of a keyword, len is the length (number of words) of the keyword, f is the frequency of the keyword in 
the concept base, N is the total number of students in the class, and n is the number of students who use the keyword in their 
messages. We use a log function of the length to prevent it from becoming dominant when it increases. This function is 
similar to the tf.idf measure in Information Retrieval (Salton, 1989), but the inverse frequency of a keyword is across 
students, not messages. 

Keyword Density 

After assigning weights to keywords, we calculate Keyword Density (KD) by adding up the weights of keywords contributed 
by each student. The result is divided by the sum of weights of all keywords in the concept base. It is denoted as follows. 

W
W

KD i
i = , 

where KDi is the keyword density for student i, Wi is the sum of weights of the keywords contributed by student i, W is the 
sum of weights of all keywords. 

Message Length 

The quantity of a student’s efforts is measured by the length of his/her messages (ML). ML is calculated by counting all the 
words (not noun phrases), no matter duplicated or not, in the student’s messages. The absolute number is proportioned by the 
total size, which is the number of words in the entire class messages. Let MLi be the message length for student i, and nij be 
the number of words in message j of student i, we have 

∑∑

∑
=

i j
ij

j
ij

i n

n
ML . 

Message Count 

Activeness of participation could be measured by the log on times, but this information is not available inside the text 
messages. If we consider posting a message a valid participation, participation frequency can be measured by the Message 
Count (MC), which is the number of messages posted by a student. MC is defined as 
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where MCi is the message count of student i, and ni is the number of messages posted by student i. 

Assessment Model 

Taken together, the three measures are combined to compute a Performance Indicator (PI) score, which is defined as 

iiii MCMLKDPI γβα ++= , 

where PIi is the performance indicator score assigned to student i, and the coefficients α , β , and γ  are the weights of each 
of the three measures respectively. The coefficients are adjustable. Instructors can define the values by specifying the 
importance of each evaluation aspect. For example, by defining α=5, β= 3, and γ=1, the instructor would like to give higher 
grades to students who are more able to synthesize knowledge learned from the class, rather than to post many short content-
poor messages.   

EXPERIMENT 

Five classes are selected for model validation. All classes are supported by an electronic conference system that enables 
instructors and students to communicate with each other via text message exchanges asynchronously. The class information 
and their conference design are summarized in table 1. 

ID Domain Conference Design 
C1 Management Required discussions on major topics in the course. Students are 

graded according to their posts only. 
C2 Information Science Optional discussions on topics that students would like to share 

with each other. Grades are assigned to students’ online 
participation. 

C3 Information Systems 
C4 Information Systems 
C5 Information Systems 

Activities include required class discussion, debates, oral 
presentation, assignment submission, course project, and optional 
discussions. Some of the grading items are judged according to the 
documents submitted online, while others are based on materials 
handed-in such as project reports, PowerPoint slides, and so on. 

Table 1: Summary of Course Information 

All class messages are downloaded and converted to plain text, from which keywords are extracted and weighted. When 
calculating the performance indicator score, we set the three coefficients, α, β, and γ, to 1, because we do not know the 
instructors’ grading preferences. However, when the grading preferences are known, it is easy to adjust the coefficients to 
comply with the grading preferences.  

RESULTS AND ANALYSIS 

Table 2 shows some selected keywords with the weights and frequency. Although business has a high frequency (30), its 
weight is still 0 because it is used by all students. The results also show that longer phrase and more frequent phrases have 
higher weights.  

Keyword Weight Frequency/# of Authors 
business 0.00 30/13 
business activities 5.15 1/1 
business application technology 6.39 1/1 
business models 9.88 3/3 

Table 2: Selected Keywords and Their Weights 
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Table 3 summarizes the PI scores of the five classes.  

 Range N* Mean (Std. Dev.) 
C1 0.01~0.23 32 0.13 (0.06) 
C2 0.01~0.53 27 0.16 (0.15) 
C3 0.16~0.51 15 0.28 (0.11) 
C4 0.04~0.38 17 0.18 (0.10) 
C5 0.00~0.47 19 0.23 (0.12) 
*: Number of students  

Table 3: Summary of the PI scores 

To examine how accurately the PI scores assess student learning, we calculate the Pearson product-moment correlation (r) 
between the PI scores and the grades assigned by the instructor. Correlations between the individual measures and the actual 
grades are also calculated (see table 4 for details). The results show that there is a high correlation between the PI scores and 
the actual grades (from 0.57 to 0.92). According to the reports in the essay grading literature (Page and Petersen, 1995; 
Larkey, 1998; Foltz et al, 1999; Landauer and Psotka, 2000; and Burstein et al, 2003), correlation between the judgments of 
human expert varies from 0.5 to 0.9 approximately. It is reasonable to assume that correlation between grades of two 
instructors also falls into this range. The results, therefore, suggest that the computer grader performs well in terms of 
correlating with human evaluators. 

 rPI-G rKD-G rML-G rMC-G rro

C1 0.92 0.90 0.87 0.88 0.94 
C2 0.87 0.85 0.84 0.84 0.98 
C3 0.62 0.54 0.58 0.77 0.74 
C4* 0.80 0.79 0.78 0.74 0.94 
C5 0.62 0.65 0.50 0.52 0.63 
rPI-G: Correlation between the PI scores and the actual grades 
rKD-G: Correlation between the KD scores and the actual grades 
rML-G: Correlation between the ML scores and the actual grades 
rMC-G: Correlation between the MC scores and the actual grades 
rro: Correlation between the rank orders (Rg and Rpi) of students 
*: Calculation is after the removal of an outlier 

Table 4: Correlations 

The low correlation in C3 and C5 catches our attention. By looking into the conference boards, we find the following 
possible reasons: 

• The two courses contain a few conferences that are designed for course administration. For example, C3 has three 
conferences for assignment distribution and submission. The questions and answers regarding the assignments should 
have been excluded from analysis. Another similar conference is the exam conference. If the content of a conference is 
not used by the instructor for grading but processed by our program, noises will be introduced. 

• The conference boards have some files that cannot be processed by the current version of our program, such as 
attachments, PowerPoint slides, and audio files. However, they were manually evaluated by the instructors.  

• There are private/closed conferences that cannot be processed by our program. 

Unlike essay grading approaches, which attempt to assign a concrete score to an object, our performance indicator score does 
not attempt to predict the actual grades of students. It assesses students by comparing them with each other to distinguish 
“good” students from “poor” ones. The rank order of students by the PI scores would be more interesting to instructors. It 
could help instructors assess students by grouping them at different levels, which is still a common approach used in practice 
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by many instructors. First, students are ranked by their actual grades in descending order, and the rank order is recorded as 
Rg. Similarly, another rank order, Rpi, ranks students by their PI scores. The Spearman ranker order correlation between Rg 
and Rpi is then calculated. The results are shown in the last column of Table 4. The high correlation between Rg and Rpi 
suggests that the PI scores rank students correctly.  

Evidence of the supplementary role of the PI scores is also found from the experiment. PI scores deviated from the actual 
grades may suggest either inappropriate grades, or something special in the messages, or both. In C2, the PI score of one 
student is relatively higher than the actual grade. By reexamining the student’s messages, the instructor found that the student 
copied and pasted a long message along with the source URL from the web without adding his/her personal opinions. Even 
though the instructor had encouraged students to share anything they found relevant and interesting to the class, without 
personal opinions and thoughts, the instructor considered this to be less effort. Therefore, the original grade was confirmed.  

A similar case was found in C4, in which a student (hereafter known as S) got the highest PI score, but a low grade. When 
consulted, the instructor explained that S is an exception in that class. S submitted almost every assignment late because of 
family and personal medical problems. The instructor accepted S’ late assignments but gave low grades. After the makeup 
exam, the instructor changed S’ final grade to a higher one. Because of this reason, we excluded S from analysis when 
calculating the correlations (see table 4 for details). 

Figure 1 illustrates the close relationship between Rg and Rpi of C4 except the outlier S discussed above. 

 

Figure 1: Rank Orders of Students by PI Score and by Grade (C4) 

Having the program serving as a second grader, instructors are able to capture outliers, and to reduce misjudgment, bias, or 
errors in grading. 

CONCLUSION 

We have presented a model for automated assessment of student learning in virtual classrooms. This model is based on a text 
mining technique - keyword density mining from large body of texts. Noun phrases are extracted from class messages and 
weighted to build a concept base. Keyword density is then calculated for each student, and is further combined with two other 
measures, message length and message count, into a linear model which predicts a performance indicator score for each 
student. The experiment shows that the assessment model works well. For both the absolute scores and the relative rank 
orders, correlations between the PI scores and the actual grades are generally high.  

Our future research plan includes enhancing the current program, so that it can handle attachment files, and deal with special 
conferences. We also plan to test the model against courses in other domains.  
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