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ABSTRACT   

We explore conditions under which investments in Information Technology (IT) have a statistically significant impact on 
productivity. Rather than using a traditional analytical technique such as regression, we use two data mining techniques (i.e. 
regression trees and regression splines) for doing data analysis and integrated their results. Our analysis indicates the 
following: 1) IT investments have a positive impact on organizational productivity only when IT investments meet certain 
conditions; and 2) the IT impact is not uniform but varies depending on the amounts invested in other related areas, such as 
Non-IT Labor, Non-IT Capital, and IT Stock. Thus, our study leads to some suggestions to top managers that organizations 
should assess the current state of investments in Non-IT Labor, Non-IT Capital, and IT Stock before making any further 
commitments to invest in IT as this current state partially determines the potential impact of additional investments in IT on 
organizational productivity. 
 

Keywords 
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INTRODUCTION 

Understanding the impact of information technology (IT) on organizations has been a constant concern for both researchers 
and practitioners for more than two decades.  While some recent studies have claimed that IT productivity paradox no longer 
exists (e.g. Brynjolfsson and Hitt, 1996; Shao and Lin, 2001), other studies suggest that this issue has not been completely 
resolved. For example, the empirical study of Strassman (1997) suggests that the investments in IT have no significant 
association with organizational performance. Lee and Menon (2000) found that while IT capital has a positive impact on 
productivity, IT labor did not. Morgan Stanley reported that U.S. companies wasted $130 billion on technology during the 
first two years of this millennium (Ward 2002).   It should also be noted that most of these studies have used a single 
technique to examine the issue of the IT productivity paradox in terms of its existence or non-existence, rather than 
conditions under which the IT productivity paradox would or would not exist. 

This study is also focused on understanding the impact of IT investments on organizational productivity, but we use multiple 
data mining analytical techniques (i.e. regression trees and regression splines) to identify conditions under which the impact 
of IT on organizational productivity would or would not exist.   It has been well known in data mining research (e.g. Bauer and 
Kohavi, 1999) that for some datasets, a combination of individually trained predictive model can give better performance than any 
of the individual models. Given this fact, we believe that the use of multiple techniques can provide the opportunity for deeper 
exploration of our research issue, if the researcher factors in the capabilities and limitations of each technique by integrating 
the responses obtained from each technique as we used in our study.  
 
LITERATURE REVIEW  
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Table 1 provides a brief summary of the previous studies.   While some earlier studies have found no impact or mixed results 
(Weill, 1992; Loveman, 1994), more recent studies have found a positive impact on productivity (Hitt and Brynjolfsson, 
1996; Dewan and Min, 1997; Menon, Lee, and Eldenburg, 2000; Shao and Lin, 2001).   

 
 

Study 
 

Research Method 
Year 
Studied  

 
Findings 

Weill (1992) Regression 1982-1987 Transactional IT:  ↑  
Strategic or informational IT: ↔ 

Loveman (1994) Regression  1978-1984 Productivity: ↔ 
Hitt & 
Brynjolfsson 
(1996) 

Ordinary least squares (OLS), 
the iterated seemingly 
unrelated regression (ISUR) 

1988-1992 Productivity and consumer value: ↑ 
Business profitability: ↔ 

Dewan & Min 
(1997) 

Non-linear least squares and 
OLS regressions 

1988-1992 IT capital is a substitute for both capital 
and labor 

Menon, Lee, 
Eldenburg (2000) 

Stochastic frontier 1976-1994 Between non-IT labor, IT labor, IT 
capital, medical IT capital and 
productivity: ↑ 

Shao & Lin (2001) Stochastic production frontier 
/ data envelopment analysis 
(DEA) 

1988-1992 IT has a positive effect on technical 
efficiency and thus, it lead to the 
productivity growth.   

Table 1: Summary of the Previous IT and Organizational Productivity Studies 
 

   Legend: 
   ↑: positive relationship 
   ↔: No effect 

 

DATA AND VARIABLES 
 
We used a dataset that has also been used in an IT and productivity study (Menon et al., 2000).  The dataset includes all 
hospitals in the state of Washington for the period from 1976 to 1994 excluding specialized hospitals.  A total of 1130 
observations are included in our analyses.  Each observation represents charges and costs incurred by each hospital per year.   
 
IT Stock, which represents IT investments, is constructed by combining IT Capital, Medical IT Capital, and a capitalized 
value of IT Labor expenses.  IT Capital includes capital expenses incurred mainly for administrative purposes in the 
departmental accounts and Medical IT Capital includes capital expenses incurred for the equipment used for diagnosing and 
therapeutics in the departmental accounts.  Table 2 provides a description of the variables and related departmental accounts.   
IT labor includes salaries and employee benefits incurred in departments where their capital expenses were classified as IT 
Capital.  The previous study treated IT Labor as a type of expenses that produce a capital asset, which lasts 3 years on the 
average (Hitt and Brynjofsson, 1996) and thus, it is also included as IT investments.  Non-IT Capital includes capital 
expenses incurred for the equipment used only for therapeutics purposes and also includes any capital expenses in remaining 
departmental accounts. The output variable, Adjusted Patient Days, represents a hospital performance measure.  In the 
previous studies, Adjusted Patient Days has been used as a useful proxy for hospital performance (MacLean and Mix, 1991; 
Menon et al., 2000).  For detailed description of variables, refer to the study by Menon et al. (2000). 

 
Variable Description (or Departmental Account) 
Adjusted 
Patient days 
(Q) 

Sum of Inpatient Days and Outpatient Days. Deflated by the output price (see below). 

IT Stock (T) Calculated as IT Capital plus Medical IT Capital plus three times IT Labor 
IT Capital  Data Processing, Communications, Admitting, Patient Accounts, Central Services, Purchasing, 

Accounting, Medical Records, Personnel, Medical Library, Medical Staff, and Utilization 
Management.  Deflated by Price Deflator for Fixed Investment for IT from WEFA-1994 
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Variable Description (or Departmental Account) 
Medical IT 
Capital  
 

MRI, CT Scanning Services, Surgical Services, Recovery Room, Anesthesiology, IV Therapy 
Services, Electrodiagnosis, Radiology-Diagnostic, Radiology-Therapeutic, Emergency Room, Nuclear 
Medicine, Electromyography, Lithotripsy, Organ Acquisitions, Outpatient Chemical Deposit. Deflated 
by Price Deflator for Fixed Investment for IT from WEFA-1994 

Non-IT 
Capital (K) 

Intensive/Coronary Care, Semi-Intensive Care, Acute Care, Physical Rehabilitation, Psychiatric, 
Nursery, Laboratory, Pharmacy, Home Care Services and any remaining accounts.  Deflated by Price 
Deflator for Fixed Investment for Non-IT from WEFA –1994. 

IT Labor Salaries and employee benefits charged to IT Capital accounts.  Deflated by Labor Price (see below).   
Non-IT Labor 
(L) 

Salaries, employee benefits, and physicians’ salaries charged to accounts other than IT Capital 
accounts.  Deflated by Labor Price (see below). 

Labor Price Employment Price Index for health care services from Bureau of Labor Statistics (BLS) (1995) 
Output Price Consumer Price Index for health care services from WEFA (1994) 

Table 2: Variable Definitions (Source:  Menon et al. (2000) & Menon’s SAS Program) 
 

THE PRODUCTION FUNCTION 

Like other studies, we also use production theory as the theoretical base for this study.  We assume that a hospital’s Adjusted 
Patient Days (Q) depends on the use of various inputs, Non-IT Capital (K), IT Stock (T), and Non-IT Labor (L), and so our 
production function has the following form: 

Q = f (K, L, T)         (1)   

Because we are concerned about the conditions under which the impact of on productivity could occur, our analyses involve 
the use of the Translog production function, which is more flexible functional form than the Cobb-Douglas function (Evans 
et al., 2000), allowing for the exploration of interactions between the input variables.  The relevant Translog production 
function can be expressed as  

loge Q = β0 + βK loge K + βL loge L+ βT loge T + ½ βKK(loge K)2 + ½ βLL(loge L)2  
 + ½ βTT(loge T)2 + βKL loge K loge L +  βLT loge L loge T+βTK loge T loge K     (2) 
 

OVERVIEW ON ANALYTICAL TECHNIQUES 

  
In this section, we provide overviews on regression trees and regression splines since many readers may not be familiar with 
these techniques. 
 
Regression Trees  
 
A decision tree (DT) is a tree-shaped knowledge structure, consisting of nodes, branches, and leaves.  For a given decision 
problem, each non-leaf node is associated with one of the decision variables, each branch from a non-leaf node is associated 
with a subset of the values of the corresponding decision variable, and each leaf node is associated with a value of the target 
(or dependent) variable.    
 
There are two main types of DTs are 1) classification trees and 2) regression trees (RT). For a classification tree, the target 
variable takes its values from a discrete domain, and for each leaf the DT associates a probability for each class. For the RT, 
the target variable takes its values from a continuous domain, and for each leaf, the DT associates the mean value of the 
target variable.  
 
The generation of a DT involves partitioning the model dataset into at least two parts: the training and the validation (test) 
datasets. Once an RT is generated from the training dataset, it is evaluated against the validation (or test) dataset and a 
subtree that has the lowest error rate against the validation dataset is generated.   
While the most commonly used performance measure for an RT is based on its predictive accuracy (e.g. R-squared, average 
squared error), among the other important performance measures are simplicity and stability. Simplicity is referred to as the 
interpretability of the RT, is often based on the number of leaves in the RT. Stability of the RT refers to obtaining similar 
results for the training and validation datasets. Although there is no standard quantitative measure for stability, one way to 
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assess the stability of the RT can be achieved by comparing the predicted mean value of the target variable based on the 
training dataset and the corresponding value for the validation dataset for each rule of the RT. 

 
Although RTs are similar to regressions since both techniques are used for the prediction, the RT model is a step function, 
whereas the regression model is a continuous function (Clark and Pregibon, 1992). Compared to regression models, RTs 
provide a model with better interpretability because the model represents interpretable English rules or logic statements.  
There have been instances where a decision tree has shown clues to data sets while a traditional linear regression analysis 
could not clearly indicate them (Breiman, et al., 1984).  However, perturbations in data could cause instability of RTs and 
thus, it can cause the predictive capabilities of a tree (Nerini et al., 2000; Hastie, Tibshirani, and Freeman, 2001).  To 
minimize instability, we can generate multiple trees and choose the best model that fits one’s objective.   

 
Although the RT technique has not been used in IT and productivity research, it has been successfully applied in various 
fields including software engineering (e.g. Gokhale and Lyu, 1997), epidemiology (Ciamplie et al., 1995), and production 
management (e.g. Markham et al., 1998). 

 
Regression Splines 
 
A Regression Splines (RS) approach models the mean outcome as piecewise polynomial function ƒ(x) which can be obtained 
by dividing the range of each predictor variable into one or more intervals and representing ƒ by a separate polynomial in 
each interval (Hastie et al., 2001). A regression spline function can be expressed as a linear combination of piecewise 
polynomial basis functions (BF) that are joined together smoothly at the knots, where a knot specifies the end of one region 
of data and the beginning of another (Steinberg, Colla, and Martin, 1999). The coefficient of each basis function is estimated 
by minimizing the sum of square errors, which is similar to the estimation process of regression, but involving local data for 
the given region. 
 
Multivariate Adaptive Regression Splines (MARS) approach was motivated by adaptive regression spline (Hastie and 
Tibshirani, 1990) and the recursive partitioning regression (RPR) approach (Breiman et al., 1984).  MARS automatically 
selects locations and degree of knots. It builds a model using a forward stepwise regression selection and a backward 
stepwise deletion strategy.  In the first phase, MARS builds an overfitted model by adding basis functions.  In the second 
phase, basis functions that have the least contribution to the model are deleted and the model is optimized (Steinberg et al, 
1999).  
 
MARS uses the basis functions in pairs of the form (x – t)+  and (t – x)+  where t is the knot.    The “+” represents positive part, 
thus, (x – t)+  means x – t  if  x > t  or  0  if otherwise and (t – x)+  means t – x if x < t or 0 if otherwise (Hastie and Tibshirani, 
1990; Hastie et al., 2001). MARS provides ANOVA decomposition, which identifies the relative contributions of each of the 
predictor variables and the interactions between variables (Friedman, 1991).  Although MARS has not been used in IT 
productivity research, this technique has been successfully applied in various fields including geography (e.g. Abraham & 
Steinberg, 2001), genetics (York & Eaves, 2001), and finance  (e.g. Abraham, 2002). 
 
EMPIRICAL ANALYSIS 
 
Results of Regression Tree Based Analysis 
 
We used the data mining software, SAS Enterprise Miner (EM), version 4.1. Following the traditional data mining approach 
for supervised learning, we partitioned the dataset into Training (R) and Validation (A) datasets and generated a regression 
tree. The predictive accuracy obtained from the RT in terms of R-squared is 0.869 for the Training dataset and 0.858 for the 
Validation dataset.  Table 3 includes a rule set obtained from our RT based analysis.  As shown in Table 3, the rule set from 
the RT generated the fourteen rules.  Each row represents a rule and the Condition Component columns represent the range 
of values for the relevant input variables for the relevant rule.  The Target columns represent the predicted mean values 
obtained from the Training and the Validation datasets for the target variables, where the standard deviation (SD) is enclosed 
in parentheses in the Training column.  For example, the first rule can be expressed as “If loge (Non-IT Labor) is less than 
14.5717, the predicted mean loge (Adjusted Patient Days) is 8.9747 with a standard deviation of 0.3338.”  The IT Impact 
column indicates whether the IT Stock variable was included in the relevant rule and specifies whether IT makes a 
contribution to the target value.  Also, predicted mean values of the target variable from the Training dataset and the 
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Validation dataset in Table 3 are very close to each other.  Thus, the RT demonstrates the stability although instability is one 
of limitations of the regression tree analysis. 

Condition Component 
Target: 

Mean loge V Rule Non-IT Labor 
(loge L) 

Non-IT Capital 
(loge K) 

IT Stock 
(loge T) 

Training  
(SD) Validation 

IT Impact

1 [0,            14.5717] Not selected Not selected 8.9747 (0.3338) 8.9436 No 
2 [14.5717, 14.8966] Not selected Not selected 9.1983 (0.4421) 9.2660 No 
3 [14.8966, 15.1752] Not selected Not selected 9.6050  (0.4720) 9.8419 No 
4 [15.1752, 15.7554] [12.8680,  ∞] Not selected 9.6536  (0.3026) 9.7182 No 
5 [15.1752, 15.7554] [0,   12.8680] Not selected 10.1528 (0.3606) 10.1772 No 
6 [15.7554, 16.3942] [13.1910,  ∞] Not selected 10.2371 (0.2712) 10.2582 No 
7 [15.7554, 16.3942] [0,   13.1910] [0, 15.2176] 10.4320  (0.4778) 10.5603 Yes 
8 [15.7554, 16.3942] [0,   13.1910] [15.2176, ∞] 10.9523  (0.2111) 10.8925 Yes 
9 [16.3942, 16.8873] [13.6985,  ∞] Not selected 10.8374  (0.2164) 10.8514 No 

10 [16.3942, 16.8873] [0,   13.6985] Not selected 11.2650  (0.2160) 11.2827 No 
11 [16.8873, 17.2691] [14.3513,  ∞] Not selected 11.0363  (0.1762) 11.1423 No 
12 [16.8873, 17.6502] [0,   14.3513] Not selected 11.5347  (0.2714) 11.5509 No 
13 [17.2691, 17.6502] [14.3513,  ∞] Not selected 11.3476  (0.1306) 11.4420 No 
14 [17.6502,           ∞] Not selected Not selected 11.9474  (0.3217) 11.6782 No 

Table 3: The Ruleset of RT – Sorted by loge(L) and mean loge (V) for Training Dataset 
 
With regards to the impact of investments in the IT stock on productivity, these RT-based results suggest that: 

1) IT Stock has a positive impact on target variable only when Non-IT Labor expenses are within the middle range 
associated with rules 7 and 8 (i.e. logeL ∈ [15.7554, 16.8773]).  However, when the Non-IT Labor is out of this 
range (i.e. logeL ∉ [15.7554, 16.8773]), investments in IT have no impact on the target variable. 

1) Even when IT Stock has a positive impact on target variable, its impact is not uniform since the impact of IT on the 
target variable is conditioned by the amounts invested in IT Stock, Non-IT Labor, and Non-IT Capital (see rules 7 
and 8).  

1) The mean value for the target variable is lower in the range where IT Stock has a positive significant impact on the 
target variable (see rules 7 and 8) than it is out of the range where both investments in Non-IT Labor are the highest 
and there is no significant IT investments impact (see rules 9, 10, 11. 12, 13, and 14).  This suggests that further 
investments in IT might not necessarily increase organizational productivity, once organization reaches its 
maximum level of IT investments.   

 
In order to validate our findings, we have also generated three additional RTs that varied Splitting Criterion, the Minimum 
Number of Observations per Leaf, and the Observations Required for a Split Search.  Then we compared the rulesets that 
were generated from these three RTs.  Their results are consistent with findings from our initial RT.   
 
Results of Regression Splines Based Analysis  
 
We used the Multivariate Adaptive Regression Splines (MARS) software, version 2.0 by Salford Systems.  The R-squared 
for the RS model was 0.90 thus indicating that it has relatively high predictive power.  Table 4 displays the results of the RS 
with two-way interaction, which contains a constant (basis function 0), 11 basis functions (regions), their coefficients, a 
variable that is directly related to each basis function and a variable that is interacting with another variable if any, and a knot 
location for each basis function.  
 
The knots for predictor variables are as follows: 
 

• Non-IT Labor: Lcv1 and Lcv2, where loge (Lcv1) = 16.703 and loge (Lcv2) = 15.350 
• IT Stock: Tcv1, Tcv2, and Tcv3, where loge (Tcv1) = 14.086, loge (Tcv2) = 15.967,  

and loge (Tcv3) = 14.738 
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• Non-IT Capital: Kcv1 and Kcv2, where loge(Kcv1) = 12.220 and loge(Kcv2) = 13.714. 
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Basis Function (BF) Coefficient Variable Parent 
Knot (log 

Value) 
0 11.923   
1 BF1 = max (0, logeL – 16.703);   1.114 logeL  16.703 
2 BF2 = max (0, 16.703 – logeL);  -1.243 logeL  16.703 
3 BF3 = max (0, logeK – 12.220);  -0.589 logeK  12.220 
4 BF4 = max (0, 12.220 – logeK)  
5 BF5 = max (0, logeL – 15.350)*BF4;        -1.067 logeL logeK 15.350 
6 BF6 = max (0, 15.350 – logeL)*BF4;   0.370 logeL logeK 15.350 
7 BF7 = max (0, logeT –14.086) *BF4;   0.611 logeT logeK 14.086 

10 BF10 = max (0, 15.967 - logeT);        -0.207 logeT  15.967 
11 BF11 = max (0, logeT – 14.738) * BF3;   0.050 logeT logeK 14.738 
12 BF12 = max (0, 14.738 - logeT) * BF3;   0.856 logeT logeK 14.738 
13 BF13 = max (0, logeK – 13.714) * BF2;   0.597 logeK logeL 13.714 

Table 4: Final Model 
 
Based on the model shown in Table 4, our Translog function can be expressed as follows:  
 

loge Q = 11.923 + 1.114*BF1 – 1.243*BF2  - 0.589*BF3 – 1.067*BF5 + 0.370*BF6 + 0.611*BF7 - 0.207*BF10 + 
0.050*BF11 + 0.856*BF12 + 0.597*BF13 

 
If the sign of the coefficient of a basis function is the same as the sign of the variable in that function (e.g. BF1, BF10), then 
the contribution of given variable in terms of that basis function is positive, while if the corresponding signs are different, 
then the contribution of given variable in terms of that basis function is negative (e.g. BF3, BF12). 
 
With regards to the impact of IT investments on productivity, these RS-based results suggest that: 
 

1) IT Stock has an impact on productivity since IT Stock involved in four (4) of the basis functions (e.g. BF7, BF10, 
BF11, and BF12).  

1) The overall impact on productivity is conditioned both by the amount invested in IT Stock (see BF10) and the 
investments in Non-IT Capital (see BF7, BF11, and BF12). 

1) The impact of investments in IT Stock is not conditioned by investments of Non-IT Labor as none of the basis 
functions that involve IT Stock has Non-IT Labor as a parent. 

1) The overall impact on productivity is not uniform because coefficients for each of the basis functions that involve IT 
Stock are different. 

1) Under certain conditions, investments in IT Stock have a positive impact on productivity. For example if the 
investments in Non-IT Capital is less than Kcv1, then the impact of IT Stock on productivity is positive since both of 
basis functions BF7 and BF10 have the same sign of the variable and the sign of the coefficient.  However, if the 
investments in Non-IT Capital are greater than Kcv1, and the investments in IT Stock is less than Tcv3 (see BF12), 
investments in IT Stock could have a negative impact on productivity. In this case, although the contribution of the 
IT Stock from BF10 is positive, the one from BF12 is negative (since the sign of logeT in BF12 is negative while the 
sign of the coefficient of BF12 is positive), and so the overall impact could be negative.  Thus, for those situations 
where even after additional investments in the IT Stock make the total IT Stock investments still below Tcv3, there are 
no resulting increases on productivity.  

 
 
OVERALL RESULTS FROM BOTH OF DATA MINING TECHNIQUES 
 
Capabilities of Techniques  
 
Regression Trees and Regression Splines techniques have different capabilities and limitations, which restrict the nature of 
responses that they can provide to the research issue in study.  Thus, when each technique is used, it is important that 
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capabilities and the limitations of the technique be factored in any interpretation of the results provided by the technique.  
Table 5 describes the capabilities of each technique used in our analyses.  

 
Capability RT RS:  Two-Way Interactions 
Importance Yes Yes 
Coefficient No Yes 

Partitioning Yes Yes 
Hierarchy Yes Yes 

Capability: 
Importance:   Can identify order of importance of the variables in the predictive model 
Coefficient:    Estimates value of the coefficient for each variable 
Partitioning:  Can provide a model with conditional response by partitioning a variable’s 

values 
Hierarchy:     Can automatically identify the hierarchical nature of interaction between 

variables 
Table 5:  Capabilities of Analytical Techniques 

 
 
Integration of Responses from Each Technique  

 
In this subsection, we summarize the findings by integrating the responses obtained from each technique.  Table 6 provides 
the summary of the results of each analysis.   There are two research questions, which we are trying to answer.  First, do IT 
investments have a positive impact on organizational productivity?  Second, is the impact of IT on organizational 
productivity uniform?   

 
Research 
Questions 

RT RS Overall Summary 

A positive IT 
impact on 
productivity 

YES 
(under some conditions); 
NO 
(under other conditions); 

YES 
(under some 

conditions) 
NO 
(under other conditions) 

YES, only when IT 
investments meet some 
conditions  

The impact of IT 
is uniform  

NO.   
It is conditioned by the 
amounts invested in 
other areas. 

NO.  
It is conditioned by the 
amounts invested in 
other areas. 

NO, the impact of IT is 
not uniform but it is 
conditioned by the 
amounts invested in 
other related areas. 

Table 6: The Results of Each Analysis 
 
The results from the both data mining techniques indicate that IT investments have a positive impact on organizational 
productivity only when they meet some conditions, where each condition is described in the results of each analysis.  Both 
techniques consistently indicate that the impact of IT is not uniform but is conditioned by the amounts invested in Non-IT 
Capital and/or IT Stock and/or Non-IT Labor.   This is due to the differences of each technique’s capabilities and limitations, 
which restrict the nature of responses to the research in study.    We believe that identifying these differences and integrating 
responses from each technique advance our understanding of the IT impact on organizational productivity.  
 
CONCLUSION 
 
While most previous studies have attempted to assess the impact of IT investments using a single technique, we used two 
data mining techniques (i.e. regression trees and regression splines) to understand the impact of IT investments on 
organizational productivity. This approach provided us with the opportunity for both forming a consensus result and 
developing a better understanding of the impact of IT investments on productivity. By integrating the responses obtained 
from both data mining techniques, we found that IT investments have a positive impact on productivity only when they meet 
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some conditions.  In addition, the impact of IT is not uniform but is conditioned by the amounts invested in Non-IT Labor, 
Non-IT Capital, and IT Stock.   
 
Our study is different from the previous studies that examined the impact of the IT productivity in terms of its existence or 
non-existence.  Rather, this study explores the conditions under which the impact of IT on productivity would or would not 
exist.  Findings from our study lead to some suggestions.  When an organization considers making additional investments in 
IT, top managers should assess the level of the organization’s current state with regards to its investments in Non-IT Labor, 
Non-IT Capital, and IT Stock before making any further commitments to invest in IT as this current state partially determines 
the potential impact of additional investments in IT on organizational productivity. Results of our study can also help making 
other decisions.  Either increasing or reducing the overall investments in other areas can lead to the increase in organizational 
productivity.  By identifying these relationships, organizations can use their resources more efficiently.     
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