
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2003 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2003

Architecture-Based Systems Evaluation: Lessons
Learned
Anna Griman
Universidad Simón Bolívar

M Perez
Universidad Simón Bolívar

Luis Mendoza
Universidad Simón Bolívar

K. Domínguez
Universidad Simón Bolívar

Follow this and additional works at: http://aisel.aisnet.org/amcis2003

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2003 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Griman, Anna; Perez, M; Mendoza, Luis; and Domínguez, K., "Architecture-Based Systems Evaluation: Lessons Learned" (2003).
AMCIS 2003 Proceedings. 176.
http://aisel.aisnet.org/amcis2003/176

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301339145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2003%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2003?utm_source=aisel.aisnet.org%2Famcis2003%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2003%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2003%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2003?utm_source=aisel.aisnet.org%2Famcis2003%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2003/176?utm_source=aisel.aisnet.org%2Famcis2003%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

2003 — Ninth Americas Conference on Information Systems 1421

ARCHITECTURE-BASED SYSTEMS EVALUATION:
LESSONS LEARNED

A. Grimán
Universidad Simón Bolívar

agriman@usb.ve

M. Pérez
Universidad Simón Bolívar

movalles@usb.ve

L. Mendoza
Universidad Simón Bolívar

lmendoza@usb.ve

K. Domínguez
Universidad Simón Bolívar

kdoming@usb.ve

Abstract

Information Systems are today highly complex and users are demanding ever higher quality levels. Therefore,
it is useful to have a minimum understanding of the level of quality expected of those systems. Architecture is
one of the components most likely to affect system quality; hence it must be evaluated at the early stages of
development in order to guarantee quality attributes in the future system. The objective of this research is to
present the lessons learned from applying two architectural evaluation methods to the same development
process applied to a case. The methods used were the Software Architecture Design Method (Bosch 2000) and
the Architecture Tradeoff Analysis Method - ATAM (Clements et al. 2002). The case study was a Knowledge
Management System known as PROYECTOS DID KMS, which was applied to Research Projects conducted
by Universidad Simón Bolívar. The mainly conclusion is that the major difference between both methods lies
in their effectiveness, based on the dimension of the systems architecture to be evaluated. The Bosch’s Method,
combined with the Simulation Technique, is suitable for systems that handle large amounts of components,
since this technique enables the behavior of the different quality attributes to be quantitatively observed by
subjecting them to changes in a relatively short space of time. On the other hand, ATAM is appropriate for
relatively small systems, where stakeholders can reach a consensus and the architect can also carefully and
qualitatively compare each of the scenarios identified.

Keywords: Architecture-based evaluation, ATAM, software architecture design method, case study

Introduction

Information Systems grow more complex by the day and compliance with certain quality attributes is increasingly necessary.
Guaranteeing their quality in terms of these attributes is no easy task. A quality attribute is defined as a property whose degree
of satisfaction by a software system can be valued by its users (external attributes) and/or by its designers (internal attributes)
(Meyer 1997). It is harder and more expensive to identify, correct or improve these attributes once the system has been completed.
Software architecture is characterized by its ability to foster or penalize some of these quality attributes. This raises the need to
evaluate it during an early stage of the development process, and involves conducting a cost-effectiveness evaluation. Knowledge
Management Systems (KMS) are no exception. They also require the fulfillment of certain quality requirements (attributes).
Many of these requirements can be promoted by the architecture.

For Bass et al. (1998), software architecture is the structure or structures of the system, composed by software components, the
visible external properties of those components, and the relationship between them, with special emphasis on architecture being
an abstraction of the system that suppresses the details of the components neither used nor affected. Bass et al. (1998) believe
software architecture is important because it facilitates communication among stakeholders and helps in decision-making on
design issues by defining restrictions involving implementation, identifying quality attributes, handling changes and using
transferable and reusable models, facilitating therefore one first evaluation of the future system.

mailto:agriman@usb.ve
mailto:movalles@usb.ve
mailto:lmendoza@usb.ve
mailto:kdoming@usb.ve

IT Investment and Evaluation

1422 2003 — Ninth Americas Conference on Information Systems

Whitten et al. (2002) propose Information System Architecture provides a unifying framework into which various people with
different perspectives can organize and view the fundamental building blocks of information system. Kructhen (1999) also
proposes that one system’s architecture is perhaps the most important deliverable that can be used to manage these different
viewpoints and thereby controls the iterative and incremental development of a system throughout its life cycle. To evaluate the
architecture of the case study, the Bosch (2000) and Clements et al (2002) methods were selected for their robustness and for the
easiness of finding specific documentation.

The main goal of this paper is to present the lessons learned from applying two architectural evaluation methods: the Software
Architecture Design Method (Bosch 2000) and the Architecture Tradeoff Analysis Method – ATAM (Clements et al. 2002)
applied to the same case study during the development process of a KMS for Research Projects conducted by Universidad Simón
Bolívar (PROYECTOS DID KMS). All these benefits demonstrate the need to define and specify software architecture as a step
prior to its construction and also, once designed, to evaluate it based on certain specific criteria to see at what stage all these
possible benefits effectively became advantages for the developing team and the end user. It would be helpful to have a method
for evaluating the architecture.

This article contains, after introduction, the research methodology, the main characteristics of the case study, and the evaluation
methods applied. Next, the lessons learned from these evaluations are described, and lastly the conclusions and recommendations
are presented.

Research Methodology

To carry out this investigation, the DESMET methodology was applied, which is concerned with the evaluation of methods or
tools within a particular organization (Kitchenham et al. 1996). The term organization is meant to apply to a software development
group in a particular company/division performing broadly similar tasks under similar conditions. In addition, the DESMET
methodology can be used by academic institutions interested in experimental software engineering (Kitchenham et al. 1996).

This methodology was followed, because to DESMET evaluation exercise is comparative. That is, the researches assumes that
there are several alternative ways of performing a software engineering task and them want to identify which of the alternatives
is best in specific circumstances (Kitchenham et al. 1996).

As a result of DESMET application, the method obtained was Feature Analysis Case Study, a feature-based evaluation undertaken
alter a method/tool has been used in a practice on a real project (Kitchenham et al. 1996). On this base, the comparison of the
methods Software Architecture Design Method (Bosch 2000) and the Architecture Tradeoff Analysis Method - ATAM (Clements
et al. 2002) was carried out applying both methods in the case study described in the next section, and evaluating them according
to the following characteristic: Use of scenarios as an evaluation tool, Weighting of scenarios, Identification of quality attributes,
Quality specification techniques, Evaluation inputs, Simulation technique, Participation by the stakeholders, Right choice of
architecture, Costs, and Dimension of the Architecture.

Case Study: Proyectos DID KMS

Universidad Simón Bolívar (USB) intends to stimulate applications for financing research projects and also to promote tools to
handle these projects once they have been approved. It further intends to foster clarity and precision in the formulation of projects
to reduce initial rejections and guarantee successful projects. It was within this context that the initiative to develop a KMS to
support knowledge management related to the USB’s research projects arose (Domínguez 2001). The purpose of the KMS
developed in this research is to encourage the professors at the USB to manage their research projects through a Web interface,
thereby fostering collaborative work and facilitating information sharing. The benefits of PROYECTOS DID KMS will include
the ability to capitalize on the knowledge generated by the research projects and keep it where it is accessible by everyone to so
that information on specific areas can be sought quickly and easily. The objectives to be met are: to encourage people to apply
for Research Project funding, as well as to foster the development of tools to facilitate the handling of these projects once they
are approved. A further intention is to foster clarity and precision in the formulation of these projects in order to reduce initial
rejections and be able to attain successful projects. All this must be done while supporting the processes that are characteristic
of a KMS: capturing, generating, sharing and distributing knowledge. PROYECTOS DID KMS system enables stakeholders to
capture, generate, share and distribute the knowledge handled at the USB, while enabling the university to capitalize on and store
all this knowledge, giving it a competitive advantage over other organizations.

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1423

Quality Attributes

Following the session with the KMS stakeholders (developers, operators, end users, representative clients, system administrators,
evaluation team, managers, etc.), architectural quality attributes were selected. These were: Maintainability, Reliability, Security
and Efficiency. As can be seen below, all of these are critical for a KMS, in addition to being architectural in nature (Bass et al.,
1998). Although focused on systems in general, Jacobson et al. (2000) state the following (applied perfectly to a KMS): “If we
can be sure about anything, it is that any sizeable system will evolve. It will even evolve if it is still under development.” This
is possible thanks to the architecture, which is why Maintainability has to be considered one of the architectural quality
characteristics to be taken into account.

As far as system Reliability is concerned (Bass et al., 1998), it is defined as the system’s ability to remain operational over time
and, like Ortega (2000), they point out that Reliability is related to fault tolerance and the time it takes to recover, both aspects
being attainable through the architecture. Thus for KMS’s domain, Reliability must also be considered a quality characteristic or
attribute to be promoted by the architecture.

Although Security, according to Ortega et al. (2000), is part of the Functionality and, as shown above, the latter is not architectural.
Bass et al. (1998) consider that Security is, as they say that prevention, detection and response to such effects involve architectural
strategies that may require the existence of special components to solve it (Bass et al., 1998). A KMS in particular will not be
taken as just another characteristic, but as a sub-characteristic of Reliability.

 As regards Efficiency, Bass et al. (1998) relate it to the time required to respond to a particular stimulus (event) or the number
of events processed in the same time interval. These authors also say Efficiency can be measured on the basis of the amount of
information and communication between system components, which clearly is an architectural characteristic, since components
can be implemented within the server layer that handles users’ requests efficiently. Generally, because they capture, distribute,
share and generate Knowledge, KMS have this type of information flow, therefore handling must take place as efficiently as
possible. So, Efficiency must also be taken into account when it comes to guaranteeing product quality through the architecture
as far as a KMS’s domain is concerned.

Candidate Architecture

 In order to specify the architecture under the Kruchten (1999) approach, an initial Class Diagram (Candidate Architecture) was
proposed. It includes two of the Design Patterns proposed by Gamma et al. (1995), these being: Chain of Responsibility and
Observer. The design patterns are descriptions of communication by objects and classes that are personalized in order to remedy
a problem in the general plan within a specific context (Gamma et al. 1995). Each design pattern has a particular object-oriented
approach. It describes when to apply them and specifies whether they can be applied in view of another design restriction, its
consequences and its tradeoffs. Figure 1 shows the Candidate Architecture with the design patterns used.

In the Chain of Responsibility Design Pattern, when a client issues a request, it propagates along the chain until it reaches a
ConcreteHandler object, which takes responsibility for handling it. This leads to: reduced coupling, greater flexibility in the
assignment of responsibilities and lack of guarantee in the receipt. Figure 2 shows the structure of the Chain of Responsability
Design Pattern.

In the Candidate Architecture, the Financial Handler, Activity Handler, Mail Handler and Document Handler classes play a
similar role to the ConcreteHandler object as these are levels in the Components Handler class that in turn would play the role
of a Handler object. The direct advantages of applying this pattern are: better distribution and control of requests and more
scalability.

In the Observer Design Pattern all the observers are notified when a change occurs in the status of stored objects. This had the
following consequences: it reduces the coupling between Data and Observer Objects and it supports broadcast communication
and unexpected changes. Figure 3 shows the structure of the Observer Design Pattern.

In the Candidate Architecture the data that will be subject to frequent changes are in the classes of the four main components,
which is why the Financial Handler, Activity Handler, Mail Handler and Document Handler classes play a similar role to a
ConcreteSubject object, whereas the Component Handler will play the role of a Subject object. Moreover, notification of updates
makes sense if several professors are working on the same project. This can be known thanks to the sessions. Therefore, the
Session class would play a similar role to a ConcreteObserver object, whereas the Professor class would play the role of an
Observer object.

IT Investment and Evaluation

1424 2003 — Ninth Americas Conference on Information Systems

Figure 1. Class Diagram: Candidate Architecture

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1425

Figure 2. Structure of the Chain of Responsibility Pattern (Gamma et al. 1995)

Figure 3. Structure of the Observer Pattern (Gamma et al. 1995)

After the system, its quality requirements and its candidate architecture are presented, the evaluation methods applied are briefly
explained and learned lessons are presented.

Evaluation Methods, Techniques and Tools

As far as the Architectural Evaluation is concerned, Bosch (2000) affirms that the explicit evaluation of the quality requirements
of systems architecture will minimize the risks involved in building a system that may fail, and will consequently reduce the cost
of developing the system. This is why it was proposed that the architecture be evaluated to determine whether it is the best one
for building a KMS. Therefore, and also for the purposes of this research, two independent evaluations were carried out: the first
using the Software Architecture Design Method (Bosch 2000) and the second using the Architecture Tradeoff Analysis Method
– ATAM (Clements et al. 2002). These methods were selected for their robustness and for the easiness of finding specific
documentation. In each of the applications, lessons to be taken into account in future architectural evaluations were learned. Each
of the methods used is briefly described below and its application on the case study is shown.

IT Investment and Evaluation

1426 2003 — Ninth Americas Conference on Information Systems

Software Architecture Design Method

This method focuses on the explicit evaluation and design of quality requirements in software architectures. According to Chirinos
(2001), it is easier to evaluate quality attributes using the method proposed by Bosch (2000) for Systems Architecture design.
Bosch (2000) also proposes that one of the following Evaluation techniques be chosen: Scenario based, Simulation based,
Mathematical Model based, and Experience based. In keeping with the purpose of this research, the Simulation based evaluation
will be used, in which the implementation of high-level Systems Architecture is used. The Bosch method works with an initial
architecture which evaluates and transforms it in order to enhance it (see Figure 4), and affirms that there are four categories of
transformation for architecture: imposition of an architectural style, imposition of an architectural pattern, application of a design
pattern and conversion of the quality requirements in terms of functionality. This method is broken down into three fundamental
phases: (a) functionality based architectural design; (b) evaluation of software architecture; and (c) transformation of software
architecture. When the Simulation Technique is applied within the method proposed by Bosch, the following steps are followed:

Define and implement the context of the system: This activity seeks to identify the interfaces of the software architecture, their
context, and to decide how these interfaces should behave within the context.

Implement the architectural components: The second phase establishes the choice of profile for each quality attribute associated
with the candidate architecture; Table 1 shows the profile associated with the Maintainability attribute. Similarly, the corres-
ponding profiles for Efficiency and Reliability were built.

Figure 4. The Steps Taken by the Bosch Method

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1427

Table 1. Maintainability Scenario Profile

Category Internal Attribute: Metrics Maintainability Scenario Weight
Relative
weight

Management Control Structure System: number of
modules

S1: Add a new module meeting the
system’s requirerements to the different
handlers

8 0,18

Control Structure System: depth of the
trace / Level of Coupling: number of
interconnections

S2: Change a requirement in the Financial
Tool (Financial Handler)

4 0,09

Control Structure System: depth of the
trace / Level of Coupling: number of
interconnections

S3: Change a requirement in the Discussion
List (Mail Handler)

6 0,14

Control Structure System: depth of the
trace / Level of Coupling: number of
interconnections

S4: Change a requirement in the Document
Repository (Document Handler)

10 0,23

Control Structure System: depth of the
trace / Level of Coupling: number of
interconnections

S5: Change a requirement in the Activities
Agenda (Activities Handler)

5 0,11

Control Structure System: depth of the
trace / Level of Coupling: number of
interconnections

S6: Change a requiremment to
Add/Modify/Query Project Information
(Project Handler)

9 0,20

Finance Control Structure System: depth of the
trace / Level of Coupling: number of
interconnections

S7: Change a requirement in Request
Financial Support Application (Request
Handler)

2 0,05

Once all the classes making up the architecture were defined as interfaces, with emphasis on those classes that are related to the
scenarios within each of the profiles obtained at this stage, a module was implemented with a view to providing the functionality
needed to evaluate these scenarios. This module communicates with its interface through message-passing to the other modules
present in the architecture.

Implement and initiate the profiles and simulate the system: In order to implement the profiles, the different scenarios
described in the profiles must be executed. It is important to note that the evaluation technique chosen (Simulation) implies certain
restrictions. In particular, RAPIDE language does a simulation using what is known as a Poset Browser, where the architecture
simulation is shown as a trace (a series of events generated by the different components of the architecture communicating
between one another). Figure 5 shows the trace corresponding to the Maintainability profile.

Transformation of the Architecture: The quality attributes specified in the profiles must be measured on the traces obtained.
Then the architecture must be transformed to improve one or more of these attributes. The idea is to select a transformation that
does not adversely affect any of the quality attributes (Bosch 2000).

Out of the four types of transformation proposed by Bosch, it was decided to use the transformation of the Application of a Design
Pattern, as it can only be applied to part of the architecture (Bosch 2000). This one was also chosen because it increases
Maintainability. This transformation makes it easier to replace algorithms in order to execute a specific task (Bosch 2000),
promoting the Maintainability attribute, which is very important within the domain of a KMS. It was therefore decided to replace
the Observer pattern of the Architecture in Figure 1, with the Command Design pattern (Gamma et al. 1995), since this pattern
fosters Maintainability better. Figure 6 shows the candidate architecture (Transformed). Note that the design patterns used in their
Architecture are: Chain of Responsibility (once again) and Command.

In the Command Design Pattern (Gamma et al. 1995), when a client issues a request it propagates along the chain until it reaches
a ConcreteCommand object that takes responsibility for handling it. This leads to the following consequences: reduced coupling,
easy addition of new commands, support for recording changes, support for transactions and support for the Undo operation.
Figure 7 shows the structure of the Command Design Pattern.

IT Investment and Evaluation

1428 2003 — Ninth Americas Conference on Information Systems

registro_aprobado

comiunicacion_aceptada_con_sesion

comunica_con_sesion

realizando_consulta_de_mb

conectando_nuevo_manejador

request_utiliza_mc

request_usa_hijo_mf

request_utiliza_mbd

request_usa_hijo_mc

modificar_mf

request_se_le_asocia_p

result_recibido_de_mbd

result_cosulta_mb

result_utiliza_datos_actualizados

datos_actualizados

request_actualiza_mbd

request_actualiza_rm

request_utiliza_ms

request_utiliza_p

result_utiliza_p

result_utiliza_ms

result_se_le_asocia_s

result_se_le_asocia_p

result_modifica_mf

result_usa_hijo_mc

result_modifica_s

request_se_le_asocia_s

request_utiliza_mp

request_utiliza_p

result_utiliza_mc

result_utiliza_mc

result_usa_hijo_mf

result_utiiliza_mbd

result_utiliza_mp

request_modifica_s

request_modifica_mf

registro_aprobado

comiunicacion_aceptada_con_sesion

comunica_con_sesion

realizando_consulta_de_mb

conectando_nuevo_manejador

request_utiliza_mc

request_usa_hijo_mf

request_utiliza_mbd

request_usa_hijo_mc

modificar_mf

request_se_le_asocia_p

result_recibido_de_mbd

result_cosulta_mb

result_utiliza_datos_actualizados

datos_actualizados

request_actualiza_mbd

request_actualiza_rm

request_utiliza_ms

request_utiliza_p

result_utiliza_p

result_utiliza_ms

result_se_le_asocia_s

result_se_le_asocia_p

result_modifica_mf

result_usa_hijo_mc

result_modifica_s

registro_aprobado

comiunicacion_aceptada_con_sesion

comunica_con_sesion

realizando_consulta_de_mb

conectando_nuevo_manejador

request_utiliza_mc

request_usa_hijo_mf

request_utiliza_mbd

request_usa_hijo_mc

modificar_mf

request_se_le_asocia_p

result_recibido_de_mbd

result_cosulta_mb

result_utiliza_datos_actualizados

datos_actualizados

request_actualiza_mbd

request_actualiza_rm

request_utiliza_ms

request_utiliza_p

result_utiliza_p

result_utiliza_ms

result_se_le_asocia_s

result_se_le_asocia_p

result_modifica_mf

result_usa_hijo_mc

result_modifica_s

request_se_le_asocia_s

request_utiliza_mp

request_utiliza_p

result_utiliza_mc

result_utiliza_mc

result_usa_hijo_mf

result_utiiliza_mbd

result_utiliza_mp

request_modifica_s

request_modifica_mf

Figure 5. Trace in RAPIDE Corresponding to the Maintainability Profile

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1429

Components Handler

name
status

modify_status()
update_register()
consult_register()
add()
delete()

Register

date
user
function
project_title

undo_function()
redo_function()

Function Library

add_function()
delete_function()
do_function()
undo_function()

uses

uses

Search Engine

SQL_instruction
uses

DBMS

connection_driver
location_DB

connect()
disconnect()

uses
consult

Finalcial Handler

calculate_operation()

Spreadsheet

nombre
data

modify_attribute()
add()
delete()

handles

Activities Handler

sort_operations()

Activity

date
time
title
message
added_by
addition_date

modify_attribute()
add()
delete()

handles

Documents Handler

quote

zip_file()
calculate_quote()

Document

name
size
pub/priv
type

modify_attribute()
add()
delete()

uses

Mail Handler

sort_messages()

e-mail

TO
FROM
date
subject
dir_attach

modify_attribute()
add()
delete()
send_to_queue()
send()
response()

uses

Financing request

date
amount
project title
objectives
code
requests

add()
delete()
modify_attrbute()

Request Handler

accept_parcially()
accept_totally()
reject()

uses

hanles

Form Handler

generate()

uses

Professor

name
last_name
ID
category
status
department
SPI_id
research_group
email
password

modify_attribute()
add()
delete()

uses

Pre-set form

name
type
creation_date

handles

associated_to

Evaluation

date
evaluator

Derived product

type
name
location

Project Handler

end()
create()
add()
delete()
modify_attribute()
evaluate()

uses

uses

Research project

title
objectives
password
acceptation_date
status
financied_by
duration_estimated

qualify

correspond_to

handles

CONCRETE
COMMAND

INVOKER

RECEIVER

RECEIVER HANDLER
RECEIVER

RECEIVER

CONCRETE
HANDLER CONCRETE

HANDLER
CONCRETE
HANDLER

CONCRETE
HANDLER

CHAIN OF REPONSABILITY
COMMAND

DESIGN PATTERNS:

Components Handler

name
status

modify_status()
update_register()
consult_register()
add()
delete()

Register

date
user
function
project_title

undo_function()
redo_function()

Function Library

add_function()
delete_function()
do_function()
undo_function()

uses

uses

Search Engine

SQL_instruction
uses

DBMS

connection_driver
location_DB

connect()
disconnect()

uses
consult

Finalcial Handler

calculate_operation()

Spreadsheet

nombre
data

modify_attribute()
add()
delete()

handles

Activities Handler

sort_operations()

Activity

date
time
title
message
added_by
addition_date

modify_attribute()
add()
delete()

handles

Documents Handler

quote

zip_file()
calculate_quote()

Document

name
size
pub/priv
type

modify_attribute()
add()
delete()

uses

Mail Handler

sort_messages()

e-mail

TO
FROM
date
subject
dir_attach

modify_attribute()
add()
delete()
send_to_queue()
send()
response()

uses

Financing request

date
amount
project title
objectives
code
requests

add()
delete()
modify_attrbute()

Request Handler

accept_parcially()
accept_totally()
reject()

uses

hanles

Form Handler

add()
delete()

handles

Documents Handler

quote

zip_file()
calculate_quote()

Document

name
size
pub/priv
type

modify_attribute()
add()
delete()

uses

Mail Handler

sort_messages()

e-mail

TO
FROM
date
subject
dir_attach

modify_attribute()
add()
delete()
send_to_queue()
send()
response()

uses

Financing request

date
amount
project title
objectives
code
requests

add()
delete()
modify_attrbute()

Request Handler

accept_parcially()
accept_totally()
reject()

uses

hanles

Form Handler

generate()

uses

Professor

name
last_name
ID
category
status
department
SPI_id
research_group
email
password

modify_attribute()
add()
delete()

uses

Pre-set form

name
type
creation_date

handles

associated_to

Evaluation

date
evaluator

Derived product

type
name
location

Project Handler

end()
create()
add()
delete()
modify_attribute()
evaluate()

uses

uses

Research project

title
objectives
password
acceptation_date
status
financied_by
duration_estimated

qualify

correspond_to

handles

CONCRETE
COMMAND

INVOKER

RECEIVER

RECEIVER HANDLER
RECEIVER

RECEIVER

CONCRETE

generate()

uses

Professor

name
last_name
ID
category
status
department
SPI_id
research_group
email
password

modify_attribute()
add()
delete()

uses

Pre-set form

name
type
creation_date

handles

associated_to

Evaluation

date
evaluator

Derived product

type
name
location

Project Handler

end()
create()
add()
delete()
modify_attribute()
evaluate()

uses

uses

Research project

title
objectives
password
acceptation_date
status
financied_by
duration_estimated

qualify

correspond_to

handles

CONCRETE
COMMAND

INVOKER

RECEIVER

RECEIVER HANDLER
RECEIVER

RECEIVER

CONCRETE
HANDLER CONCRETE

HANDLER
CONCRETE
HANDLER

CONCRETE
HANDLER

CHAIN OF REPONSABILITY
COMMAND

DESIGN PATTERNS:

Figure 6. Candidate Architecture Transformed

IT Investment and Evaluation

1430 2003 — Ninth Americas Conference on Information Systems

Figure 7. Structure of the Command Pattern (Gamma et al. 1995)

In the Candidate Architecture 2, requests would reach each handler that uses some of the functions defined in the Functions
Library, but before executing them the Record of Modifications which in turn checks the feasibility of the function and invokes
its execution, is updated. For all these reasons, the Format Handler, the Component Handler, the Project Handler and the Request
Handler play a similar role to a Receiver object, while the Function Library class would play the role of a ConcreteCommand
object and the Record of Modifications, would play in turn the role of Invoker.

Following application of the above steps, Table 2 presents a summary of the most important measurements for both architectures.
Remember that the Candidate Architecture 1 is the same Candidate Architecture show in Figure 1.

Table 2. Summary of the Measurements Taken for Both Architectures

Profile Metric Sub-characteristic
Candidate

Architecture 1

Candidate
Architecture 2
(transformed)

Maintainability Control Structure System Number of Modules Addition of one
module

Addition of two modules

Level of Coupling Number of
Interconnections

Average: 2
interconnections

Average: 2.14
interconnections

Control Structure System Depth of the Trace Average: 52 levels Average: 51.5 levels
Reliability Fault Tolerance Functional

Dependence
1 2

Efficiency Behavior over time
Use of resources

Use of CPU and
memory

 Response Time

Average: 52 Average: 51.5

When analyzing Table 2, Candidate Architecture 2 (Transformed) shown in Figure 6, can be seen to have the same characteristics:

• Maintainability: Improves the Control Structure System metrics as it increases the number of modules that can be added.
Despite the fact that the initial architecture in the last two metrics is only slightly higher compared to the transformed
architecture, this last Candidate Architecture 2 (Transformed) improves the first as regards the addition of modules. This
aspect is relevant for the type of system evaluated here since the knowledge stored varied and is diversified, making it
necessary to include extensions to the system and hence constantly to modify the requirements, which is important when it
comes to generating, coding and transferring knowledge. Also, in the connections of the Candidate Architecture 2
(Transformed) there is only one connection to the modules added, and in the initial architecture there are two connections.
This makes the transformed architecture appear to be more Mantainable for this type of system.

• Reliability: Candidate Architecture 2 (Transformed) evidently has more Functional Dependence than Candidate Architecture
1. However, one must bear in mind that the Command pattern has recovery properties that the Observer pattern present in
the initial architecture lacks. As far as this characteristic is concerned, this is considered an advantage for this architecture.
As far as this characteristic is concerned, it is also important to stress that only one type of measurement was taken:
Functional Dependence.

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1431

• Efficiency: Since the number of events is reduced, there is a decrease in the use of CPU and memory, which amounts to
shorter response time.

It can thus be concluded that Candidate Architecture 2 (Transformed), predicts more support for KMS based on the quality
attributes measured in the simulation. This makes it possible to anticipate problems in the design proposed, so these would
be points to which the architect must pay attention.

Having shown the application of the method proposed by Bosch, we shall now present the application of the ATAM method for
the same case study.

Architecture Tradeoff Analysis Method – ATAM

The Architecture Tradeoff Analysis Method (ATAM) is an appropriate method for analyzing software architectures that considers
multiple quality attributes. ATAM consists of 4 phases, corresponding to time segments in which a series of activities take place
(Clements et al. 2002). Phase 0 corresponds to the creation of the evaluation team and the establishment of agreements between
the evaluating organization and the organization that owns the architecture to be evaluated. During Phases 1 and 2, the true phases
of the ATAM evaluation, the nine steps described in Table 3 are carried out. Phase 1 focuses on the architecture and concentrates
on eliciting and analyzing the architectural information. Phase 2 focuses on the stakeholders and concentrates on eliciting its
points of view and checking the results of Phase 1. Lastly, in Phase 3 the final report of the architectural evaluation is produced
(Clements et al. 2002).

Table 3. Steps and Outputs of the ATAM. Adapted from (Clements et al. 2002)

Outputs

Steps

Prioritized
Statement of

Quality
Attribute

Requirements

Catalog of
Architectural
Approaches

Used

Approach- and
Quality-

Attribute-
Specific Analysis

Questions

Mapping of
Architectural
Approaches to

Quality
Attributes

Risks
and
Non-
risks

Sensitivity
and

Tradeoff
Points

1. Present the ATAM
2. Present business drivers X X
3. Present architecture X X X
4. Identify architectural approaches X X X X
5. Generate quality attribute utility tree X
6. Analyze architectural approaches X X X X X
7. Brainstorm and prioritize scenarios X
8. Analyze architectural approaches X X X X X
9. Present results

As the main objective of this article is to present the architectural evaluation of a KMS, including its design patterns, only steps
3 to 6 of the ATAM are described (see shaded area of Table 3). Additionally, as shown in Table 3, the outputs expected from the
architectural evaluation will be built during the process.

Step 3 of the ATAM covers the description of the architecture at a high level. The architectural style considered the most
appropriate for PROYECTOS DID KMS, was the Layer style. It encourages both the logic and the data to be controlled by a
server. Using Application Service Provider (ASP), customers simply have to place their orders and wait for the server to respond.
The server converts the calculations and operations into HTML response. This is why the way data is presented will vary
depending on the browser used by the client. Figure 8 shows the distribution of the different layers. Three layers are proposed:
Presentation, Logic and Data.

During Step 4, the architectural approaches identified for the architecture are described. Intuitively they are believed to foster
quality attributes. Clements et al. (2002) use the term approach because not all architects are familiar with the language of Archi-
tectural styles, making it difficult to enumerate all the styles used. However, all architects make architectural decisions and the
set of these is known as the approach. The level of abstraction of the architectural decisions used in this research is the level of
“application of design patterns”. Thus the Candidate Architectures taken are those presented in the previous sections: Candidate
Architecture 1 (Figure 1) and Candidate Architecture 2 (Transformed) (Figure 6). The following step describes how the Quality
Attribute Utility Tree is built.

IT Investment and Evaluation

1432 2003 — Ninth Americas Conference on Information Systems

Figure 8. Architectural Style Proposed

Quality Attribute Utility Tree

The output from Step 5 is the Generation of the Utility Tree; this is a prioritization of quality attribute requirements, shown as
scenarios. Table 4 shows the Utility Tree built based on the quality architectural attributes chosen during the stakeholders’ session.

Analysis of the Architectural Approaches

Step 6 of the ATAM method consists of the analysis of each of the scenarios identified in the Utility Tree in terms of the
architectural decisions promoted by each one. The Sensitivity Points of the quality attributes and the Tradeoffs between them are
also identified. A Sensitivity Point is a property of one or more components (and/or its relationships) that is critical in order to
obtain a response from a particular quality attribute, while a Tradeoff is a property that affects more than one attribute and is a
Sensitivity Point for more than one attribute (Clements et al. 2002). The results of the analysis of the scenarios are recorded in
tabular form and are normally captured by the person responsible for documenting the design. To build this table, the scenario
is broken down into its Stimulus and Response, in order to ensure that each has been captured accurately. Each scenario generates
a sequence of steps. These steps provide support for the group discussion, which leads to the Architectural Decisions, the Risks,
Non-risks, Sensitivity Points and associated Tradeoffs. Listing the steps is a useful way of considering a scenario, but it is not the
ultimate goal, which is to determine the impact that the set of Architectural Decisions has on the ability to attain the scenario
(Clements et al. 2002). Table 5 shows the qualitative analysis of one of the 25 scenarios shown in Table 4.

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1433

Table 4. Utility Tree

Level 2:
Quality attribute

Level 3:
Refining the quality

attribute
Level 4:

Quality attribute scenario
Maintainability M1: Changes to a

module must be made at
a low cost, without them
significantly affecting
other modules

M1.1: Change to a requisite in the Financial Tool, taking no longer than 1 day without
affecting the Discussion List, the Activity Agenda, the Application for Financing, the
Document Repository and the Research Projects
M1.2: Change to a requisite in the Activity Agenda, taking no longer than 1 day without
affecting the Discussion List, the Financial Tool, the Application for Financing, the
Document Repository and the Research Projects
M1.3: Change to a requisite in the Application for Financing, taking no longer than 1
day without affecting the la Activity Agenda, the Financial Tool, the Document
Repository and the Research Projects
M1.4: Change to a requisite in the Document Repository, taking no longer than 1 day
without affecting the Discussion List, the Activity Agenda, the Application for
Financing, the Financial Tool and the Research Projects
M1.5: Change to a requisite in the in Add/Modify the Research Projects, taking no
longer than 1 day without affecting the Discussion List, the Activity Agenda, the
Application for Financing, the Document Repository and the Financial Tool
M1.6: Inclusion of a new component, taking no longer than 1 month, without affecting
the rest of the components

M2: Inclusion of a new
component does not
imply a considerable
increase in coupling

M2.1: Inclusion of a new component must involve a minimum number of
interconnections

Reliability F1: Data integrity must
not be lost during a fault

F1.1: There must be at least one recovery block responsible for data integrity when
remedying a fault in the Financial Tool
F1.2: There must be at least one recovery block responsible for data integrity when
remedying a fault in the Discussion List
F1.3: There must be at least one recovery block responsible for data integrity when
remedying a fault in the Activity Agenda
F1.4: There must be at least one recovery block responsible for data integrity when
remedying a fault in the Application for Financing
F1.5: There must be at least one recovery block responsible for data integrity when
remedying a fault in the Document Repository
F1.6: There must be at least one recovery block responsibility for data integrity when
remedying a fault in the Research Project

F2: The average time
between faults must not
significantly affect
system availability

F2.1: There must be at least one component responsible for Exception Handling

F2.2: The system must process at least 150 successful transactions a day

F3: In the event of a
fault, the user must be
sent a detailed
notification

F3.1: F3 must take less than 20 seconds.

F4: The average time
taken to remedy faults
must be adequate

F4.1: A fault must be remedied in less than 10 minutes.

F4.2: The operator must be capable of canceling / reinitiating the system in less than 15
minutes.

F5: The version of the
system delivered must
contain all the defects
identified during the test
stage

F5.1: No more than 3 global variables must be used by each component of the
architecture

F5.2: The architecture must have functionally independent modules that facilitate unit
testing

IT Investment and Evaluation

Level 2:
Quality attribute

Level 3:
Refining the quality

attribute
Level 4:

Quality attribute scenario

1434 2003 — Ninth Americas Conference on Information Systems

Security S1: Research Project
Management must be
guaranteed securely
through the Internet,
taking data security into
account

S1.1: There must be at least one component responsible for checking authorization for
access

Efficiency E1: Facilitates rapid,
easy and direct searches

E1.1: Responses to requests must not take longer than 5 seconds
E1.2: Searches must be done without using commands
E1.3: Searches must be done in a single step

E2: The system must
show the relevant
information in text mode
to ensure that the main
operations take place
quickly

E2.1: On pages showing information with images, these must not take up more than
30% of the page.

Table 5. Analysis of a Scenario Associated with the Maintainability Attribute

Scenario #: M2.1. Scenario (M2.1) Inclusion of a new component must involve a minimum number of interconnections
Attribute Maintainability
Environment During perfective maintenance work
Stimulus Inclusion of a new component in response to a new requirement
Response Involves a minimum number of associations
Architectural decisions Risk Sensitivity Tradeoff Non-risk
DA1 Have a component that manages service requests and communicates
directly with the specific components (use of the Observer design pattern)

R1 S2

DA2 Include a component that handles requests and communicates directly
with the Component Manager ((use of the Command design pattern)

S2 NR2

Reasoning DA1 has Risk R1 related to the Observer pattern associated with it. What may appear to be a simple change
on a data object may trigger cascading updates to the observer objects and their dependent objects. Still worse,
just as updates are diffused, so are errors and because their origin is unknown, recovery operations may be
difficult to carry out.
Both DA1 and DA2 denote Sensitivity Point S2. Maintainability is sensitive to the number of interconnections
when it comes to adding new modules or components. If this only implies, in addition to the necessary update
of the Change Record and the Programmer Manual, the addition of a respective class with its corresponding link,
the attribute will be positively affected.
DA2 is thought not to have a Non-risk condition, as no negative consequence related to the use of the Command
pattern is known.
As far as the analysis of architectural decisions is concerned, it can be affirmed that DA2 gives a better response
to the Stimulus, as it generates less interconnections than DA1. However, as indicated previously, both denote
a Sensitivity Point that is critical for the attribute.

Diagram of the
architecture

See Figure 6

Taking into account the reasoning and the architectural decisions of each of the analyses of the previous scenarios, Table 6 shows
a summarized comparison of both architectures based on the advantages, disadvantages, risks and non-risks associated with the
use of different design patterns.

Candidate Architecture 1 can be said not to have more advantages than Candidate Architecture 2 (Transformed) since the risks
included in it are nonguaranteed receipt in the event of the chain not being properly configured. Candidate Architecture 2
(Transformed) on the other hand guarantees data integrity since it stores the previous values, which facilitates a much fuller and

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1435

more reliable control of modifications, fostering Reliability; each transaction encapsulates a series of activities and participants,
which has a positive impact on effectiveness, but it may end up being inefficient and, further, it enables there to be better control
and distribution of functions, thereby fostering Maintainability.

Table 6. Scenario Analysis Summary for Both Architectures

Attributes Candidate Architecture 1 Candidate Architecture 2 (Transformed)
Maintainability Has a Risk associated with the Observer

pattern, since just as updates are diffused,
so are errors.

Has a Non-risk condition as no negative consequence
related to the use of the Command pattern is known.
Provides a significant advantage by permitting better
control and distribution of functions.

Reliability Has a Risk condition associated with the
Observer pattern, since because the
source of the errors is unknown, recovery
operations may be hard and difficult to
undertake.

Has a Non-risk condition identified for the Reliability
attribute.
Has the advantage of guaranteeing data integrity since
the previous values are stored, which provides much
fuller and more reliable control of modifications

Efficiency By using the Observer pattern, all the
observers are notified when there is a
change in the state of the data stored and,
depending on the number of Observers; this
may reduce response time (disadvantage).

By using the Command pattern, each transaction
encapsulates a set of activities and participants, which has
a positive impact on effectiveness, but it may become
less Efficient (disadvantage).

Both architectures have a Risk condition related to the Chain of Responsibility pattern, since there is
no guarantee of receipt in the event that the chain of transmission of responsibilities has not been
properly configured.

Having analyzed Table 6, it can be affirmed that Candidate Architecture 1 is no more advantageous than Candidate Architecture
2 (Transformed) and, furthermore, it implies greater risks for the application of the design pattern proposed. By contrast,
Candidate Architecture 2 (Transformed) has a Non-risk condition and, in turn, fosters the Maintainability and Reliability attributes.

Having completed all the steps required by the ATAM method for evaluating the architecture, the level of detail was found to be
sufficient to begin developing the system with a good degree of certainty as regards the ideal structure of the architecture and the
quality characteristics and attributes expected.

Lessons Learned

“The software architecture of a system is the earliest artifact that enables the priorities among competing concerns to be analyzed,
and it is the artifacts that manifest the concerns as systems qualities. The trade-off between performance and security, between
maintainability and reliability, and between the cost of the current development effort and the cost of future developments are
all manifested in the architecture… An architecture is the summary result of a set of business and technical decisions” (Bass et
al. 1998). It is therefore necessary to gather together all the lessons learned in the different applications of the evaluation methods
described above. Each one is presented below:

1. Use of scenarios as an evaluation tool: Both methods are based on scenarios. A scenario is a short statement describing an
interaction of one of the stakeholders with the system (Clements et al. 2002). In order to evaluate Architecture, both methods
propose that scenarios be identified as an input for the evaluation. The stakeholders are responsible for identifying them.

2. Weighting of scenarios: Meaning that both for the formulation of Profiles (Bosch) and for the Utility Tree (ATAM), it is
suggested that the scenarios be weighted; in other words, for each of the scenarios, the stakeholders must specify their
importance in relation to the rest. This importance stems from the probability of occurring and the non-functional
requirements.

3. Identification of quality attributes: Both methods consider identification of the quality attributes as an input for their
evaluations, but do not give any details or guidance on how to obtain them.

IT Investment and Evaluation

1436 2003 — Ninth Americas Conference on Information Systems

4. Quality specification techniques: ATAM proposes the Utility Tree technique in order to specify the quality attributes. This
technique breaks them down to the level of their scenarios with their respective weighting. The Bosch method proposes the
Profiles technique, which specifies for each attribute its possible scenarios with their absolute and relative weighting.

5. Evaluation inputs: An ATAM input is at least two possible architectures. This calls for a high degree of expertise by the
architect in the type of system to be evaluated. One input from the Bosch method is an architecture that satisfies the functional
requirements, which is transformed following its evaluation.

6. Bosch method simulation technique: In order to apply the Bosch method, the simulation technique with the Architecture
Definition Language (ADL), RAPIDE was applied. This technique lengthened development time and required training and
expertise on the ADL used.

7. Participation by the stakeholders: Both methods require participation by the stakeholders in the system. Even though this
increases development costs, it also fosters commitment.

8. Right choice of architecture: Once both methods have been applied, the ideal architecture is obtained according to the
evaluation carried out. Both methods document the “attention focus” for the architect; in other words, they pinpoint the
architectural elements to which special attention must be paid.

9. Costs: In terms of cost (professional hours) both methods were the same, because ATAM increased the number of
participants and the Bosch method combined with Simulation Technique increased the time taken to train developers.

10. Dimension of the Architecture: ATAM is appropriate for medium-sized systems where stakeholders can reach a consensus
and the architect can carefully and qualitatively compare each of the scenarios identified. The Bosch method, combined with
the Simulation Technique, is suitable for systems that handle large amounts of objects, because the Simulation enables the
behavior of the different quality attributes to be observed when they undergo significant modifications in a relatively short
space of time.

Conclusions

Systems Evaluation must start at an early stage in the development process to keep down reworking. Today, successful systems
are characterized by complying with certain quality attributes such as Efficiency and Reliability, among others. Architecture is
an aspect to be evaluated and one that guarantees that the quality attributes desired will be fostered.

In this research, were applied two architectural methods to the same case study. The methods used were the Software Architecture
Design Method (Bosch 2000) and the Architecture Tradeoff Analysis Method - ATAM (Clements et al. 2002).

The importance that both methods afford to stakeholder participation when designing a system must be emphasized, as part of
the guarantee of its future use. The method proposed by Bosch combined with Simulation Technique is based on quantitative
measurements and characteristics, while the ATAM method fosters the qualitative analysis of the scenarios.

The lessons learned facilitate the choice of architectural evaluation method, depending on the characteristics of the system and
the expertise of the developers. The ability to keep learning should not be discarded, which is why the recommendation is to apply
both methods in different domains so as to refine the lessons presented here.

This research only analyzes both methods for the KMS domain; it is necessary to extend the comparison to other domains to study
the application of them for different kinds of systems. It does not recommend any particular method since it recognizes the
architect necessities as a major driver for selecting the right one.

Acknowledgments

This research was financed by Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT) of the República Bolivariana
de Venezuela, through the S1-2001000794 project.

Grimán et al./Architecture-Based Systems Evaluation

2003 — Ninth Americas Conference on Information Systems 1437

References

Bass, L., Clements, P. and Kazman, R. Software Architecture in Practice. Addison Wesley, 1998.
Bosch, J. Design and use of Software Architecture. Addison-Wesley, 2000.
Chirinos, L.; Losavio, F. and Pérez, M. Feature Analysis For Quality-Based Architecture Design Methods. Proceeding de las

Jornadas de Ciencias de la Computación Chilenas 2001 (JCCC2001). Caracas, Venezuela, 2001, 1-9.
Clements, P., Kazman, R. and Klein, M. Evaluating Software Architecture. Methods and Case Studies. SEI Series in Software

Engineering. Addison-Wesley, 2002.
Domínguez, K. Sistema de Gestión del Conocimiento para Proyectos de Investigación. Trabajo de Grado publicado, Universidad

Simón Bolívar, 2001.
Gamma, R.; Helm, R.; Johnson, R. and Vlissides, J. Design Patterns. Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1995.
Jacobson, I., Booch, G. and Rumbaugh, J. El Proceso Unificado de Desarrollo de Software. Addison-Wesley, 2000.
Kitchenham, B., Linkman S., and Law D. “DESMET: A methodology for evaluating software engineering methods and tools,”

IEEE Computing & Control Engineering Journal (8:3), June 1997, pp.120-126.
Kruchten, P. The Rational Unified Process. Addison Wesley Longman, Inc. 1999.
Meyer, B. Object Oriented Software Construction. Prentice Hall, 1997.
Ortega, M., Pérez, M. and Rojas, T. A model for software Product Quality with a Systemic Focus. Proceedings of The 4th World

Multiconference on Systemics, Cybernetics and Informatics SCI 2000 and The 6th Intrernational Conference on Information
Systems, Analysis and Synthesis (Orlando, Julio 2000) Callaos and Callaos eds., 532-538.

Whitten, J., Bentley, L., Dittman, K. System Analysis and Design Methods. Fifth Edition. McGraw Hill. 2002.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2003

	Architecture-Based Systems Evaluation: Lessons Learned
	Anna Griman
	M Perez
	Luis Mendoza
	K. Domínguez
	Recommended Citation

	Architecture-Based Systems Evaluation: Lessons Learned

