
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2002 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2002

THE EXTENSIBLE MARKUP LANGUAGE
(XML) AS A MEDIUM FOR DATA
EXCHANGE
Meg Murray
Kennesaw State University

Follow this and additional works at: http://aisel.aisnet.org/amcis2002

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2002 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Murray, Meg, "THE EXTENSIBLE MARKUP LANGUAGE (XML) AS A MEDIUM FOR DATA EXCHANGE" (2002). AMCIS
2002 Proceedings. 331.
http://aisel.aisnet.org/amcis2002/331

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301339027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2002%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002?utm_source=aisel.aisnet.org%2Famcis2002%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2002%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2002%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002?utm_source=aisel.aisnet.org%2Famcis2002%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002/331?utm_source=aisel.aisnet.org%2Famcis2002%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

2002 � Eighth Americas Conference on Information Systems 2423

THE EXTENSIBLE MARKUP LANGUAGE (XML) AS A
MEDIUM FOR DATA EXCHANGE

Meg Murray
Kennesaw State University
mcmurray@kennesaw.edu

Abstract

The amount of information being collected and stored electronically continues to increase as does the need to
share this data among disparate applications and non-compatible computer systems. The eXtensible Markup
Language (XML) was introduced to meet this challenge by providing a standardized way to exchange data.
The adoption of XML is occurring rapidly, and XML is positioned to thrive in the electronic marketplace. A
main premise behind Microsoft's .Net strategy and the recent release of Sun�s J2EE platform is the belief that
XML marks a turning point in the evolution of the Internet and computing architectures. This tutorial includes
an exploration of XML and its corresponding components, technical implementation requirements, the
development of schemas for defining industry standard data definitions, a scenario employing XML
technologies and the potential impact of XML on information systems.

Keywords: XML, eXtensible Markup Language, data exchange, emerging technologies

Introduction

The amount of information being collected and stored electronically continues to increase as does the need to share this data
among disparate applications and non-compatible computer systems. New methods are required to handle the storage, retrieval,
presentation and exchange of this vast amount of information efficiently and effectively. The eXtensible Markup Language
(XML), created in 1996, was designed to address this challenge. A primary objective behind XML was to extend the capabilities
of Web technologies to include a standardized way to exchange data and yet be easily implemented with existing systems. XML
is poised to be the next Internet standard for computer-to-computer exchange of data (Herman, 2001). Consequently, the
implications of XML permeate not only technology issues but also inter-business communications and industry standards of data
exchange.

XML is part of larger system known as SGML (Standardized Markup Language). SGML was introduced more then twenty years
ago to provide a framework for device independent representation of text in electronic form. The same international
standardization body, the World Wide Web Consortium, known as W3C, that oversees the development of SGML also oversees
the development of XML and HTML (HyperText Markup Language), the common language of Web pages. The role of the W3C,
through its member organizations, is to lead efforts to standardize Web based technologies (World Wide Web Consortium, 2000).

Interest in XML is high, but the newness of the technology and the evolving nature of XML standards means that a learning curve
surrounding XML technologies. Even given these shortcomings, XML is fast becoming a transformational technology. XML
is being adopted at a rapid rate and being used in a variety of IT development projects. A main premise behind Microsoft's .Net
strategy and the recent release of Sun�s J2EE platform is the belief that XML marks a turning point in the evolution of the Internet
and computing architectures. While most expect that it will take a few years for XML to transcend the technology landscape,
it is moving ahead at a rapid pace and will continue to mature into a key technology in information systems.

While the resources associated with XML are many, a word of caution should be noted. XML is a young technology and many
facets are still evolving and are not yet standardized. Its status presents many challenges to the XML developer. For example,
current browsers do not support XML fully and it will be a while before these technologies converge. Further, supporting

Tutorials

2424 2002 � Eighth Americas Conference on Information Systems

technologies such as XSL (the style sheet language for rendering presentation of XML data) are proposed recommendations since
they are still under development and review. Until XML associated technologies, such as XSL, mature to an accepted
recommendation by the W3C, they will not be widely implemented. On the other hand, a primary goal of XML is to serve as a
foundation for data exchange. XML as a medium for the exchange of data is operational. Document Type Definitions (DTD)
specifications were approved with the original XML specification. Schemas, which are quickly becoming the preferred choice
for data definitions, received approval in May 2001. XML, itself is stable. The W3C did issue a public working draft of the next
version of XML (V1.1) in December 2001. This new draft does not contain major changes to XML v1.0. Instead, it includes
specifications for character data included in the new version of Unicode (v3.2) extending the written languages fully supported
by XML (World Wide Web Consortium, 2001).

XML is being applied in many areas because XML promises to be a neutral method for exchanging data between two systems
or applications (Patrizio, 2001). The top five uses of XML are reported to be for:

� data exchange,
� Web services to exchange data between systems,
� content management,
� Web integration with new kinds of devices such as PDAs and
� Managing computer application configuration data (Wahlin, 2002).

The focus of this tutorial is on XML for data exchange.

XML Structure and Vocabulary

XML is not a product, programming language, or any other type of easily delineated technology. XML is a meta standard that
provides a standardized way to describe and define data. Herman (2001) summarized what this means. �By itself XML does not
provide any specific data standards. Instead, XML provides a standardized language for creating such standards. That is why
XML is called �extensible;� it will be used by others to develop industry-or function-specific data definitions�. XML is used to
create �self-describing documents� or a document that includes information describing what the document contains. XML, being
a markup language, the �describing information� is placed within tags. The advantages of this approach are numerous.

� XML is not limited to a fixed set of element types, or tags. For example, if XML is to be used to tag a document that
describes a recipe, tags may be chosen to represent each ingredient as an item, or as an ingredient, or as groceries � the
decision is made based on the project and preference of the developer.

� XML documents are simply plain text files. XML documents are easily readable by people, by programming languages
and by other applications. In addition, XML files are easily transferred across a network and can be passed using HTTP,
the transport protocol of the Internet.

� XML technologies are structured around a collection of documents (files) and other associated resources. The premise
behind XML is that it separates data from presentation. With XML, systems can exchange structured data, interpret that
data, and display the data in any number of different ways. At the core, is the XML document. An XML document
contains tags, elements and corresponding data or content. other files such as schemas and stylesheets are associated
with this XML document. These types of files do not contain data per se, but contain definitions or descriptions of how
the data in the XML document should be handled. For example, an XML style sheet tells a Web browser exactly how
to display the data contained in the XML document while the XML schema contains the definitions of the tags used in
the XML document.

Schemas are often referred to as dictionaries or vocabularies that serve as a uniform source for data definitions. They form the
foundation for data exchange using XML. The schema specifies a set of rules that defines or constrains the contents of an XML
document. Basically, the schema is a coded list that identifies what tags in the XML document describe data and what constraints
are put on that data. The power of schemas is that they can be shared by many different XML documents. Several initiatives are
underway to develop industry specific schemas to facilitate the exchange of data between different organizations.

The Document Type Definition (DTD) is the predecessor to the schema. The DTD and schema perform the same functions but
the schema is expected to replace the DTD. The primary difference between the two is that schemas are written in XML while
DTDs have their own syntax. Another distinction between the two is that the schema supports datatypes where the DTD only
supports strings. This difference requires a receiving application to convert the data to a different data type, such as a number,
if necessary. While DTDs can be used in conjunction with schemas, they are not introduced in this tutorial.

Murray/The Extensible Markup Language

2002 � Eighth Americas Conference on Information Systems 2425

XML is a highly structured markup language meaning it requires its users to follow its rules explicitly. The foremost rule of XML
is that it must be well-formed. A well-formed document is one that is properly formatted and follows the basic rules of XML
as defined in the W3C XML Specification. One of the primary reasons that the language is extensible is that its rules are rigid.
To use XML programs in many different ways, all of the programs must follow the same rules. Other markup languages do not
require such standards, and thus tend to be restricted to one initial purpose or project. For example, most HTML documents tend
to merge describing the data with describing the layout or format of the data. If these two ideas are interwoven, then the data can
only be used for that purpose � it cannot be presented in another layout without editing the code. While the strict requirements
of XML are sometimes seen as a disadvantage, well-formedness supports the core XML advantage of extensibility.

An XML parser is used to read an XML document and verify that its contents are well-formed. (Browsers such as Microsoft�s
Internet Explorer include an XML parser. Several XML parsers have been written. Parsers are included with commercial XML
development environments, included with books on XML or can be found on the Internet.) The parser will identify any error
found but will not attempt to fix it. Consequently, for XML documents to be usable, they must be well-formed.

An XML document associated with a DTD or schema must also be �valid� in order to be usable. Validation is the process
whereby the XML document is compared against the data specifications defined in its corresponding DTD or schema. The XML
document is considered valid if it is well-formed and it meets all the constraints listed in the DTD or schema. XML documents
that do not have a corresponding DTD or schema do not need to be checked for validity.

Creating an XML Document

The basic components of a markup language such as XML are tags and elements. Tags are labels delimited by angle brackets
while elements refer to tags plus their content. The basic rule of XML is that all elements must be surrounded by a beginning
tag and an ending tag. Beginning tags are identified with the '<' and '>' symbols while ending tags are identified with '</' and '>'.

Beginning tag: <TITLE>
Ending tag: </TITLE>
Element: <TITLE> XML Tutorial </TITLE>

An XML document is plain text and may be created in any text editor including Notepad which comes with Windows operating
systems. XML documents are identified by a three-character filename extension of .xml.

The basic building blocks of XML are elements and attributes. A complex XML document contains other components as well
but this tutorial is limited to the elementary principles of creating a simple XML document. Figure 1 is an example of a simple
XML document followed by detailed explanations of the annotations.

Description of the XML Document Components

Prolog

The prolog contains the XML Declaration which is always the first line of any XML file. There should be nothing, including
white space, before the declaration. The XML Declaration tells the processor which version of XML to use. A simple declaration
may be: <?xml version=�1.0�>. A complex declaration may include more information, such as: <?xml version=�1.0�
encoding=�UTF-8� standalone=�yes�?>. �1.0� describes the version of XML being utilized (currently there is only one version
of XML); �UTF-8� describes the language encoding such as English ASCII; and �yes� or �no� indicates whether or not the
document relies on markup declarations defined external to the document.

Comment

Comments may be included in XML files. They are ignored by the parser. Comments are included between the tags �<! --� and
�-->�.

Tutorials

2426 2002 � Eighth Americas Conference on Information Systems

<Fabric>Cotton</Fabric>

<Item>
<Desc>shirt</Desc>
<Item_no>2300</Item_no>
<Quantity>100</Quantity>
<Color>white</Color>

<Traits Size_category="Adult" Size_identifier="XL"/>
<Date_of_order>08-04-02 </Date_of_Order>
</Item>

Nested
Elements

Element with
Attributes

Root Element
</Order_request>Closing Tag for

<!--Sample of a simple XML document for Supplier Request--> Comment

<Title>Request for Order Fulfillment Status</Title>Element

Root Element
w/schema

<Order_request xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="http://www.anyplace.com/order_request.xsd">

Prolog <?xml version="1.0" encoding="UTF-8�?>

w/Content
Empty Element <List_of_items/>

<Fabric>Cotton</Fabric>

<Item>
<Desc>shirt</Desc>
<Item_no>2300</Item_no>
<Quantity>100</Quantity>
<Color>white</Color>

<Traits Size_category="Adult" Size_identifier="XL"/>
<Date_of_order>08-04-02 </Date_of_Order>
</Item>

Nested
Elements

Element with
Attributes

Root Element
</Order_request>Closing Tag for

Root Element
</Order_request>Closing Tag for

<!--Sample of a simple XML document for Supplier Request--> Comment <!--Sample of a simple XML document for Supplier Request--> Comment

<Title>Request for Order Fulfillment Status</Title>Element <Title>Request for Order Fulfillment Status</Title>Element

Root Element
w/schema

<Order_request xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="http://www.anyplace.com/order_request.xsd">

Root Element
w/schema

<Order_request xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="http://www.anyplace.com/order_request.xsd">

Prolog <?xml version="1.0" encoding="UTF-8�?>Prolog <?xml version="1.0" encoding="UTF-8�?>

w/Content
Empty Element <List_of_items/>

w/Content
Empty Element <List_of_items/>

Root Element with Schema

The most important component of the XML document is the element. All XML documents must have at least one element. The
first element is known as the root element (may also be referred to as the document element) under which all other elements are
nested. In Figure 1, the root element is 'Order_request.' The attribute to the root element points to the schema by which this
document is validated. The schema may be located anywhere so long as it is accessible.

Element with Content

The most common format for elements is: start-tag (), content and end-tag (). This format is used for the majority of elements
in Figure 1.

Figure1. Sample of a Simple XML Document

Empty Element

Elements with no content are known as empty elements. Empty elements are used when only the presence of the element is
needed or the element contains only attributes.

Nested Elements

Nested elements may contain other elements. In Figure 1, the Item element contains several other elements such as Desc and
Item_no. In fact, the basic structure of XML documents is based on nesting all elements within the root element. The improper
nesting of elements is one of the most common mistakes made when developing XML documents. If an element starts within
another element, it must also end within that element. Table 1 shows the difference between incorrect and correct placement of
end tags.

Murray/The Extensible Markup Language

2002 � Eighth Americas Conference on Information Systems 2427

Table 1. Example of Incorrectly and Correctly Nested Elements

Correctly Nested Elements Incorrectly Nested Elements
<Item>

<Desc>shirt
</Desc>

</Item>

<Item>
<Desc>shirt

</Item>
</Desc>

*The end tag for the Prefix element must come
before the end tag for the Course element

Elements with Attributes

Elements with Attributes - Attributes are included in the beginning tag of an element and follow the format attribute = value. The
value must always be enclosed in single or double quotes. An element may contain several attributes such as in Figure 1 where
the element Traits contains two attributes, Size_category and Size_identifier. The decision to use an attribute or element is a
matter of preference. A general rule, however, is to use an element for content that needs to be extracted individually and
attributes for content not independently relevant. For example, the attributes Size_cateory and Size_identifier are not
independently relevant but are directly related to the complete identification of the size of the item.

Closing Tag for Root Element

Generally the last line of an XML document is the closing tag for the root element.

Once the XML document is created, it must be checked for well-formedness. The rules for a well-formed document include:

� The XML Declaration must appear at the beginning of the document.
� The Root or Document Element must contain all other elements. The only statements allowed to appear before the Root

Element are the XML Declaration, comments, or processing instructions.
� All elements must have a start tag and end tag.
� Always begin and end tags and entities with the symbols < and > respectively.
� Empty elements must either end with the /> or have both the start and end tags.
� Elements must be properly nested.
� Attribute values must be enclosed in quotes with the double quotation mark (�) being the most commonly used.
� XML is case sensitive; NAME and name are not the same.
� Markup characters (< ,&,>, ",') cannot be used within XML content. Instead their corresponding entity reference must

be employed. The predefined entities for the mark up characters are <, &, >, " and &apos.

Constructing the Schema

The schema defines and constrains the data that may be contained in an XML document. On advantage to a schema is that it
provides several built-in datatypes as well additional derived datatypes. Some of the more commonly used datatypes include
string, Boolean and those related to numbers (double, decimal, float, positiveInteger, etc.) and time. Figure 2 depicts the schema
for the XML document listed in 1.

Description of the XML Schema Components

Root Element
The XML format requires that a root element be established. In the XML Schema, the root element is 'schema' with an attribute
that identifies a namespace. The prefix xsd is mapped to the namespace and used throughout the schema document.

Tutorials

2428 2002 � Eighth Americas Conference on Information Systems

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Order_request" type="Item_type"/>
 <xsd:element name="Title" type="xsd:string"/>

<xsd:complexType name="Item_type">
 <xsd:choice>
 <xsd:element name="Item" type="Item"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:complexType name="Item">
 <xsd:all>
 <xsd:element name="Desc" type="xsd:string"/>
 <xsd:element name="Item_no" type="xsd:positiveInteger"/>
 <xsd:element name="Quantity" type="xsd:positiveInteger"/>
 <xsd:element name="Color" type="xsd:string"/>
 <xsd:element name="Fabric" type="xsd:string"/>
 <xsd:element name="Date_of_order" type="date_format"/>
 <xsd:element name="Traits" type="Traits"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="Traits">
 <xsd:attribute name="Size_category" type="xsd:string" use="required"/>
 <xsd:attribute name="Size_identifier" type="size_types" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="size_types">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="S"/>
 <xsd:enumeration value="M"/>
 <xsd:enumeration value="L"/>
 <xsd:enumeration value="XL"/>
 <xsd:enumeration value="XXL"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="date_format">
 <xsd:restriction base="xsd:date">
 <xsd:pattern value="[0-9]{2}(-[0-9]{2})(-[0-9]{2})"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

complexType
with Elements

Root Element Namespace

simpleType
with Pattern

complexType
with Attributes

simpleType
with List

Empty Element

Closing tag
for root

Figure 2. Sample of Simple Schema

Namespaces
One advantage to XML technologies is the ability to share XML applications. One problem, however, is that the same tag name
may be used in both applications but applied differently. Namespaces provide a way to associate elements and attributes to a
specific XML application by mapping them to a particular URL. The URL does not have to point to a DTD or schema document.
The URL is simply applied as a prefix making element and attribute names unique. Multiple namespaces may be used in an XML
document. The namespace declaration appears in the prolog of an XML file. The W3C schema specification,
http://www.w3.org/2000/10/XML Schema, is used in almost every XML Schema.

Murray/The Extensible Markup Language

2002 � Eighth Americas Conference on Information Systems 2429

Retailer Supplier

Order Request
XML Document

Fulfillment Capability
XML Document

Retailer Supplier

Order Request
XML Document

Fulfillment Capability
XML Document

XML Document

The namespace declaration appears in the prolog of an XML file. The W3C schema specification, http://www.w3.org/2000/10/
MLSchema , is used in almost every XML Schema.

The second root element is the root element of the schema document and usually matches the root element in the XML document.
The type is a new type declared later in the schema. The new type contains the element of �Item.� The type is declared to be
choice indicating the elements may appear in any order.

ComplexType

A schema may contain simpleType and complexType elements. A simpleType element is an element that only contains text and
does not have any attributes or child elements. A complexType element may contain elements and/or attributes. The first
complexType describes the elements contained within �Item� and the second describes the attributes of �Traits.�

SimpleType with Enumeration
The schema enumeration limits the element value to a choice from a list of specified values. Within this schema, enumeration
is assigned to a simpleType named �size_types� which is affiliated with the attribute 'size_identifier.'

SimpleType with Pattern
Pattern allows a format to be assigned to a value. Several options are available for pattern matching. In this schema, the
simpleType is constrained to the format of two numbers, a dash, two numbers, a dash and two more numbers. To match the date
datatype, an acceptable value would be 08-09-02 indicating month, day and year respectively. The simpleType, date_format is
associated with the Date attribute of the Date_of_order element.

XML Example Scenario

The potential of XML is probably best explored through an illustration using a simple scenario. This scenario describes the use
of XML to automate a common practice within e-commerce; that of negotiation between retailer and supplier. A retailer has a
small online storefront that accepts orders from customers. As a small business, the retailer keeps a very limited supply of
inventory on hand. When a large order is received, the retailer must contact suppliers to secure additional inventory. This order
might be faxed, emailed or even given over the phone. This manual process is time consuming and often results in delays. An
automated process would make the procedure more efficient. XML provides a solution. Figure 3 shows how XML might be
used.

Figure 3. Applying an XML document as an Order Request

The retailer receives an order from a customer and enters the information into their database. Then the retailer extracts
information related to inventory needed to complete the order (ie size, quantity, color, ect.) and writes this information to an XML
document employing the appropriate tags for each item needed. The XML document file is then sent over the Internet to the
supplier. The supplier reads the XML document, extracts needed data and compares it against their inventory database and creates
a new XML document indicating how they can meet the retailer�s request. This fulfillment capability XML document is then sent
back over the Internet to the retailer who can then begin the process of completing the transaction for purchase of the goods.

Tutorials

2430 2002 � Eighth Americas Conference on Information Systems

Retailer Supplier

XML
Schema

Order Request
XML Document

Fulfillment Capability
XML Document

Retailer Supplier

XML
Schema

Order Request
XML Document

Fulfillment Capability
XML Document

However, for this process to be successful, there is a caveat. The retailer and the supplier have to agree upon the tags used in the
XML document. Otherwise the process cannot be handled automatically. For example,, a name can be presented in several ways;
First-name, Last_name and Middle_initial as three separate elements or as three attributes of one element. The XML document
created by the retailer would not be usable by the supplier if the retailer chose to use attributes when the supplier was expecting
elements. The XML solution to this problem is to develop a schema that is shared by both the retailer and supplier. (In fact, this
schema can be shared with other suppliers as well). The schema provides the data definition for what can be contained in the
XML document. Figure 4 shows the process when a schema is used.

The retailer has access to the common schema and now the data that is extracted from their internal database is written to an XML
document that follows the definitions in the schema. Further, the XML document is validated against the schema to ensure
compliance. The validated document is sent across the Internet to the supplier. The supplier knows exactly what data was sent
because they also have access to the schema. Further, the fulfillment capability XML document created by the supplier in
response to the retailer�s request will also be understood by the retailer.

While this scenario is simple, it demonstrates the potential of using XML as a way to standardize the data exchange process.
While there are other proprietary methods such as Electronic Data Interchange (EDI) currently in place that achieve similar results,
these systems are generally expensive and only used by large organizations. XML technologies creates opportunities to share
data regardless of organization characteristics.

Figure 4. Applying the XML Schema to the Order Request

Conclusions

XML and its associated standards will impact the way systems are developed and the way organizations share information. The
primary challenges will be in the development of common vocabularies and standardization of business processes. Consequently,
implementation will not be revolutionary; it requires an evolutionary approach that includes introspection of internal data models
and reconciliation with data models from organizations to which information will be exchanged. XML should not be viewed as
just another Web technology; but as a foundational technology that will transform the IT infrastructure.

References

Harold, E. R. XML Bible: Second Edition. New York: Hungry Minds, 2001
Herman, J. The XML Internet takes off. Business Communications Review, 31(4), April 2001, p.27.
Patrizio, A. XML passes from development to implementation. Information Week, 830, April 26, 2001, 116-120.
Shirky, Clay. XML: No Magic Problem Solver. Business 2.0, 1, September 26, 2000, 75.
Waldt, D. and Drummond, R. The Global Standard for Electronic Business.

http://www.ebxml.org/presentations/global_standard.htm, retrieved April 23, 2002
Whalin, D. (2002). Top Five Uses for XML. XML Magazine.

http://www.fawcette.com/xmlmag/2002_01/online/online_eprods/xml_dwahlin01_18/default.asp, retrieved April 23, 2002.
World Wide Web Consortium, Extensible Markup Language (XML) 1.0, http://www.w3.org/XML/ , retrieved April 23, 2002.
World Wide Web Consortium (2001, December, 13). XML: Working Draft 13 December 2001. http://www.w3.org/TR/xml11/

Retrieved April 23, 2002

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2002

	THE EXTENSIBLE MARKUP LANGUAGE (XML) AS A MEDIUM FOR DATA EXCHANGE
	Meg Murray
	Recommended Citation

	The Extensible Markup language (XML) as a Medium for Data Exchange

