
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2002 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2002

XSAR: XML BASED SEARCH AGENT FOR
INFORMATION RETRIEVAL
Akhilesh Bajaj
Carnegie Mellon University

Hideaki Tanabe
Carnegie Mellon University

Chao-Chin Wang
Carnegie Mellon University

Follow this and additional works at: http://aisel.aisnet.org/amcis2002

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2002 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Bajaj, Akhilesh; Tanabe, Hideaki; and Wang, Chao-Chin, "XSAR: XML BASED SEARCH AGENT FOR INFORMATION
RETRIEVAL" (2002). AMCIS 2002 Proceedings. 197.
http://aisel.aisnet.org/amcis2002/197

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301338957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2002%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002?utm_source=aisel.aisnet.org%2Famcis2002%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2002%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2002%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002?utm_source=aisel.aisnet.org%2Famcis2002%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002/197?utm_source=aisel.aisnet.org%2Famcis2002%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1Throughout this work, when we refer to a single web site, we accept that the site may be served by multiple web servers for scalability reasons.

2002 � Eighth Americas Conference on Information Systems 1435

XSAR: XML BASED SEARCH AGENT FOR
INFORMATION RETRIEVAL

Akhilesh Bajaj
The H. John Heinz III School of Public

Policy and Management
Carnegie Mellon University
akhilesh@andrew.cmu.edu

Hideaki Tanabe
The Internetworking Institute
Carnegie Mellon University

Chao-Chin Wang
The Internetworking Institute
Carnegie Mellon University

Abstract

The current form of information on the world wide web (WWW) is mainly in the form of unstructured
information on scattered web sites. The usual method of accessing this information is using keyword-based or
directory-based search engines. Recently, an increasing number of organizations, bodies and associations are
adopting XML (extensible markup language) document type definitions (DTD) with a view towards putting
structured information on the WWW. As information becomes more structured, we anticipate the spread of
large XML repositories that will be accessible on the WWW. To help search these repositories, we present a
novel search tool: XSAR (XML Based Search Agent For Information Retrieval), to access these repositories.
We describe the architecture and functionality of XSAR, analyze its performance along four metrics and
compare it to alternate existing search mechanisms. This work demonstrates the feasibility of agent based
search mechanisms on large information repositories.

Introduction

Over the last decade, the number of hosts and the quantity of information being stored on the world wide web (WWW) have both
been increasing significantly (see http://www.isc.org for updated statistics). This information is stored on web sites in the form
of different file types, e.g.,various alphanumeric, video and audio formats. It is well known that much of the information is still
stored in the form of Hypertext Markup Language (HTML) files. Recently, there has been a great deal of interest in storing
information in the form of extensible markup language (XML) files [1]. XML allows the information to be structured, much like
in a relational database. Several researchers believe that XML will allow the web to become more semantic in nature, where
agents will be able to access information and understand what it means [2]. Various bodies are currently at work specifying XML
document type definitions (DTD) for their domains of interest, e.g., Dublin Core for library science (http://dublincore.org),
Chemical Markup Language (CML) (http://www.xml-cml.org), Rosetta Net (http://www.rosettanet.org) for supply chain
management in the electronics industry and News ML (NML) (http://www.newsml.org).

The storage mechanisms for WWW information are also varied, ranging from pages served by scattered WWW sites, to a
collection of pages served by a single WWW site (such as a newsgroup or a portal site like http://www.yahoo.com1) to dynamic
pages generated from information that is stored in a relational or object-relational database.

Intelligent Agent and Multi-Agent Systems in Business

2In this work, we define the universe of pages to be the references to actual pages; where the references are stored in the underlying centralized
database or directory structure of the search engine.

1436 2002 � Eighth Americas Conference on Information Systems

Figure 1 shows the different types of information formats and possible methods of storage for these formats.

Information Format →→→→ Static
HTML
Pages

Dynamically
Served
Alphanumeric Data

Static XML Data

Storage ↓

Scattered WWW Sites X X
Single WWW Site X X
Database X

Figure 1. Information Formats and Their Possible Methods Of Storage

As the amount of information has increased, various search mechanisms and tools have been created for accessing this
information. These include: a) search engines like http://www.altavista.com and http://www.google.com, that employ either a
centralized database or a centralized directory scheme for HTML pages across the web, b) peer-to-peer file systems like
http://www.napster.com for HTML files and multimedia content and c) site-specific dynamic querying capabilities employing
available technologies like CGI (Common Gateway Interface), ASP (active server pages) or JSP (java server pages).

Figure 2 shows the different kinds of search mechanisms that are available and the kinds of information formats that can be
retrieved by them.

Web search engines that search files on scattered web sites have their ancestors in the information retrieval (IR) systems developed
during the last fifty years. IR methods include Boolean search methods, vector space methods, probabilistic methods, and
clustering methods [3]. All these methods aim at finding the relevant documents for a given query. For evaluating such systems,
recall (the number of relevant retrieved documents divided by the total number of available relevant documents) and precision
(the number of relevant retrieved documents divided by the number of total retrieved documents) are the most commonly used
measures [4]. The percentage of dead links found is also a useful metric, and is usually dependent on how accurately the universe
of pages2 listed in the search engine�s database or directory structure reflects the real existence of the same pages. Finally,
response time (time taken for the user to get the information she desires) has been found to be a useful metric in several works
that deal with human computer interaction [5].

Information Format →→→→ Static
HTML
Pages

Dynamically
Served
Alphanumeric Data

Static XML Data

Search Mechanisms ↓

Search Engines using Key
Words

X

Directory Based Search
Engines

X X

Site Specific Query
Mechanisms

X X X

Peer-To-Peer X X

Figure 2. Information Formats and Their Possible Methods of Search

Furthermore, the performance of each search tool is directly influenced by the user�s ability to more narrowly define the nature
of the query, e.g., in the form of more precise key-word strings or correct selection of a higher level directory classification. For
peer-to-peer systems, the search is usually based on file names, which are supposed to reflect the underlying content (e.g., the
name of a song or an artist represents the content). The same metrics apply here also. The primary drivers of performance in
keyword and directory based search engines is the coverage and searchability of the underlying central database or directory

Bajaj et al./XML Based Search Agent for Information Retrieval

2002 � Eighth Americas Conference on Information Systems 1437

scheme that centrally stores information on the universe of documents; while in peer-to-peer networks performance is driven by
algorithms that drive caching as well as the routing of search strings from peer to peer.

Several works (see [6] for a summary) suggest that the storing of information on widely scattered sites poses serious problems
to the scalability, precision and recall of the relevant search methods and tools. This is because the underlying central database
or directory scheme of the search engines used to search for this information are not scalable. Thus, as the number of hosts and
pages increases, these search methods will take longer, yield poorer precision and recall and place greater burdens on users to
specify queries narrowly. Also, an increasing number of dead links will appear in query results, since the central database or
directory scheme is not synchronized with the existence of the actual pages.

Since there are so many scalability problems with accessing information that is stored on scattered web sites, we envision a
growing trend towards the creation of information repositories, which we define as a collection of documents that have a similar
structure, and are served off a single web site (with possibly multiple servers). Examples would include repositories of newspaper
articles, repositories of articles dealing with, say, physical chemistry research, etc.

While peer to peer architectures offer a potential solution to accessing information on scattered web sites, they also have
limitations in their current forms: a) the limits of content-richness in file-names and META tags (since searching is currently done
using file names and META tags) and b) the tradeoff between network traffic and recall [7]. Thus, while peer-to-peer mechanisms
are useful for searching for multimedia content (e.g., songs by a particular artist), they are still not very useful for detailed content-
based querying (e.g., newspaper articles written by author A and about Subject S, written between dates D1 and D2).

Given the increased acceptance of XML as a standard, the potential of XML to structure the information available on the WWW,
and the increasing emergence of DTDs in several domains, we envision a shift in the methodology of information storage on the
WWW. Specifically, we see an increasing amount of information being stored in repositories of XML files. For example, chemical
structure information on drugs is already being stored in a CML repository at http://www.ch.ic.ac.uk/chimeral/
resources/cml/drugs/index.html. It is fairly reasonable to imagine news organizations offering repositories of news articles using,
say, the NML format in the near future, libraries offering books using, say, the Dublin Core standard and players in an electronic
parts supply chain each offering their own repository of information following, say, the Rosetta Net standard.

The primary contribution of this work is the description of a dynamic, DTD-independent query agent that we have created called
XSAR (XML Based Search Agent for Information Retrieval). Essentially, XSAR can be used to query information repositories
of XML documents (see figure 1). The XSAR web site is at http://bajaj.heinz.cmu.edu/XSAR/Xsar/.

The rest of this paper is organized as follows. Section 2 describes the functionality and high level architecture of XSAR. Section
3 describes the low-level architecture of XSAR, and a description of how it was built. Section 4 lists performance issues related
to XSAR, and compares it to other possible query mechanisms. Section 5 concludes with limitations and future work.

Functionality and High Level Architecture of XSAR

Basic Philosophies Behind XSAR

XSAR is built to be able to dynamically query large information repositories of XML documents. It is DTD independent, so it
can be used to run a query on a CML repository, and another query on an NML repository. XSAR is a dynamic agent, meaning
it does not use an underlying database or directory scheme, but rather dynamically queries the repository on behalf of a user. There
is no need for the repository site to have any special software or hardware; the only assumption is that it is a site that contains a
mixture of HTML and XML pages.

XSAR does require the user to be aware of the underlying DTD, insofar as being aware of which fields the user needs searched.
Essentially, XSAR reformulates the query as an XQL expression, and then launches a spider that traverses the information
repository and executes the XQL query against each XML page found in the repository.

The conceptual picture of how XSAR is utilized is shown in figure 3.

Intelligent Agent and Multi-Agent Systems in Business

1438 2002 � Eighth Americas Conference on Information Systems

User connects to XSAR site
using WWW Browser

X
S
A
R

User formulates query using XSAR
interface, specifies information

repository WWW address and optionally
specifies limits on how long XSAR can
take for the search and how deep it
should search

XSAR launches spider that
searches the XML repository

X
M
L

REPOSIT -
ORY

XSAR site displays search results to
User�s WWW Browser

User connects to XSAR site
using WWW Browser

X
S
A
R

User formulates query using XSAR
interface, specifies information

repository WWW address and optionally
specifies limits on how long XSAR can
take for the search and how deep it
should search

XSAR launches spider that
searches the XML repository

X
M
L

REPOSIT -
ORY

XSAR site displays search results to
User�s WWW Browser

"Controller"
(Servlet)

Receive Request

"View"
(JSP)

Present Result

"Model"
(Bean)
Crawler

F
o
rw

a
rd

Invoke

Forw
ard

B
R
O
W
S
E
R

Start Page

HTML

XML

Request

Response

Web Server
(Application Server)

Data Source
(Web Site)

Client

Retrieve

Figure 3. Conceptual Operation of XSAR

High-Level Architecture of XSAR

XSAR was built entirely using the Java Server Pages (JSP) architecture, which is part of the J2EE (Java 2 Enterprise Edition)
specification, accessible currently at http://java.sun.com. This architecture has the advantage of cross platform portability, in that
the agent software is operating system independent, and the search results produced (JSP pages) are browser independent. Figure
4 illustrates the high-level architecture of XSAR as per the Model View Controller (MVC) model [8].

Figure 4. High Level MVC Architecture of XSAR

Choice of XML Query Language

Currently, no query languages for XML are standardized by WWW Consortium (W3C). However, several query languages for
XML documents have already been proposed. For example XQL, XML-QL and Quilt (all accessible via http://www.w3c.org). We

Bajaj et al./XML Based Search Agent for Information Retrieval

2002 � Eighth Americas Conference on Information Systems 1439

1. XMLRetriever

- Get Parameters
- Invoke Agent
- Forward Result

Agent
- Traverse Site
- Find links
- Match Results

2. ShowMatch
- Parse XML
- Retrieve Match
 Part

Worker

- Find
- Put to

XMLWorker
- Parse XML
- Invoke XQL
 Engine

Network Client

ServletServletServletServlet

JSPJSPJSPJSP

WebWebWebWeb

System Boundary

Sys
tem
Bo
und
ary

System Boundary

Sys
tem
Bo
und
ary

System Architecture

OutputFile

URLDocument

SearchResult

ResultSet

L
O
G

selected XQL because a) its grammar is based on XPath[17],which has already been standardized by W3C, and b) Application
Programming Interfaces (API) for XQL are available in Java.

It is important to note first, that XQL is used to query an individual XML page, and to return results from that page. It does not
query multiple XML pages, and return combined results from them. XSAR essentially crawls through the repository, and runs
the XQL query off each XML page it finds, and then combines and displays the results to the user. Second, while XSAR currently
uses XQL, it�s can be easily modified to use another API, if the W3C standard changes. Third, XSAR allows the usage of XQL
to be transparent to the user, by providing the option of easy-to-use boxes (see Appendix 1, figure 1) to formulate the query.

Functionality of XSAR

Based on the conceptual description of XSAR (see figure 3), detailed screenshots of actual XSAR usage are shown in Appendix
1. The case in the appendix shows a search for a specific employee whose name is �Kent Smith� and whose age is more than 30.
The user has a choice of specifying the search as either an XQL string (�expert mode�) or formulating it using the drop-down
boxes (�novice mode�). In this case, �novice mode� is used for specifying the search condition. Single quotes are used to surround
string parameters. If a parameter is a number, no quotation is required. Each comparison operator has two types: case sensitive
and case insensitive. Figure 1 in Appendix 1 shows the search conditions for this case. Note how the interface requires the user
to be DTD aware (they need to specify the element or tag whose values they want searched). One of the operators the user can
select is the contains operator, which allows for free text search within an XML tag. However, the user does not need to be XQL
aware, if entering queries in �novice mode�.

Figure 2 in Appendix 1 shows the list of search result. In this case, only one XML documents is found. Figure 3 in Appendix 1
shows the result for choosing �See Matches� in figure 2. Only the matched part of department2.xml is displayed. Figure 4 in
Appendix 1 shows the result for choosing �See whole XML� in Figure 2, Appendix 1. The entire department2.xml is displayed.
Having described the functionality of XSAR, we next describe the low-level architecture of its components.

Low-Level Architecture of XSAR

As illustrated in figure 5, the low-level architecture of XSAR follows the MVC model. XMLRetriever and ShowMatch are the
Controller: they are Java Servlets which are responsible for receiving the requests from the client. The Agent component takes
responsibility for retrieving the data from the website (Model). The search results are presented as JSP pages (View).

Figure 5. Low Level Architecture of XSAR

Once XMLRetriever receives the request from the client, it generates the XML query string and hands it to Agent. Agent essentially
crawls through the target repository, utilizing a breadth-first search algorithm. It parses the starting page (specified by the user)

Intelligent Agent and Multi-Agent Systems in Business

1440 2002 � Eighth Americas Conference on Information Systems

and identifies links. Each linked page is then parsed (if it is an HTML page) or parsed and searched (if it is an XML page).
ShowMatch gets the search results from the agent program and puts them into JSP files for presenting.

XSAR calls on the following APIs: a) Xerces (http://xml.apache.org/xerces-j/) for Java for XML parsing; b) GMD-IPSI XQL
Engine (http://xml.darmstadt.gmd.de/xql/) for XQL querying and c) Tomcat (http://jakarta.apache.org) as the underlying Servlet
and JSP Container.

The source code underlying XSAR is available at its website. Next, we describe the performance considerations associated with
the design of XSAR, and compare qualitatively the performance of a search agent with alternate methods of searching.

Performance Considerations

We discuss the performance of XSAR using the four metrics defined in section 1: recall, precision, percentage of dead links and
response time. We compare XSAR to three alternatives: a) keyword based search engines that employ a central database of a
universe of pages; b) directory based search engines that contain links to a universe of pages; and c) information repositories
that use an underlying database to store the information in (say) relational form, translate this stored information to and from
XML format and offer dynamic querying capabilities using an on-site search supported by technologies like CGI, ASP or Java
Servlets. As discussed in section 1, the performance of all these mechanisms is also strongly affected by how narrowly the search
is specified by the user. For the purposes of the discussion below, we assume that the search specificity is held constant.

Recall

For keyword based and directory based search engines, recall is usually dependent on the percentage of existing pages that are
captured in their respective universe of pages. As the number of real-world pages on scattered WWW sites increases, it is widely
accepted that the recall of these two search mechanisms will diminish. This has led to a surge of meta-search engines (e.g.,
http://www.dogpile.com), that now attempt to combine results from multiple search engines, with a view towards increasing recall.

For information repositories that use an underlying database, the recall of a search is determined by the goodness of translation
of the user�s query into the underlying database language (usually Structured Query Language(SQL)) query. If the query
translation is accurate, and the underlying database is searched completely, the recall should be 100%.

For agents like XSAR, the recall is dependent on whether a path exists from the specified start point to all the XML pages that
exist in the repository. If this condition is true, then the recall should be 100%.

Precision

For keyword search engines, precision is determined by a) the features offered to the user to specify a query narrowly (e.g.,
concatenated strings, wild card characters, Boolean operators); b) a design decision on the extent to which precision should be
sacrificed for response time; and c) the extent of information captured in the underlying database about the real pages. All else
being equal, a search engine that offers greater features for search specification should usually have greater precision, as will one
where response time is put secondary to precision. For c), a search engine that only captures the title of each page will have less
precision than one that captures the title and the META tags of each page.

For directory based search engines, the precision is determined by the accuracy of the directory structure in reflecting the user�s
world. Thus, if the directory listing stops at �motorsport clubs� but the user is only interested in �motorcycle racing� then the
precision is likely to be poorer than for another directory structure that specifically contains a �motorcycle racing� directory entry.
As the semantic space of web documents moves to encompass the entire world, it becomes harder and harder for a directory
structure to be all things to all people. Hence the precision of directory based search engines is expected to decline.

The precision of an information repository that uses an underlying database would depend on (a) the features provided by the
query interface that would allow the user to specify a query; and b) the maximum precision allowed by the underlying query
language of the database. If a relational database is used, then the underlying query language would be SQL, which is widely

Bajaj et al./XML Based Search Agent for Information Retrieval

3We assume a given size of the universe of pages in this section.

2002 � Eighth Americas Conference on Information Systems 1441

accepted to provide excellent precision, and the precision would depend on which features of SQL are supported in the query
interface provided to the user.

For XSAR, the query interface is fully supportive of XQL. Thus, the precision of XSAR is identical to the precision of XQL,
which supports XPath (http://www.w3c.org), the W3C standard for precision.

Percentage of Dead Links

For both keyword and directory based search engines, the percentage of dead links is determined by the actual continued existence
of the pages that are listed in their universe of pages. For both these types of search engines, as the number of actual pages
increases, and the size of the universe of pages goes up, the percentage of dead links would go up.

The percentage of dead links for information repositories with underlying databases would be zero, since the database is the
information. Similarly, for XSAR, since the search is conducted on the real repository, the percentage of dead links is zero.

Response Time3

The response time of keyword based search engines is dependent on a) the algorithm used to perform the key word match with
the database that has the universe of pages and b) the extent to which the designers are willing to sacrifice precision for response
time.

The response time for directory based search engines is dependent on the ease of navigation of the directory structure. As the
semantic complexity of the directory structure increases, response time becomes worse.

For information repositories with underlying databases, the response time depends on the complexity of the query specified and
how well the database is tuned for that query. Thus, for a relational database, a range query on non-indexed columns with several
joins is likely to take significantly longer than a simple SELECT query. Thus, these repositories would need a database
administrator to keep track of most frequent queries, and ensure proper tuning.

For agents like XSAR, response time is determined by the time taken by the crawler to crawl through the target repository. This
is dependent on exogenous factors like network speed, performance of the web server of the target repository and the size of the
target repository. In designing XSAR, we used three endogenous strategies to minimize this time, for given values of exogenous
factors: a) A multi-threaded agent; b) A proxy server for caching and c) allowing the user to specify response time threshold. We
next describe each of these strategies.

As the agent program fetches new pages from the target repository, it spawns threads to parse these fetched pages. HTML pages
are only parsed for links, while XML pages are parsed and searched for the query. One design criterion here is that spawning a
new thread can become expensive if the pages being parsed and/or searched are small. After experimenting with different real
XML repositories (see Appendix 2), we decided to use five threads per search. Since XSAR is an open source software, this can
be modified under different installations.

For proxy caching in XSAR, we used the DeleGate proxy server, developed by Yutaka Sato from Electro Technical Libratory
in Agency of Industrial Science and Technology, MITI Japan. A proxy server is useful in reducing network traffic, since it caches
frequently accessed pages, and hence reduces an agents (or browsers) requests to a distant WWW server. We tested the
performance of using the proxy server for a set of cases. The results of using the proxy server are shown in Appendix 2

Finally, XSAR allows the user to set the threshold response time and maximum depth that the agent should search the target
repository. This allows XSAR to be used by different classes of users, e.g., one class of users may want to search large repositories
comprehensively, and leave the agent running overnight, while another class may want quicker responses for more shallow
searches.

Intelligent Agent and Multi-Agent Systems in Business

1442 2002 � Eighth Americas Conference on Information Systems

We tested XSAR for three cases, described in Appendix 2. We found that using a multi threaded program had the maximum
impact in reducing response time, with a proxy cache playing a secondary role. The results (see Appendix 2) indicate that XSAR
is clearly slower than the other mechanisms available for searching, which is to be expected since it searches a target repository
in real time. Using the three strategies described above causes the search time to be under one minute for real world repositories
that are still fairly small. Since XSAR is unique, in that it searches repositories in real time, we anticipate its usage to be by users
who are not looking for sub-second responses (as is typical in casual browsing), but are rather looking for an agent to conduct
a more serious search on their behalf on a large repository and are anticipating response times in minutes or hours.

Figure 6 below summarizes the performance comparison between the four search mechanisms. A ↓ implies that the metric is
expected to become lower over time.

Metrics ! Recall Precision Percentage Dead
Links

Response Time
Search Methods↓
Keyword based Search
Engine

Low ↓ Average High ↑ Least

Directory Based Search
Engine

Low ↓ Low ↓ High ↑ Average

Information Repository
using underlying
database

100% High None Least

XSAR 100% Highest None Most

Figure 6. Summary of Performance Metrics for the Different Search Mechanisms

Based on the discussion above, it is clear that information repositories of the future can either store information in an underlying
database, or use a dynamic search agent like XSAR. While the performance metrics for an underlying database are better than
for a dynamic search agent, there are some application maintenance issues that are worth considering. For illustration purposes,
let us assume a large news organization called rabbitnews has decided to store all its news articles using the NML DTD.

If an underlying database is used, rabbitnews will have to write application code for a) converting information from NML to the
underlying database schema, b) extracting information from the underlying database and presenting it as an NML document and
c) translating queries formulated in a standard XML query language like XQL to the underlying query language of the database
like SQL. Furthermore, as the number of articles stored by rabbitnews increases, it may need to use multiple databases for storage,
and to coordinate the application code in a), b) and c) mentioned above, across the multiple databases. It will also need to hire
at least one database administrator to maintain this information, and tune the database for queries, as discussed earlier in this
section.

On the other hand, if the news articles are stored as multiple XML pages, and accessible using XSAR, the application code
required from the perspective of rabbitnews will be an editor to create an NML page. Since NML is a standard, there may be
potentially several NML editors available freely. Thus this storage mechanism is more desirable from an application maintenance
perspective. The scalability of this mechanism is dependent on a) the ability of rabbitnews to serve out pages from a large
selection of static pages, a technology that is well understood, and b) the ability to provide quick content-based query results, using
an agent like XSAR.

The above example illustrates the pros and cons of each search mechanism.

Conclusion and Future Research

In this work we analyze possible search mechanisms for large XML repositories, and present XSAR, a dynamic, DTD independent
search agent. We describe its functionality and its architecture, analyze its performance and compare it to other search
mechanisms. XSAR is free software, available under the GNU public License. It can be accessed at
http://bajaj.heinz.cmu.edu/XSAR/Xsar/, where users can use it to search XML repositories on the WWW. For future work, we
plan on a) expanding XSAR to search multiple repositories in parallel, and collate the results, b) explore a peer-to-peer

Bajaj et al./XML Based Search Agent for Information Retrieval

2002 � Eighth Americas Conference on Information Systems 1443

architecture for XSAR, wherein each repository would host its own agent and c) explore new ways to improve the performance
of XSAR. We hope to attract a body of programmers to work on the XSAR project, and provide collective solutions towards
searching XML repositories.

Acknowledgement

We acknowledge the insightful comments of Professor Ramayya Krishnan, of the H. John Heinz III School of Public Policy and
Management, Carnegie Mellon University, in the development of XSAR, and the writing of this paper

References

[1] R. Khare and A. Rifkin, �XML: A door to automated web applications,� IEEE Internet Computing, vol. 1, pp. 78-87, 1997.
[2] T. Berners-Lee, J. Hendler, and O. Lassila, �The Semantic Web,� in Scientific American, vol. September, 2001.
[3] N. J. Belkin and W. B. Croft, �Retrieval Techniques,� Annual Review of Information Science and Technology, vol. 22, pp.

109-145, 1987.
[4] D. Billsus and M. Pazzani, �Learning Collaborative Information Filters,� presented at Machine Learning: Proceedings of the

Fifteenth International Conference, 1998.
[5] B. B. Anderson, A. Bajaj, and W. Gorr, �An Estimation of the Relative Effects of External Software Quality Factors on

Senior IS Managers' Evaluation of Computing Architectures,� Journal of Systems and Software, To Appear.
[6] F. Menczer, �Life-like agents: Internalizing local cues for reinforcement learning and evolution,� in Computer Science and

Engineering. San Diego: University of California, 1998.
[7] K. Sripanidkulchai, �The popularity of Gnutella queries and its implications on scalability,� . White Paper, SCS, Carnegie

Mellon University, Pittsburgh, 2001.
[8] M. Foley and M. McCulley, JFC Unleashed: SAMS Publishing, 1998.

Intelligent Agent and Multi-Agent Systems in Business

1444 2002 � Eighth Americas Conference on Information Systems

Appendix 1
Illustration of Usage of XSAR

Figure A1. Creating Query For Local Test Website

Bajaj et al./XML Based Search Agent for Information Retrieval

2002 � Eighth Americas Conference on Information Systems 1445

Figure A2. Search Result Page for Local Test

Figure A3. Result of �See Matches� for Local Test Website

Intelligent Agent and Multi-Agent Systems in Business

1446 2002 � Eighth Americas Conference on Information Systems

Figure A4. Result of �See Whole XML� for Local Test Website

Bajaj et al./XML Based Search Agent for Information Retrieval

2002 � Eighth Americas Conference on Information Systems 1447

Appendix 2
Performance Results of Test Cases

We present the results of three test cases that illustrate the performance of XSAR.

The first case was a repository created inside the same network as XSAR. Therefore, the target website and the agent server were
connected by Ethernet, 10Mbps. The contents of the repository were small HTML files and XML files, less than 4Kbytes each.

The second case was a real XML repository (http://www.xml-cml.org/), which has the conclusive resource for Chemical Markup
Language which is used to exchange chemical information and data via the Internet.

The third case was also a real-world case: the Dublin Core Metadata site (http://purl.org/dc/) which is a specification for describing
library materials.

Table 1 shows the search time for the cases mentioned above. The search time results clearly depend on exogenous variables like
network conditions, PC hardware specifications, and load status. In order to eliminate at least some variation in these factors, we
tested each case five times, and present the mean values in Table 1.

Table B1. Comparison Among Experiment Cases

Local experimental
Environment CML Dublin Core

Number/
Average size of HTML

16 / 458 [bytes] 1 / 10490 [bytes] 34 / 16966 [bytes]

Number /
Average size of XML

16 / 2756 [bytes] 173 / 10314 [bytes] 27 / 974 [bytes]

Direct access 2545[ms] 19291[ms] 44637[ms]
Via cache server 1772[ms] 14577[ms] 40305[ms]
Ratio of
(w/ Cache) / (w/o Cache)

0.696 0.756 0.903

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2002

	XSAR: XML BASED SEARCH AGENT FOR INFORMATION RETRIEVAL
	Akhilesh Bajaj
	Hideaki Tanabe
	Chao-Chin Wang
	Recommended Citation

	XSAR: XML Based Search Agent for Information Retrieval

