
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2001 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2001

Conversation Systems for Requirements
Engineering
Alexander Hars
University of Southern California

Jiangfan Zhong
University of Southern California

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Hars, Alexander and Zhong, Jiangfan, "Conversation Systems for Requirements Engineering" (2001). AMCIS 2001 Proceedings. 255.
http://aisel.aisnet.org/amcis2001/255

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301338711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2001%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001/255?utm_source=aisel.aisnet.org%2Famcis2001%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

2001 � Seventh Americas Conference on Information Systems 1321

CONVERSATION SYSTEMS FOR

REQUIREMENTS ENGINEERING

Alexander Hars
Marshall School of Business

University of Southern California
hars@bus.usc.edu

Jiangfan Zhong
Marshall School of Business

University of Southern California
jiangfaz@marshall.usc.edu

Abstract

Requirements analysis is one of the most critical problems in information systems development. While many
approaches have been proposed, it has proven difficult to bridge the semantic gap between information
technology specialists and users who are familiar with the domain. In this paper a new approach to
requirements analysis will be presented that uses information technology to communicate with users in natural
language. The paper describes the architecture of a prototype system that is based on natural language
processing technology. The goal of the system is to engage the user in a productive dialogue about information
systems requirements. The system generates questions about systems requirements, parses the users� answer
and then uses the answer to generate additional questions. This approach has two main advantages: dialogues
can be adapted to the level of knowledge and the expertise areas of the user. In addition each session results
in a knowledge structure that provides a strong foundation for the subsequent steps in requirements
specification.

The Semantic Gap

As the capability of information technology matures it becomes more and more difficult to match the reality of an organization
to the opportunities of technology. ERP systems, for example, provide an abundance of functionality and promise to make
information instantly available throughout the corporation. However, ERP implementations frequently encounter problems
because critical needs or unique aspects of a company have not been recognized in the configuration process. Similarly, object-
oriented programming languages and component-based technologies have made the job of assembling software much easier. This
has reduced development costs and durations. It has led to the emergence of prototype-based development approaches such as
RAD and has increased the amount of communication between development teams and users. However, all development
approaches have limitations when knowledge is spread among many users and when attention needs to be spent on detail. In these
cases it is crucial to systematically collect requirements by interviewing many parties. This can be costly, error-prone and time-
consuming. In this article we will provide an alternative approach where requirements are collected by a computer-supported tool.

This article is organized as follows: After a brief review of the problems in requirements elicitation, the feasibility of a language-
based approach will be explored and current natural language technologies will briefly be discussed. Subsequently, the architecture
of a language-based system will be presented.

Approaches for Requirements Engineering

Requirements engineering is an important foundation for developing software systems. Requirements engineering is the branch
of software engineering concerned with the real-world goals for functions of and constraints on software systems (Zave 1997).
Based on this point of view, “software requirements engineering is defined as all the activities devoted to identification of user
requirements, analysis of the requirements to drive additional requirements, documentation of the requirements as a specification,
and validation of the documented requirements against the actual user needs” (Saiedian and Dale, 2000, p.420). The main
objective of requirements engineering is that “customers and designers must develop a shared understanding of the work problems
and the impact of technical solutions on the work” (Holtzblatt and Beyer 1995). This is a major problem because developers

IS and S/W Design, Development, and Use

1322 2001 � Seventh Americas Conference on Information Systems

frequently find it hard to understand users’ needs and they often lack familiarity with domain. On the other hand, users are often
not aware of technological advances and their business potential (Saiedean & Dale, 2000, p.422). Thus a ‘semantic gap’ (Kaiser
& Bostrom, 1982) exists between users and developers who conceptualize requirements in very different ways.

Requirements elicitation has a long history of research. Churchman and Schainblatt (1965) provide one of the early pieces
focusing on requirement analysis. Thereafter it has attracted special and increasing attention by many researchers (Holtzblatt and
Beyer, 1995; Keil and Carmel, 1995; Hutchings and Knox, 1995; Brun-Cottan and Wall, 1995; Beyer and Holtzblatt, 1995;
Holtzblatt and Beyer, 1995). Key requirements elicitation techniques are shown in Table 1.

Table 1. Requirements Elicitation Techniques

Scenario analysis Concept generation, organization
and analysis

Nominal group techniques

Work process analysis Requirements clustering Mind mapping
Task analysis Structured interviews and surveys Brain storming
Decision process tracking Interactive observation Documentation using non-traditional

artifacts

Conversation-Based Approaches

Hallman (1988) was one of the first to point out that the main problem in requirements engineering is to achieve harmony between
a well-defined basic model and a convenient language. Users and domain experts are most familiar with natural language.
Therefore several requirements engineering methods have focused on analyzing natural language terms. Several researchers have
described methods for manually analyzing the language used for describing requirements statements.

McDavid (1996) proposed an approach for business language analysis for object-oriented information systems. Drawing on lexical
semantic and category theory, the paper recommends specific activities and work products to produce a model of business
language and suggests use of the language model in various requirements activities. The author shows how the language model
can contribute to database design and offers key support for the development of user interfaces. Furthermore, language models
can reveal the variations in importance of the same concept from one domain to another. It follows that language models have
special value for requirement definition. Language-based heuristics are also used in many object-oriented analysis methodologies.
Kristen (1994), for example, provides a detailed account of linguistic rules for the identification of classes and properties during
object-oriented analysis.

There have been few attempts, however, to leverage natural language processing techniques for requirements analysis. Nanduri
and Rugaber (1996) have shown that syntactic analysis can be used to extract initial database requirements from natural language
texts. Hars (1998) utilized a semantic approach based on a large dictionary to extract requirements from natural language process
descriptions which were subsequently translated into process models. All of these approaches, however, had significant
limitations. Many approaches were domain-dependent and could not easily be generalized. Other approaches required perfect
specifications and disregarded the fact that the user undergoes a learning process and will often change his ideas about
requirements during a specification session.

In this paper, therefore, a new approach will be proposed which overcomes both shortcomings by focusing on the dialogue
occurring during domain analysis rather than the production of a finished ‘perfect’ requirements model. Several systems have
recently been developed which support the creation of natural language dialogues.

In the following, systems that support natural language dialogues will be called conversation systems. A major goal of such
systems is to maintain a conversation with a user for a significant time period. Many conversation systems have been developed
that focus on this goal. They have been particularly spurred through the Loebner Prize (1994) that will be awarded to the first
system that mimics human conversation capability. Examples of such systems are Weizenbaum’s Eliza (1976) which was
developed in the Sixties as well Alice (www.alicebot.org), a chatterbot that has won several annual Loebner contests. For other
conversation systems, see http://bots.internet.com/search/s-chat.htm. Nevertheless, conversation systems are also used in
commercial applications. For example, some web sites use conversation systems to provide product information or to help make
purchasing decisions. An example is Buy.Com where conversation system assists customers in selecting the appropriate desktop
or notebook computer system.

Hars & Zhong/Conversation Systems for Requirements Engineering

2001 � Seventh Americas Conference on Information Systems 1323

Knowledge
structure

Knowledge
structure

Dialogue
manager

Question
generator Topics+

Question
portfolio

Topics+
Question
portfolio

Answer
analyzer

Extraction

Word cate-
gorization

WORDNET
database

WORDNET
database

Shallow
parser

Quality
Assessment

Analysis
rule
base

Analysis
rule
base

Topic
selection

Question
prioritization

Question
formulation

Knowledge
structure

Knowledge
structure

Dialogue
manager

Question
generator Topics+

Question
portfolio

Topics+
Question
portfolio

Answer
analyzer

Extraction

Word cate-
gorization

WORDNET
database

WORDNET
database

Shallow
parser

Quality
Assessment

Analysis
rule
base

Analysis
rule
base

Topic
selection

Question
prioritization

Question
formulation

Analysis
rule
base

Analysis
rule
base

Topic
selection

Question
prioritization

Question
formulation

Figure 1. System Architecture

Most of these systems, however, require considerable configuration and maintenance efforts. Chatterbots such as Alice, Brian
(http://www.strout.net/info/science/ai /brian/), and others have the disadvantage that they do not keep track of issues raised in a
conversation. Most answers are discarded immediately and don’t surface again in later parts of a conversation. The user thus
perceives that it is difficult to keep a conversation going because the system has difficulties following the user through a topic.

The main problem for conversation systems is that they need to mimic a knowledgeable person. Providing systems with common-
sense knowledge, however, has proven extremely difficult (Lenat, 1998). For conversation systems focusing on requirements
analysis, however, the problem is different. In requirements analysis knowledge is distributed asymmetrically. The user is the
primary source of information. The purpose of the interviewer is to provide the user with adequate questions that lead to valuable
information. Thus a requirements elicitation system does not need to convince the user that it is aware about the specifics of a
problem. It merely needs to be able to ask useful questions. Showing ignorance is not necessarily perceived as a weakness but
is a required feature of any interviewing system. Thus requirements elicitation may be an ideal field to apply conversation systems
as it is able to use the strengths of such systems – being able to engage in a dialogue in natural language, being able to generate
questions and to react to utterances by the user. At the same time, the weaknesses of current conversation systems – their lack
of common-sense knowledge – does not weigh as heavily.

In the following the architecture of a domain analysis system will be presented. The functions of each component and the
challenges during their implementation will be discussed. An initial version of such a system has been developed by the authors.

System Architecture

At the core of all conversation systems from Eliza onwards are two key functions – a function that analyzes input coming from
the user and a function that generates a response. In most cases, several strategies are followed. The HeX system, for example,
which won the Loebner Competition in 1996, breaks user responses into keywords which are then matched to canned responses
in a database. If no match is found, the program performs checks the answer for additional conditions. If this part also fails, the
program switches the topic or provides other default answers (Hutchens, 1996). Alice, another chatterbot, uses a similar approach
based on pattern templates which translate user input into a system response (Wallace, 2000). The developers of Alice have
developed a markup language to specify such patterns and their transformation.

Therefore both functions (answer
parsing and question generation) need
to be part of a requirements elicitation
system (see Figure 1). In the simplest
case, a dialogue starts with a
predefined question. The user’s answer
is analyzed for keywords for which
follow-on questions have been defined
in a question database. For example, if
the answer contains the keyword
‘report’, a question database might
contain follow-on question that ask
what kind of information the report
contains, what other reports might be
relevant and who would use the report.
Or, if the answer contains a planning
verb, the database might contain a
request to describe the planning
activities.

Such a direct keyword-matching
approach has several limitations.
While it generates questions easily, it
does not provide direction to a conversation. Topics can change from sentence to sentence and discourse may turn in circles.
Therefore it becomes necessary to organize a discussion around topics.

IS and S/W Design, Development, and Use

1324 2001 � Seventh Americas Conference on Information Systems

Therefore questions need to be structured into topics. The topic categories can be taken from current information systems
development methodologies such as Rational Unified Process (Rational 2000), Architecture of Integrated Information Systems
(Scheer, 1998) or from texts on requirements analysis (e.g. Urquhart, 2000). Table 2 shows top-level topics distinguished in these
texts. For each of these topics many question templates can then be defined. If necessary, sub-topics can be added.

When the system processes an answer, it generates follow-on questions and places these questions into an internal portfolio of
questions. From this portfolio it then selects the next question for the current topic. When the topic is completed or the time
allotted for the topic has run out, it switches to the next topic and begins asking questions about these topics. This approach has
the additional advantage that a single answer can generate several follow-up questions.

This approach is conceptually simple and provides much flexibility. The quality of such an interviewing system greatly depends
on the question portfolio, on an adequate topic structure and on an effective prioritization of topics and questions. In any interview,
the number of potential questions will greatly exceed the time frame available for discussing the requirements. Thus it is
important, that a system is able to make some decisions about when to stop asking questions in a specific topic and which
questions to prefer. Experimentation is can be used to provide adequate heuristics.

So far, this approach can ensure that similar questions are not unwillingly asked twice (although in some cases it may be useful
to repeat questions on purpose). It cannot avoid, however, that questions are asked to which the answer has already been provided.
For example, questions about business processes will often reveal the stakeholders of the planned system which would be asked
in a different topic. Questions about information needs will frequently provide information about processes etc. It is desirable to
take these nuggets of information into account. This can be achieved by storing such information in a knowledge structure that
is gradually built up during the interview.

Table 2. Topics for Requirements Conversation

Topics for Requirements
Conversations Rational Unified Process

Architecture of Integrated
Information Systems

Urquhart (2000) Rational (2000, p.11) Scheer (1998, pp.39f, 50)
Issues to be discussed
Scope of current system
Rapport building
Processes associated with the system
Keys in information system
Future action
Information deficit in system
Information output from system
Analyst’s understanding of processes
Future solutions

Vision
Stakeholder needs
Actors
Use cases (processes)
Non-functional requirements

Initial strategic situation
Process view
Function view
Organization view
Information view
Product view

In its simplest version, such a knowledge structure would only contain categorized lists of items that have been found relevant
for the system. It would contain a list of persons (either in the form of roles such as ‘supervisor’, ‘clerk’, ‘customer’ or in the form
of names (e.g. John Doe or simply ‘Jim’), a list of tangible objects (e.g. vehicles, accessories, motor etc. in an automatic setting),
a list of information items (e.g. reports, <social security> numbers, <meeting> notes) and other categories such as organization
units, process types etc. The knowledge structure then merely conveys that certain items are relevant but not in which way.
Although this is very little information, it is useful for prioritizing questions, for generating follow-up questions and for
aggregating the responses into a comprehensive requirements document. For example, it can group all answers that contain
references to particular categories of items. It also represents the key elements of the users cognitive map about the application
domain (Bartlett, 1932; Johnson-Laird, 1981; Walsh, 1995).

It would be desirable to extend the knowledge structure to include relationships between different categories and potentially
specific types of statements. Semantic networks or frame-based representation mechanisms would be adequate but require a
substantial amount of coding. In the first version our tool is thus limited to category lists and custom frames.

To build the knowledge structure, it is necessary to parse and categorize the answer sentences. This can be accomplished by
combining one of the readily available part of speech taggers with a lexicon-based tool such as Wordnet (Miller et al., 1993;
Beckwith, Miller & Tengi, 1990). Wordnet is a large thesaurus developed at Princeton University that identifies many syntactic
and semantic relationships between words.

Hars & Zhong/Conversation Systems for Requirements Engineering

2001 � Seventh Americas Conference on Information Systems 1325

Two additional components complete the architecture. A dialogue manager monitors the question-and-answer sessions and
requests changes to the conversation where necessary (a user may request, for example, to change a topic). The extraction
functionality is used to present the results of the analysis session. It uses the session log and the knowledge structure to categorize,
format and summarize responses into a domain analysis document. For this module natural language techniques described by Park
et al. (2000) may be particularly relevant. Their techniques measure the similarity between requirement sentences to identify
possible redundancies and inconsistencies, and to extract possibly ambiguous requirements.

The architecture has been implemented in a prototype. The implementation is based on Borland’s Delphi rapid application
development environment. This shows that the architecture is feasible. The current prototype is based on individual dialogues.
However, the system may exhibit additional strengths once several people are interviewed for the same project. In that case,
questions and answers from previous participants can be used to build up the knowledge structure, to verify parts of these
structures and to generate more effective questions.

Conclusion

This article has presented an architecture for conversation systems that support domain analysis. It is based on existing systems
that engage users in open-ended conversations. We have argued that requirements elicitation is a more appropriate field for using
such natural language technologies than open-ended conversation systems because here a) the burden of knowing rests with the
user rather than with the system and b) there is a clearly established goal.

One might argue against the concept of asking a user to interact with a mindless system for requirements specification. While such
a system can not replace human dialogue it can reduce the effort for collecting requirements, it can increase the number of persons
whose requirements are being heard. In addition, it can lead to a better understanding of the issues at hand while developing an
information system. It can promote the gradual learning and discovery process that is always a key part of requirements elicitation.
(Keil and Carmel, 1995; Holtzblatt and Beyer, 1993, 1995; Beyer and Holtzblatt, 1995; Axel and Emmanuel, 2000). The system
should not be visualized as an intelligent tool but rather as a preprocessor. In the same way that automated translation systems
have found a very useful role in preparing rough drafts that are then refined by specialists, interactive requirements elicitation
systems can provide initial drafts of requirements specification that are then elaborated, adjusted by specialists and additional
human-to human requirements elicitation sessions. One way of using such a tool is to precede human-to-human interviews by
computer-assisted requirements elicitation sessions.

The system should have several advantages (and a number of problems) which can be examined empirically. It is not likely that
the quality of the requirements would be higher than those of human-to-human interviews. This is due to the fact that a skilled
interviewer is able to identify critical issues much more rapidly. However the tool may be able to enlarge the number and breadth
of requirements elicited. It should be able to identify a larger scope of problems and issue because it is able to involve more users.
It may also increase the reuse of requirements statements because knowledge structures created during an interview can already
be part of the next interview. Another advantage is that the system may exhibit greater consistency in interviewing. Depending
on the priorities of each project, it may be more accurate in ensuring that specific points are raised during each interview. Another
advantage of the tool may be that it can provide anonymity and thereby lead to more realistic requirements specifications.

References

Axel van, L., and L. Emmanuel (2000), “Handling Obstacles in Goal-Oriented Requirements Engineering”, IEEE Transactions
on Software Engineering, 26 (10), p.978-1005.

Bartlett, F. C. (1932), Remembering. Cambridge: Cambridge U Press.
Beyer, H., and K. Holzblatt (1995), “Apprenticing with the Customer”, Communications of the ACM, 38 (5), p. 45-52.
Beckwith, R.; Miller, G.A.; Tengi, R.A. (1990), Design and Implementation of the WordNet Lexical Database and Searching

Software.
Brun-Cottan, F., and P. Wall (1995), “Using video to Re-present the User”, Communications of the ACM, 38 (5), p. 61-71.
Churchman, C. W., and A. H. Schainblatt (1965), “The Researcher and the Manager: A Dialectic of Implementation”,

Management Science, 11 (4), p.69-87.
Hars, A. (1998), “Natural language-based data modeling: Improving validation and integration”, Journal of Database

Management, 9(2), p. 17-25.

IS and S/W Design, Development, and Use

1326 2001 � Seventh Americas Conference on Information Systems

Hallman, M. (1988), "An Operational Requirement Description Model for Open Systems", 10th International Conference on
Software Engineering, April 11-13, Singapore, p. 286-295.

Holtzblatt, K., and H. Beyer (1993), “Making Customer-Centered Design Work for Teams”, Communications of the ACM, 36
(10), p.93-103.

Holtzblatt, K., and H. Beyer (1995), “Requirements Gathering: the Human Factor”, Communications of the ACM, 38 (5), p. 31-32.
Holtzblatt, K., and S. Joens (1993), Contextual Inquiry: A Participatory Technique for System Design. In D. Schuler & A.

Namioka (Eds.), Participatory Design: Principles and Practices, p. 177-210, Hillsdale, NJ:Lawrence Erlbaum Associates.
Hutchens, J. (1996), How Hex Works. Online article. http://www.amristar.com.au/~hutch/hex/How.html (3/9/2001).
Hutchings, A., and S. Knox (1995), “Creating Products Customers Demand”, Communications of the ACM, 38 (5), p. 72-80.
Johnson-Laird, P.N. (1981), “Mental Models in Cognitive Science”, in D.A. Norman (Ed) Perspectives on Cognitive Science,

Hillsdale, NJ: Lawrence Erlbaum.
Kaiser, K.M., and Bostrom, R.P. (1982). “Personality Characteristics of MIS Project Teams: An Empirical Study and Action

Research Design,” MIS Quarterly, December, p. 43-59.
Keil, M., and E. Carmel (1995), “Customer-Developer Links in Software Development”, Communication of the ACM, May, p.

33-47.
Kristen, G.(1994), Object-orientation: The KISS method . Wokingham.
Lenat, D.B. (1998), “CYC – A large-scale investment in knowledge infrastructure”, Communication of the ACM, 38 (11), p. 33-

38.
Loebner, H.G. (1994), “In Response”, Communication of the ACM, 37 (6), p. 79-82.
McDavid D.W. (1996), “Business Language Analysis for Object-oriented Information Systems”, IBM Systems Journal, 35 (2),

p. 128-150.
McGraw, K., and K. Harbison (1997), User-Centered Requirements, Lawrence Erlbaum Associates, Inc., 10 Industrial Avenue,

Mahwah, New Jersey 07430.
Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K.(1993), Introduction to WordNet: An online lexical database.
Nanduri, S., and Rugaber, S. (1996), “Requirements Validation via Automated Natural Language Parsing”, Journal of MIS, 12

(Winter), 1995-96, p. 9-19.
Park, S., H. Kim, Y. Ko, and J. Seo (2000), “Implementation of an Efficient Requirements-Analysis Supporting System Using

Similarity Measure Techniques”, Information and Software Technology , April, 42 (6), p. 429-438.
Urquhart, C. (2000), Strategies for conversation and systems analysis in requirements gathering: A qualitative view of analyst-

client communication. [53 paragraphs]. The Qualitative Report [On-line serial], 4(1), Janauary.
http://www.nova.edu/ssss/QR/QR4-1/urquhart.html (3/8/2001).

Rational (1998), Rational Unified Process: Best practice for software development teams. White paper TP-026-A rev.11/1998,
Cupertino, CA.

Sadiedian, H., and R. Dale (2000), “Requirements Engineering: Making the connection between the software Developer and
Customer”, Information and Software Technology , 42, p. 419-428.

Scheer, A.-W. (1998), ARIS � Business process frameworks. 2nd ed. Berlin (Springer).
Svenson, O. (1979), Process Descriptions of Decision Making Organizational Behavior and Human Performance, 23, p. 86-112.
Wallace, R.S. (2000), Don�t read me: A.L.I.C.E. and AIML documentation . http://www.alicebot.com/dont.html (3/1/2001).
Weizenbaum, J. (1976). Computer Power and Human Reason . W.H. Freeman and Company.
Yaung, A. T. (1992), “Design and Implementation of a Requirements Clustering Analyzer for Software System Decomposition”,

Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing (Vol. II): Technological Challenges of the 1990’s,
March 1-3, Kansas City, MO USA.

Zave, P. (1997), "Classification of Research Efforts in Requirements Engineering", ACM Computing Surveys, December 29 (4),
p. 315 - 321.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	Conversation Systems for Requirements Engineering
	Alexander Hars
	Jiangfan Zhong
	Recommended Citation

	tmp.1219181181.pdf.RCkXZ

