View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

Americas Conference on Information Systems

AMCIS 2001 Proceedings (AMCIS)

December 2001

Experiences with the Unified Modeling Language
(UML)

Shouhong Wang
University of Massachusetts Dartmouth

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

Recommended Citation

Wang, Shouhong, "Experiences with the Unified Modeling Language (UML)" (2001). AMCIS 2001 Proceedings. 250.
http://aisel.aisnet.org/amcis2001/250

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

https://core.ac.uk/display/301338708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2001%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001/250?utm_source=aisel.aisnet.org%2Famcis2001%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

EXPERIENCESWITH THE UNIFIED
MODELING LANGUAGE (UML)

Shouhong Wang
Department of Marketing/Business Information Systems
Charlton College of Business
University of Massachusetts Dartmouth
swang@umassd.edu

Abstract

Our experiences with the Unified Modeling Language (UML) indicate that the UML is unnecessarily
complicated. It provides an insight of object-oriented modeling by demonstrating that few modeling constructs
beyond class, inheritance, messages, and data flows are needed in object-oriented systems modeling.

Introduction

Since the object-oriented (OO) approach became popular in the late 1980s, there have been avariety of methodologies for OO
analysis in modeling information systems (Eckert and Golder 1994). The proliferation of methodologiesin the OO field has
caused confusion in all information technology and computer software related fields. For many reasons, the OO field needs a
“standard” language that can be used for software engineers to reconcile and coordinate the needs of various stakeholders. This
concern triggered theinitiation of theUnified Modeling Language (UML) (Booch et al. 1999, BRJfor short) among other popular
modeling languages. The UML isagraphical language for visualizing, specifying, and documenting the artifacts of software-
intensivesystems. TheUML servesasthestandard language of blueprintsfor softwarein the Object Management Group (OMG),
and is becoming an international standard for information technology (Kobryn 1999).

However, there has been no lack of criticism of the UML (e.g., (Henderson-Sellers and Firesmith 1999)). While the issue of
whether the UML deserves an international standard for information technology is still under debate, one fact is clear that the
UML isoverly complex (Siau and Cao 2001). In our view, the major reason behind thisfact isthe lack of provision of support
in the UML at the business information systems analysis level. This paper makes comments on the UML based on our
experiencesin OO business information systems analysis.

Principles of the Design of a Modeling Language

When design ageneral modeling language, three principlesmust be considered: parsimony, compatibility, and self-inductiveness.
Parsimony meansthat the constructs used in amodeling language shoul d be confined to minimal whilethey are till abletoreflect
al essentia characteristics of the OO paradigm in modeling the world related to computer software. The parsimony principle

suggeststhat the general constructsin a*“standard” modeling language must be as simple as possibl e for the use of the language
as a communication tool cross disciplines (e.g., business and computing). Any redundant constructs must be eliminated in a
“standard” modeling language.

Compatibility requiresthat the general constructs used in a“standard” modeling language should be easy to convert to apopular
computer OO language(s). Currently, C++ and Java are considered commonly used OO languages for the general purposes of
OO0 programming. Hence, thegeneral constructsof a“ standard” modeling language must be harmoniouswith the syntax of C++
or Java. The principles of parsimony and compatibility require that the design of a modeling language involves a trade-off.
Sophisticated modeling languages provide avariety of measures to model the real world; however, the modeling outcomes are
not easy to map into the computer world unless amapping model isavailable. For instance, constraints (BRJ, p22) represent a
type of association between object classes; however, commonly used OO programming languages (C++ and Java) do not support

2001 — Seventh Americas Conference on Information Systems 1289

1S and S/W Design, Development, and Use

implementation of such association directly. In other words, one must use essential ways (messages and/or inheritance
relationships) to implement the constraint association. In fact, the real world is so complicated that the types of associations
among the classes arevirtually countless. The use of construct “association” does not help to convert the association directly to
the computer world. Thus, the need for adistinct notation for an arbitrary association among the classes becomes questionable
since few computer programming languages are able to implement an association without further specifications.

A good modeling language issalf-inductive; that is, it hasabuilt-ininstrument to verify the correctiveness of the resultant model.
Asshown later in this paper, the specification of messages with the companion dataflowsin an OO model isaway to check the
completeness and consistency of the model results. In our view, the following elementary constructs, which come mostly from
(Coad and Y ourdon 1991) except for data flow, can represent all the constructs of the UML for businessinformation systems—
(1) Class; (2) Attributes; (3) Operations (Method or Message); (4) Data flow; (5) Inheritance—as shown in Figure 1.

— ™
Class name

Aftributes
Methods
Class name Class name Class name tessages
Attributes Attributes Aftributes
tethods tAethods Message name,; tethods
Messages Messages | O— —O |Messages Subclass Subclass
— I Affributes Aftributes
Class bessage sending Methods Methaods
Messages tessanes
| S
Inhetitance

Figure 1. Generic Constructs of Object-Oriented Modeling

General Principles of Object-Oriented Modeling

A particular software-related modeling language is usually associated with a philosophy of computer programming, and afull
evaluation of amodeling language should have amuch broader coverage than adiscussion of itsconstructs. Itisrarely possible
to prove one modeling language is better than othersin all aspects. Nevertheless, from our point of view, the “goodness’ of a
modeling language could not be concluded without investigating the general principle of the modeling language at the very top
level.

Generally, if a modeling language is OO, any thing of a particular system being modeled can be described as an object by
specifying the class in conjunction with the attributes (i.e., data) and methods (i.e., internal operations and messages) that
mani pul ate the obj ect dataor request servicesfrom other objects. Itintegratesdata, processes, inheritance structures, and dynamic
interactionsinto asingle OO diagram. Hence, the systemsmodeled in an OO modeling language might be easy to maintain and
reuse. Thisiswhy OO modeling approach is superior over the traditional structured approach in terms of its ability to describe
avariety of entities and their relationships in the complex information technology environment.

This principle sounds so basic to the OO field; however, it is not reflected in the UML. Partially because of its historica
background of development, the UML employs mixed and redundant constructs. Wewill haveacloselook at those questionable
constructs used in the UML in the next section.

Asrealized in the OO community, the OO approach blurs the system analysis stage and logical design stage during the software
development life cycle. In the case of using amodeling language, one expectsthat little expansion is needed to implement the
system, provided that the system model defines the object classes properly. To take advantages of information technology for
software engineering, people use CASE (Computer Aided Software Engineering) tools. An ineffective “standard” modeling
language might build more barriersfor the next generation of CASE tools. For instance, given aconstruct of “association” inthe

1290 2001 — Seventh Americas Conference on Information Systems

Wang/Experiences with UML

system model specified by the UML, the software designer (or programmer) must figure out what the association exactly means
for the computer program. CASEtoolscandolittlework to helpthedesigner (or programmer) in designing the software structure
since the model actually tells nothing specific about the “association.” The fact isthat the system model in the UML demands
more creative activities in the later stages of the system development life cycle. The elementary constructs shown in Figure 1
provide ageneric instrument for OO modeling. Asdemonstrated in the next section, many fundamental modeling constructsin

UML can be replaced by the elementary constructs shown in Figure 1. The system modeled with these elementary constructs
can be less ambiguous and more accurate.

Deficient Constructs in the UML

In this section, we use examples, but not exhaustively, to demonstrate why and how constructsin the UML can be replaced with
the elementary constructs shown in Figure 1, and what constructs of systems modeling are missing in the UML.

Responsibility

The UML models responsibilities for a class by using a separate compartment of the classicon for the free-form description of
responsibility (BRJ, p53). In the view of systems modeling, this part is not significantly different from ambiguous natural
languages. On the other hand, in the view of implementation, no computer language can implement “responsibility” unlessthe
model narrates exactly what the responsibility is. In fact, responsibility is a part of goal which should be an object. If the
responsibilities are truly important for software systems modeling, they must be modeled in OO terms, as shown in Figure 2.

Fesponsibility
(Goal)

Fesponsibility
Description
heasures

Trigger Fesponsible_Ferson implement
—

Implement
Appraise
he.

Other Ohject Other Ohject

.

—
JDatator appraisal

Figure 2. Modeling Responsibility in Object-Oriented Terms

Dependencies

The UML uses dotted lines to describe dependency (BRJ, p63). From the viewpoint of OO modeling and implementation,
dependencies can be model ed simply by using messages. Asan example, thedependency describedin (BRJ, p64) can bemodeled
in the more general and accurate way of message sending, as shown in Figure 3.

Associations

Association (BRJ, p65) is an ambiguous term, as briefly discussed earlier in this paper. For example, “works for” might be an
“association” between Person and Company, but it proveslittle semanticinformation. From theviewpoint of OO modeling, such
an association in this case can be an inheritance relationship if the association means “is a member_of”, or amessage if the
association means, for instance, “get_pay”. Unless the association is specified by inheritance and/or message, it can never be
mapped onto the computer software world.

2001 — Seventh Americas Conference on Information Systems 1291

1S and S/W Design, Development, and Use

i - - .
FilrnClip Channel
Marme Adtributes
PlayOniC:Channel) Evoke
Start() Ewake .
Stopl] o
Feset() Fesponse/Error
" » L)

Figure 3. Modeling Dependency in Object-Oriented Terms

Physical Elements

The UML has specia treatments on physical elements, such as server nodes (BRJ, p20) and actors (BRJ, p221). Conceptually,
these physical elements are objects in the same way as other physical elements, such as customer and employee, for business
information systems (Wang 1999). The reason why the notation for server nodes and actors should be different from that for
customer and employee is not justified. In fact, for integrated OO systems modeling, any elements related to the information
system can have their objects within the computer for various purposes, including information infrastructure management and
system evaluation.

Note
Inthe OO world, anote (BRJ, p76) isan object which can be attached to ahost object through an inheritance relationship. A note

should be, for instance, an online document, if it isreally useful for the user. Again, thereisno need for afree-format notation
for note.

Interface

The UML defines an interface as “a collection of operations that

are used to specify a service of a class or a component” (BRJ, Graphical
pl18). Actualy, an interface is generally an independent object. User-Computer
It can have its own attributes in addition to a set of operations, as Interface (GUI)
shown in Figure 4. Farmat
Descriptions
Load
Package Trigger
The UML defines a package as group elements that are e
semantically close and that tend to change together (BRJ, p169). |
The idea of package comes more likely from “folder” in the term Buttan Scroll Bar bdenu
of Windows operating system. In OO terms, packageis atype of Description| |Description Description
metaclass. All elements related to the package are the attributes -
of the metaclass. Since OO programming languages normally Trigger Load Trigger
support multiple inheritance structures, the construct of package -
is actually redundant. Furthermore, the use of the construct of
package might result in incompleteness of modeling because Figure 4. A User-Computer Interface
generic operations are usually associated with a package but are Is an Object

unable to be described inthe UML. For instance, the construct of
a package of business rules (BRJ, p171) does not allow the
model er to specify whether these rules share common operational
methods of inference.

1292 2001 — Seventh Americas Conference on Information Systems

Wang/Experiences with UML

Use Case and Event

A usecase (BRJ, p219) isused to identify objects, but isnot an object. To model ause case for the sake of systems analysisand
design, one must apply an additional modeling process and use non-object-oriented constructs. Thisinconsistency between the
constructs and the object-oriented concept creates great gaps between the modeling outcome and the object world (Pooley and
Stevens 1999). Research (e.g., (Meyer 1997)) indicates that use cases are not a good tool for finding classes.

In many cases, ause caseis equivalent to an event. However, the UML usesaspecial graphical representation for events (BRJ,
p278). Actually, itisagain redundant. Time-dependent aspects of a system can be expressed in the form of event object classes.
Events are associated with state transitions of the system and explicitly expressthe system'sdynamic properties. Anevent object
has its attributes (e.g., time and signals) and its operations (e.g., trigger other objects). An event isinitiated by a message sent
by other objects, except for the very top event object which is often defined as the “ system clock” (Wang 1999).

Consistency Control Mechanism

To eliminate the syntactic errors of inconsistency aswell as semantic errorsin missing representation of the result model, agood
modeling language must provide amechanism to ensure the consistency of theresult model. Theconsistency control mechanism
will help the modeler to verify the model, and make it possible for CASE tools to build facilities for consistency analysis.
Unfortunately, the UML does not support any means for consistency control. Our solution isthat datatransmitted by messages
between object classesareexplicitly annotated and used for consistency control (Figure 1). Dataattached to the passing messages
inan OO program (C++ and Java) could be those parameters in amessage and/or a*“return” operation in response to amessage.
The consistency control mechanism of dataflowsissimilar to what we have used in the dataflow diagram, athough the concept
of data flowsin the OO paradigm is quite different from that in the data flow diagram approach. Research (Wang 1999) has
experienced the benefit of data flowsin OO systems modeling in consistency control. We believe that annotation of data flows
along with the host message in OO modeling is useful for checking the completeness and consistency of the modeling resuilts.

Discussions

This paper explains why and how second-order concepts and tedious constructs suggested by UML can be eliminated from a
“standard” modeling language. However, it doesnot stop there. It highlightsaview for information systemsthat messages serve
asvehicles conveying data communication between the modules, and suggests the use of dataflowsto elaborate systemsmodels
and check the compl eteness of the modeling results. Wewishtheinformation technology field to invent aconcise, truly unified,
and pragmatic modeling language as a framework that can be used for effective management information systems modeling.

References

Booch, G., Rumbaugh, J., and Jacobson, ., The Unified Modeling Language User Guide, Reading, MA: Addison-Wesley, 1999.

Coad, P., and Yourdon, E., Object-Oriented Analysis, Englewood Cliffs, NJ: Y ourdon Press, 1991.

Eckert, G., and Golder, P., Improving Object-Oriented Analysis, Information and Software Technology, (36:2), 1994, pp.67-86.

Henderson-Sellers, B., and Firesmith, D. G., Comparing OPEN and UML : The Two Third-Generation Devel opment Approaches,
Information and Software Technology, (41), 1999, pp.139-156.

Kobryn, C., UML 2001, Communications of the ACM, (42:10), 1999, pp.29-37.

Meyer, B., Object-Oriented Software Construction, Upper Saddle River, NJ: Prentice Hall, 1997.

Pooley, R., and Stevens, P., Using UML, Reading, MA: Addison-Wesley, 1999.

Siau, K., and Cao, Q., Unified Modeling Language (UML): A Complexity Analysis, Journal of Database Management, (12:1),
2001, pp.26-34.

Wang, S., Analyzing Business Information Systems: An Object-Oriented Approach , Boca Raton, FL: CRC Press, 1999.

2001 — Seventh Americas Conference on Information Systems 1293

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	Experiences with the Unified Modeling Language (UML)
	Shouhong Wang
	Recommended Citation

	tmp.1219181181.pdf.wtoPx

