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Michael Goul
College of Business

Arizona State University
Michael.Goul@asu.edu

Abstract

Classical approaches to algorithm development in the computer science literature provide a reference model
for component decomposition and composition strategies in business application development efforts.  A model
based on a divide and conquer approach, the greedy method and backtracking is explained.  Particular
patterns are mapped to application subtask and input/output characteristics.  The model gives rise to a
methodology for component development that is intended to promote opportunities for taking advantage of
parallel computing ideals.

Keywords:  Distributed components, component allocation, component composition

Introduction

Classical approaches for algorithm development in the computer science literature provide patterns that can enable software
developers to best utilize the capabilities of distributed component development and application implementation environments.
These approaches are each addressed in the following sections (adapted from Knuth, 1973).  After explaining each approach, an
overall model for distributed component development is proposed, and future research to investigate the efficacy of the model
is discussed.

Divide and Conquer

This method is best utilized when components can be replicated at multiple computer nodes, application subtasks can split the
inputs into subproblems of the same kind as the original problem, and the resulting operations on subproblems can be efficiently
merged into a final application solution.  From a component perspective, application subproblems suitable for this strategy are
consistent with the following.  A component spawns multiple distributed components to operate on specified subsets of an
application’s inputs to the point where the components spawned constitute an input size of sufficiently small size to solve the
subproblem, with the solution being returned to the parent component, and the component recursion moves from leaf to interior
and finally to root component calls.

The Greedy Method

This approach is most useful when there are multiple and alternative methods for solving an application’s subtasks.  Each subtask
is spawned to multiple distributed components each utilizing a different method to address the subtask and compute a solution.
The result of the subtask ultimately becomes the result determined by the component with the first correctly processed result, i.e.,
the first component to converge.  In this way, each method, as encapsulated in a component, competes with every other method
in determining the final solution in the most efficient time frame.
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Backtracking

Backtracking is a suitable component decomposition pattern when a desired solution can be expressed as  an n-tuple satisfying
a set of constraints where a specified criterion function is intended  to be maximized or minimized.  In generating a solution, a
component may spawn many other distributed components to expand a search space simultaneously.  When spawned components
exceed (e.g., in a minimization effort) counterpart component’s expansions, then those components cease to operate, and another
expansion can then be assigned to the component.  Each component utilizes the same expansion method however a shared
memory must be maintained either through communicated parameters or global component access to a real-time memory.

Towards a Pattern-Based Model of  Component Development

Armed with an understanding of the patterns and characteristics of the three fundamental and classical computer science algorithm
approaches as adapted above, a component developer need not always rely on application-oriented abstractions for determining
application subtasks.  For example, a software developer considering a simple dictionary development, update and look-up
application may choose to create a component for each of the tasks as viewed in a menu, e.g., look-up, etc.  Using the constructs
defined above, the developer would likely consider the look-up function as an element of the update function and the  look-up
subtask as potentially a candidate for a divide and conquer approach.  Similarly, an application developer requiring a complex
computation may have several alternative computational methods to determine, for example, the risk inherent in a certain financial
portfolio.  Here, the greedy method could be utilized to deploy the computations to methods encapsulated in distributed
components.  The first component to converge would provide the needed risk value thus speeding the completion of the overall
application.

While application decomposition into distributed components will likely remain  an art, the three adapted algorithmic methods
and the example above illustrate opportunities to take advantage of potential parallelism.  The intension is to enable a component
developer to adopt a methodology not entirely based on application subtask abstractions.

Future Research

In order to expand understanding of the methods adapted above and assess their efficacy in application development, more
research will be necessary to develop pedagogy for teaching the methods, training a developer to learn to exploit opportunities
for parallelism, and the targeting of more specific subtask characteristics enabling the recognition of the suitability of a method
to that subtask.  To that end, exemplary application scenarios will be developed to test the ability of a component developer to
recognize opportunities for the three adapted constructs.

In addition to the future research adapted above, the three methods above may be expanded to include other classical algorithm
approaches as adapted from the computer science literature.
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