Association for Information Systems

AIS Electronic Library (AISeL)

Americas Conference on Information Systems

AMCIS 2001 Proceedings (AMCIS)

December 2001

Large Object Caching for Distributed Multimedia

Information Systems

Hyunchul Kang
Vienna University of Technology

Jong-Min Lee
Chung-Ang University

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

Recommended Citation

Kang, Hyunchul and Lee, Jong-Min, "Large Object Caching for Distributed Multimedia Information Systems" (2001). AMCIS 2001
Proceedings. 71.
http://aisel.aisnet.org/amcis2001/71

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact

elibrary@aisnet.org.


http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001/71?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

LARGE OBJECT CACHING FOR DISTRIBUTED
MULTIMEDIA INFORMATION SYSTEMS

Hyunchul Kang Jong Min Lee'
Chung-Ang University Chung-Ang University
hckang@rose.cse.cau.ac.kr lons@rose.cse.cau.ac.kr
Abstract

The large object(LOB) such as text, image, audio, video, etc. has become one of the typically encountered data
type in today's internet/intranet-based distributed multimedia information system for business and other
applications, and thus, needs to be efficiently retrieved from the remote databases. As such, its underlying
database management system(DBMS) is required to efficiently support LOBs through its application
programming interface(API). In this paper, we propose LOB caching through the SQL Call Level Interface,
a widely employed API for database access, whereby the frequently accessed LOBs could be retrieved locally.
The proposed extension was implemented on a DBMS, and the performance assessment of LOB retrieval with
and without caching is reported.

Introduction

One of the technical challenges to the modern information system in today's internet/intranet-based computing environment is
that it isrequired to efficiently retrieve large objects(LOBs) such astext, image, audio, video, etc., of which multimedia datais
composed, from the remote database servers over the communication network. Although today’ s communication networks are
getting faster, retrieving aL OB from the remote database still takes long primarily due to its huge volume. No matter how fast
the network may be, at least the propagation delay should be tolerated. Besides, the network congestion under the usual daytime
heavy loads may be unavoidable. As such, the underlying database management system(DBMYS) for a distributed multimedia
information system is required to efficiently support LOBs through its application programming interface(API).

The SQL Call Level Interface(CLI) isawidely used API for database access (V enkatrao and Pizzo 1995), which fitsthe dynamic,
open, and distributed information system environment. For example, the SQL CLI is the appropriate choice in developing an
application program(AP) such asthe front-end of an information system running on a PC client accessing the back-end remote
database servers across a communication network.

The SQL CLI isaset of functions which get an AP connected to databases, request the execution of the SQL commands, receive
their results, and so on. The SQL CLI functions called by an AP are executed through the CLI library, a middleware working
between the AP and the target DBMS. Each DBMS that supports the SQL CLI needsto provide itsown CLI library, whichis
implemented as a dynamic library to be linked to the APs at run time (see Fig. 1(a)). If the CLI library for a particular DBMS
conforms to some standard specification of the SQL CLI (e.g., X/Open SQL CLI (X/Open 1992), ISO-ANSI SQL CLI (Melton
1993), ODBC interface (Microsoft 1997), and JDBC interface (Fisher et al. 1999)), any AP conforming to that standard isbinary
interoperable with that DBMS.

In this paper, we investigate an extension of the SQL CLI to make it amore efficient API in retrieving LOBs from the remote
databases, enabling devel opment of high performance distributed multimediainformation systems. We proposethat the SQL CL |
provide the new functions for LOB caching capability whereby the frequently accessed L OBs can stage in the local storage for
fast retrieval later on. Asshown in Fig. 1(b), if the conventional CLI library is extended with a LOB cache manager for storing

Current address; VOIN Technology Co., Ltd., Seoul, 150-032, Korea.

2001 — Seventh Americas Conference on Information Systems 363



Data Management and Decision Support

LOBsinthelocal cache, the APcould retrieve LOBsfrom the cacheinstead of from theremote databases over the communication
network. Observing that LOBs such as images and videos in multimediainformation systems are mostly read-only and rarely
change, LOB caching is a promising approach in distributed environment.

Application Application
va ~ CLI ~~ CLI

LOB
CLI CLI Cache LOB
Library Library Manager Cache
Dt a— -

~

o J
Communication it Communication
Network Network
DBMS DBMS
~—
(a) SQL CLI (b) SQL CLI with LOB Caching

Figure 1. SQL CLI and LOB Caching

Thetechnical issueswith L OB caching through the SQL CL 1 includecache consistency, cache replacement, management of cache
information, and the functionalities to be added to the traditional SQL CLI. Section 2 describes how these issues are dealt with
in our extension. The proposed extension has been implemented on aDBM Swhich supportsthe SQL CLI specified by X/Open,
and we have conducted some experiments on this implemented system for performance assessment of LOB retrieval with and
without caching. Section 3 reports the experimental results. Finally, some concluding remarks are in Section 4.

Technical Issues with LOB Caching through SQL CLI

Maintaining Consistency of the Cached LOBs

Consistency maintenance is a key requirement to support LOB caching through the SQL CLI. Although the problem of
consistency maintenance with the traditional page caching or with query caching was extensively dealt with in the client-server
DBMS context (Franklin 1996)(Delis and Roussopoulos 1993)(Park and Kang 1998), that with LOB caching was rarely
investigated.

We adopt the check-on-access policy where vaidity of aL OB in the cache is checked with the database server when the LOB
isrequested. If therequested LOB in the cacheturnsout to bevalid, it isretrieved from the cache, and if it doesnot, it isretrieved
from the remote database server and cached. In this process, the LOB identifier(ID) and itstimestamp(TS), which indicates the
time when the database server last updated the LOB, are referred to. Assuch, when aLOB is stored at the database server, itis
assigned aunique ID, which isused for checking whether or not acertain LOB exists in the cache, and when aLOB is cached,
itsID and TS are stored in the cache as well.

The process of caching and retrieving aL OB while preserving cache consistency isshowninFig. 2. Whenthe AP requestsal OB
through the SQL CLI with aquery (for example, retrieve the chart depicting the saleslast month)(Fig. 2-1) the CLI library first
retrievesthe I D and the TS of the corresponding L OB from the database server(Fig. 2-2 and 2-3). And then, with thereturned ID,
it is checked whether or not the requested LOB isin the cache(Fig. 2-4). If itisin the cache, its cached TSiscompared tothe TS
just retrieved from the database server to seeif the cached version of the LOB is still up-to-date. After all, there could be three
cases:

364 2001 — Seventh Americas Conference on Information Systems



Kang & Lee/Large Object Caching

1. Thereguested LOB isinthecache, anditis
up-to-date.
2. Therequested LOB isinthe cache, anditis ® LOB
outdated. request
3. Therequested LOB is not in the cache.

Application

® LOB
return

@ Cache check
CLI Library ® LOB retrieval LOB

CLI

In the first case, the requested LOB is retrieved Cache
from the local cache(Fig. 2-5), avoiding further

communication with the database server which @ ID/TS ® ID/TS @ LOB ©® LOB

might take very long. In the other cases, the request gturn retrieval request

requested LOB is retrieved from the database
server over the communication network and
cached(Fig. 2-6 through 2-8). In the second case,
the original LOB in the cache is purged and
replaced with the up-to-date versionretrieved. In
all cases, the CLI library returns the retrieved
LOB to the AP(Fig. 2-9), and keeps the up-to-
date version of the LOB in the cache.

LOB Cache Replacement Algorithm Figure 2. Process of Retrieving and Caching a LOB

The conventional DBM S buffer cachesaportion while Preserving Cache Consistency

of the database in units of disk pages. Much

research hasbeen done on the page replacement algorithm such asL RU (Effel sberg and Haerder 1984). A replacement algorithm
is aso necessary with LOB caching, and it should be somewhat more complicated one compared to those for page replacement
becausethe LOBsare stored in various sizesusually much lager than the size of apage. For example, the a gorithm such asLRU-
SIZE, LRU-MIN, and LRU-Threshold, which are all LRU-based, are for such purposes (Abrams et al. 1995). Any of these
algorithms is applicable to our extension, and LRU-MIN is the choice for our implementation of the extended SQL CLI.

LRU-MIN worksasfollows. It picksthevictim using LRU among the LOBswhose sizesare larger than the size of the LOB that
isto be newly stored in the cache. If thereis no such LOB, the size of the new LOB is divided by two, and the victim selection
isdone using L RU against those LOBswhose sizesarelarger than the divided size. And if thereisnot yet enough space after the
replacement of thevictim(s), the divided LOB sizeisdivided again by two, and the same processisrepeated until thereisenough
space for the new LOB.

Efficient Management of LOB Cache Information

In order to efficiently support LOB caching, itishecessary to efficiently maintain and manage the LOB cacheinformation. There
aretwotypesof LOB cacheinformation. Oneisthe genera information on all of the cached L OBs, and the other istheindividual
information on each of the cached LOBs. The general information includestheinformation onthe LOB cache area which means
the storage area dedicated for the cached LOBS, the statistical information on the cached L OBs, and the access path information
for cacheretrieval. Theindividual information includesthe LOB identifier, thetimestamp, thelast time of reference, and thesize.
The LOB cacheinformation needsto be stored along with the cached L OBsin the cacheto be efficiently accessed, and thus, some
efficient data structures are required to storeit. In our implementation, we devised aset of hashing-based data structures similar
to those employed for the lock manager implementation for DBM Ss described in (Gray and Reuter 1993, Chap. 8).

New SQL CLI Functions for LOB Caching

The functions that need to be added to the conventional SQL CLI for LOB caching can be classified into four categories as
summarized in Table 1. The first category is for alocating and freeing a LOB cache handle, which is a pointer to the data
structures storing the LOB cache information. Itsroleissimilar to those of the environment handle, the connection handle, and
the statement handle used in calling the SQL CL | functions (X/Open 1992). That is, the APisto call thefunctionsrelated to LOB
caching with the alocated LOB cache handle as a parameter. The function named AllocLOBCacheHandle() alocates and
initializesthe memory for the data structuresto store the LOB cache information, and also setsapointer in the LOB cache handle

2001 — Seventh Americas Conference on Information Systems 365



Data Management and Decision Support

to point to these data structures. FreeL OBCacheHandle() deallocates the data structures from the memory and sets the pointer
in the LOB cache handle as NULL.

Table 1. New SQL CLI Functions for LOB Caching

Category CLI Function Description
Allocating and Freeing AllocL OBCacheHandl&() allocates a L OB cache handle
the LOB Cache Handle FreeL OBCacheHandl&() freesaLOB cache handle
Allocating and Freeing AllocLOBCache Area() allocates anew LOB cache area
the LOB Cache Area FreeL OBCacheArea() deletes an existing LOB cache area
Retrieving/Caching the LOBs and GetnCachel OB() retrieves and cachesa L OB
Deleting the Cached LOBs PurgeL. OB() deletes aLOB from the cache
Retrieving and Modifying GetL OBCachelnfo() retrieves the LOB cache information
the LOB Cache Information SetL OBCachelnfo() modifies the LOB cache information

The functions for allocating and freeing the LOB cache area are also necessary. AllocLOBCacheArea() executes the process of
setting up adirectory in the storage space where the LOB cache areaisinstalled, and updates the L OB cache handle accordingly.
FreeLOBCacheArea() isto delete the directory. Several LOB cache areas could be maintained separately at the sametime for
more efficient LOB caching. For example, the LOBsthat are more frequently accessed can be stored in the cache areainstalled
on afaster storage device while less frequently accessed LOBs are stored in another cache areainstalled on a slower device.

Thethird category of functionsisthe corein our extension: afunction for retrieving and caching aL OB and afunction for purging
aL OB from the cache. Inthe SQL CLI specification by X/Open, the function named GetCol() isto be called for LOB retrieval.
In order to support LOB caching, GetCol() needs to be extended to GetnCacheL OB() so that it can not just perform the original
functionality of GetCol() but also check if the requested LOB isinthe cache, and if so, check if itisgtill valid, and retrieveit from
the cache instead of from the database server if it turns out to be valid. Meanwhile, since the LOB cache area is with space
limitation, some of the cached L OBs should be purged when not hot any more. For this, we need PurgeLOB() for deleting certain
designated LOB or the LOBs that have been last accessed long ago.

Finally, the functions are required for retrieving and modifying the LOB cache information. GetLOBCachelnfo() isto retrieve
the general and/or theindividual information of the cached LOBS, whereas SetL OBCachelnfo() isto modify those information.
These functions are useful for efficient management of the LOB cache areas.

Performance Assessment of LOB Caching

The proposed extension of the SQL CLI wasimplemented onaDBMS. It wasoriginally equipped withaCL I library conforming
tothe SQL CL 1 specification by X/Open, and that was extended toincorporate our new SQL CLI functionsfor LOB caching. The
extended CLI library was implemented in Microsoft Visual C++ 6.0 on Windows NT 4.0, and communicates with the remote
database server through the Ethernet.

Wehave conducted some experimentswith our implementation for performanceassessment of LOB caching, comparingtheLOB
retrieval time with GetnCachel. OB() to that with the conventional GetCol() specified by X/Open. The retrieval time has been
measured with respect to the various LOB sizes and cache hit ratios. The LOB sizes employed are IMB, 5MB, 10MB, 20MB,
30MB, 40MB, and 50MB, and the cache hit ratios experimented are 0%, 20%, 50%, 80%, and 100%. The unit of the LOB
retrieval timeisthe second, and the retrieval time of each LOB was measured 20 times and averaged.

Figure 3 showstheresults. With GetnCachel. OB(), the best performance is achieved when the cache hit ratio is 100%, whereas
the worst is observed when the cache hit ratio is 0%, as expected. Note that the cache hit here counts only for those cases where
therequested LOB isin the cache and it turns out to be still valid. In other words, if the requested LOB isfound in the cache but
it turns out to be stale, and thus, it isto be retrieved from the remote database server, it is considered as a cache miss.

366 2001 — Seventh Americas Conference on Information Systems



Kang & Lee/Large Object Caching

900
—* GetCol
800 A
700 / —# GetnCacheLOB
o (cache hit ratio=0%)
LOB 600
retrieval 0 GetnCacheLOB
time 500 (cache hit ratio=20%)
(sec) 400 GetnCacheLOB
(cache hit ratio=50%)
300
—« GetnCacheLOB
200 —= (cache hit ratio=80%)
100 5 —» GetnCacheLOB
- //;/ (cache hit ratio=100%)
0 L L L L
1 5 10 20 30 40 50
LOB size (MB)

Figure 3. Performance Comparison between GetnCacheLOB() and GetCol()

When the cache hit ratio was 0%, LOB retrieval with GetCol() dslightly outperformed GetnCachel OB(). This is because
GetnCachel OB() takes some time for retrieving the identifier and the timestamp of the requested L OB first for the purpose of
searching the cache for the requested L OB just to find out it does not exist there, and eventually some additional 1/0 timeis spent
for storing the requested LOB retrieved from the database server in the cache. However, when the cache hit ratio was 100%,
GetnCachel OB() considerably outperformed GetCol(). The performanceimprovement with cachehit ratio of 100%ismuchlarger
than the performance penalty with cache hit ratio of 0%. For example, when a cache miss occursin retrieving aL OB of 50MB,
GetnCachel OB() suffered from about 7% performance degradation compared to GetCol(). However, with 100% cache hit,
GetnCachel OB() gained 88% performance improvement over GetCol().

Now what if the cache hit ratio isnot so perfect as 100%? Could the performance gai n through caching with cache hit compensate
for the performance loss with cache miss? Fig. 3 shows that the LOB retrieval time increases as the cache hit ratio decreases.
However, GetnCachel. OB() does not take so much time as GetCol (). For exampl e, when the cache hit ratio wasjust 20%, thetime
it took to retrieve aLOB of 50MB with GetnCachel. OB() showed about 21% improvement compared to that with GetCol(). It
implies that if only 20% of the desired LOBs could be retrieved from the local cache instead of the remote database server,
resorting to the LOB caching capabilitiesin the extended SQL CLI is profitable. Theimprovement achieved here is still much
bigger than the 7% overhead that would incur if the cache hit ratio were 0%.

Concluding Remarks

LOB caching through the database APl proposed in this paper can be an important vehicle in realizing high performance
distributed multimediainformation systemsfor numerousapplicationssuch asgeographical information systems, cyber education,
internet entertainment, and E-catalogues for cyber shopping mallsto name just afew. LOBs such asimages and videos in those
applications are mostly read-only and rarely change, and thus, their caching could be quite efficient.

Towards a full-fledged multimedia information system efficiently dealing with LOBs, some further work needs to be done on
extending the conventional database APIs. The technical issues deserving exploration in thisregard include the new featuresfor
LOB manipulation and definition, which are more powerful and flexible compared to those provided inthe conventional database
APIs.

2001 — Seventh Americas Conference on Information Systems 367



Data Management and Decision Support

References

Abrams, M., Standridge, C., Abdulla, G., Williams, S., and Fox, E., "Caching Proxies: Limitations and Potentials," Proc. of the
Fourth Int'l Conf. on the World Wide Web, December 1995.

Ddlis, A. and Roussopoulos, N., “Performance Comparison of Three Modern DBMS Architectures,” IEEE Trans. on Software
Engineering 19(2), Feb. 1993, pp. 120-138.

Effelsberg, W. and Haerder, T., “ Principles of Database Buffer Management,” ACM Trans. on database Syst. 9(4), Dec. 1984,
pp. 560-595.

Fisher, M., Cattell, R., Hamilton, G., White, S, and Hapner, M., JDBC API Tutorial and Reference, Second Edition, Addison
Wesley, Jun. 1999.

Franklin, M., Client Data Caching: A Foundation for High Performance Object Database Systems, Kluwer Academic Publishers,
1996.

Gray, J. and Reuter, A., “Transaction Processing: Concepts and Techniques,” Morgan Kaufmann, 1993.

Melton, J. (Ed.), “ISO-ANSI (Working Draft) SQL Call-Level-Interface(CL1),” ISO DBL MUN-005/ANSI X3H2-93-360, Aug.,
1993.

Microsoft Corp., ODBC 3.0 Programmer's Reference and SDK Guide, Microsoft Press, 1997.

Park, K. and Kang, H., “A Client group-Server DBMS Architecture and Inter-Client Communication Caching Schemesin the
WAN Environment,” Proc. Int’l Conf.- On Cooperative Information Systems ,1998, pp. 198-207.

Venkatrao, M. and Pizzo, M., “SQL/CLI - A New Binding Stylefor SQL,” ACM SIGMOD Record (24:4), Dec. 1995, pp. 72-77.

X/Open Company Ltd., Data Management: SQL Call Level Interface (CLI), Snapshot, Sep. 1992.

368 2001 — Seventh Americas Conference on Information Systems



	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	Large Object Caching for Distributed Multimedia Information Systems
	Hyunchul Kang
	Jong-Min Lee
	Recommended Citation


	tmp.1219181181.pdf.rgopT

