
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2001 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2001

Large Object Caching for Distributed Multimedia
Information Systems
Hyunchul Kang
Vienna University of Technology

Jong-Min Lee
Chung-Ang University

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kang, Hyunchul and Lee, Jong-Min, "Large Object Caching for Distributed Multimedia Information Systems" (2001). AMCIS 2001
Proceedings. 71.
http://aisel.aisnet.org/amcis2001/71

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001/71?utm_source=aisel.aisnet.org%2Famcis2001%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1Current address: VOIN Technology Co., Ltd., Seoul, 150-032, Korea.

2001 � Seventh Americas Conference on Information Systems 363

LARGE OBJECT CACHING FOR DISTRIBUTED

MULTIMEDIA INFORMATION SYSTEMS

Hyunchul Kang
Chung-Ang University

hckang@rose.cse.cau.ac.kr

Jong Min Lee1

Chung-Ang University
lons@rose.cse.cau.ac.kr

Abstract

The large object(LOB) such as text, image, audio, video, etc. has become one of the typically encountered data
type in today's internet/intranet-based distributed multimedia information system for business and other
applications, and thus, needs to be efficiently retrieved from the remote databases. As such, its underlying
database management system(DBMS) is required to efficiently support LOBs through its application
programming interface(API). In this paper, we propose LOB caching through the SQL Call Level Interface,
a widely employed API for database access, whereby the frequently accessed LOBs could be retrieved locally.
The proposed extension was implemented on a DBMS, and the performance assessment of LOB retrieval with
and without caching is reported.

Introduction

One of the technical challenges to the modern information system in today's internet/intranet-based computing environment is
that it is required to efficiently retrieve large objects(LOBs) such as text, image, audio, video, etc., of which multimedia data is
composed, from the remote database servers over the communication network. Although today’s communication networks are
getting faster, retrieving a LOB from the remote database still takes long primarily due to its huge volume. No matter how fast
the network may be, at least the propagation delay should be tolerated. Besides, the network congestion under the usual daytime
heavy loads may be unavoidable. As such, the underlying database management system(DBMS) for a distributed multimedia
information system is required to efficiently support LOBs through its application programming interface(API).

The SQL Call Level Interface(CLI) is a widely used API for database access (Venkatrao and Pizzo 1995), which fits the dynamic,
open, and distributed information system environment. For example, the SQL CLI is the appropriate choice in developing an
application program(AP) such as the front-end of an information system running on a PC client accessing the back-end remote
database servers across a communication network.

The SQL CLI is a set of functions which get an AP connected to databases, request the execution of the SQL commands, receive
their results, and so on. The SQL CLI functions called by an AP are executed through the CLI library, a middleware working
between the AP and the target DBMS. Each DBMS that supports the SQL CLI needs to provide its own CLI library, which is
implemented as a dynamic library to be linked to the APs at run time (see Fig. 1(a)). If the CLI library for a particular DBMS
conforms to some standard specification of the SQL CLI (e.g., X/Open SQL CLI (X/Open 1992), ISO-ANSI SQL CLI (Melton
1993), ODBC interface (Microsoft 1997), and JDBC interface (Fisher et al. 1999)), any AP conforming to that standard is binary
interoperable with that DBMS.

In this paper, we investigate an extension of the SQL CLI to make it a more efficient API in retrieving LOBs from the remote
databases, enabling development of high performance distributed multimedia information systems. We propose that the SQL CLI
provide the new functions for LOB caching capability whereby the frequently accessed LOBs can stage in the local storage for
fast retrieval later on. As shown in Fig. 1(b), if the conventional CLI library is extended with a LOB cache manager for storing

Data Management and Decision Support

364 2001 � Seventh Americas Conference on Information Systems

(b) SQL CLI with LOB Caching(a) SQL CLI

Application

CLI
Library

CLI

DBMS

DB

Communication
Network

Application

CLI
Library

CLI
LOB

Cache
Manager

LOB
Cache

Communication
Network

DBMS

DB

(b) SQL CLI with LOB Caching(a) SQL CLI

Application

CLI
Library

CLI

DBMS

DB

Communication
Network

Application

CLI
Library

CLI
LOB

Cache
Manager

LOB
Cache

Communication
Network

DBMS

DB

Figure 1. SQL CLI and LOB Caching

LOBs in the local cache, the AP could retrieve LOBs from the cache instead of from the remote databases over the communication
network. Observing that LOBs such as images and videos in multimedia information systems are mostly read-only and rarely
change, LOB caching is a promising approach in distributed environment.

The technical issues with LOB caching through the SQL CLI include cache consistency, cache replacement, management of cache
information, and the functionalities to be added to the traditional SQL CLI. Section 2 describes how these issues are dealt with
in our extension. The proposed extension has been implemented on a DBMS which supports the SQL CLI specified by X/Open,
and we have conducted some experiments on this implemented system for performance assessment of LOB retrieval with and
without caching. Section 3 reports the experimental results. Finally, some concluding remarks are in Section 4.

Technical Issues with LOB Caching through SQL CLI

Maintaining Consistency of the Cached LOBs

Consistency maintenance is a key requirement to support LOB caching through the SQL CLI. Although the problem of
consistency maintenance with the traditional page caching or with query caching was extensively dealt with in the client-server
DBMS context (Franklin 1996)(Delis and Roussopoulos 1993)(Park and Kang 1998), that with LOB caching was rarely
investigated.

We adopt the check-on-access policy where validity of a LOB in the cache is checked with the database server when the LOB
is requested. If the requested LOB in the cache turns out to be valid, it is retrieved from the cache, and if it does not, it is retrieved
from the remote database server and cached. In this process, the LOB identifier(ID) and its timestamp(TS), which indicates the
time when the database server last updated the LOB, are referred to. As such, when a LOB is stored at the database server, it is
assigned a unique ID, which is used for checking whether or not a certain LOB exists in the cache, and when a LOB is cached,
its ID and TS are stored in the cache as well.

The process of caching and retrieving a LOB while preserving cache consistency is shown in Fig. 2. When the AP requests a LOB
through the SQL CLI with a query (for example, retrieve the chart depicting the sales last month)(Fig. 2-1) the CLI library first
retrieves the ID and the TS of the corresponding LOB from the database server(Fig. 2-2 and 2-3). And then, with the returned ID,
it is checked whether or not the requested LOB is in the cache(Fig. 2-4). If it is in the cache, its cached TS is compared to the TS
just retrieved from the database server to see if the cached version of the LOB is still up-to-date. After all, there could be three
cases:

Kang & Lee/Large Object Caching

2001 � Seventh Americas Conference on Information Systems 365

LOB
Cache

! LOB
request

" ID/TS
request

ID/TS
return

9 LOB
return

7 LOB
retrieval

$ LOB
request

% Cache check

Application

CLI Library

DBMS

DB

C L I

5 LOB retrieval

8 LOB cache
LOB

Cache

! LOB
request

" ID/TS
request

ID/TS
return

9 LOB
return

7 LOB
retrieval

$ LOB
request

% Cache check

Application

CLI Library

DBMS

DB

C L I

5 LOB retrieval

8 LOB cache

Figure 2. Process of Retrieving and Caching a LOB
while Preserving Cache Consistency

1. The requested LOB is in the cache, and it is
up-to-date.

2. The requested LOB is in the cache, and it is
outdated.

3. The requested LOB is not in the cache.

In the first case, the requested LOB is retrieved
from the local cache(Fig. 2-5), avoiding further
communication with the database server which
might take very long. In the other cases, the
requested LOB is retrieved from the database
server over the communication network and
cached(Fig. 2-6 through 2-8). In the second case,
the original LOB in the cache is purged and
replaced with the up-to-date version retrieved. In
all cases, the CLI library returns the retrieved
LOB to the AP(Fig. 2-9), and keeps the up-to-
date version of the LOB in the cache.

LOB Cache Replacement Algorithm

The conventional DBMS buffer caches a portion
of the database in units of disk pages. Much
research has been done on the page replacement algorithm such as LRU (Effelsberg and Haerder 1984). A replacement algorithm
is also necessary with LOB caching, and it should be somewhat more complicated one compared to those for page replacement
because the LOBs are stored in various sizes usually much lager than the size of a page. For example, the algorithm such as LRU-
SIZE, LRU-MIN, and LRU-Threshold, which are all LRU-based, are for such purposes (Abrams et al. 1995). Any of these
algorithms is applicable to our extension, and LRU-MIN is the choice for our implementation of the extended SQL CLI.

LRU-MIN works as follows. It picks the victim using LRU among the LOBs whose sizes are larger than the size of the LOB that
is to be newly stored in the cache. If there is no such LOB, the size of the new LOB is divided by two, and the victim selection
is done using LRU against those LOBs whose sizes are larger than the divided size. And if there is not yet enough space after the
replacement of the victim(s), the divided LOB size is divided again by two, and the same process is repeated until there is enough
space for the new LOB.

Efficient Management of LOB Cache Information

In order to efficiently support LOB caching, it is necessary to efficiently maintain and manage the LOB cache information. There
are two types of LOB cache information. One is the general information on all of the cached LOBs, and the other is the individual
information on each of the cached LOBs. The general information includes the information on the LOB cache area which means
the storage area dedicated for the cached LOBs, the statistical information on the cached LOBs, and the access path information
for cache retrieval. The individual information includes the LOB identifier, the timestamp, the last time of reference, and the size.
The LOB cache information needs to be stored along with the cached LOBs in the cache to be efficiently accessed, and thus, some
efficient data structures are required to store it. In our implementation, we devised a set of hashing-based data structures similar
to those employed for the lock manager implementation for DBMSs described in (Gray and Reuter 1993, Chap. 8).

New SQL CLI Functions for LOB Caching

The functions that need to be added to the conventional SQL CLI for LOB caching can be classified into four categories as
summarized in Table 1. The first category is for allocating and freeing a LOB cache handle, which is a pointer to the data
structures storing the LOB cache information. Its role is similar to those of the environment handle, the connection handle, and
the statement handle used in calling the SQL CLI functions (X/Open 1992). That is, the AP is to call the functions related to LOB
caching with the allocated LOB cache handle as a parameter. The function named AllocLOBCacheHandle() allocates and
initializes the memory for the data structures to store the LOB cache information, and also sets a pointer in the LOB cache handle

Data Management and Decision Support

366 2001 � Seventh Americas Conference on Information Systems

to point to these data structures. FreeLOBCacheHandle() deallocates the data structures from the memory and sets the pointer
in the LOB cache handle as NULL.

Table 1. New SQL CLI Functions for LOB Caching

Category CLI Function Description

Allocating and Freeing
the LOB Cache Handle

AllocLOBCacheHandle() allocates a LOB cache handle

FreeLOBCacheHandle() frees a LOB cache handle

Allocating and Freeing
the LOB Cache Area

AllocLOBCache Area() allocates a new LOB cache area

FreeLOBCacheArea() deletes an existing LOB cache area

Retrieving/Caching the LOBs and
Deleting the Cached LOBs

GetnCacheLOB() retrieves and caches a LOB

PurgeLOB() deletes a LOB from the cache

Retrieving and Modifying
the LOB Cache Information

GetLOBCacheInfo() retrieves the LOB cache information

SetLOBCacheInfo() modifies the LOB cache information

The functions for allocating and freeing the LOB cache area are also necessary. AllocLOBCacheArea() executes the process of
setting up a directory in the storage space where the LOB cache area is installed, and updates the LOB cache handle accordingly.
FreeLOBCacheArea() is to delete the directory. Several LOB cache areas could be maintained separately at the same time for
more efficient LOB caching. For example, the LOBs that are more frequently accessed can be stored in the cache area installed
on a faster storage device while less frequently accessed LOBs are stored in another cache area installed on a slower device.

The third category of functions is the core in our extension: a function for retrieving and caching a LOB and a function for purging
a LOB from the cache. In the SQL CLI specification by X/Open, the function named GetCol() is to be called for LOB retrieval.
In order to support LOB caching, GetCol() needs to be extended to GetnCacheLOB() so that it can not just perform the original
functionality of GetCol() but also check if the requested LOB is in the cache, and if so, check if it is still valid, and retrieve it from
the cache instead of from the database server if it turns out to be valid. Meanwhile, since the LOB cache area is with space
limitation, some of the cached LOBs should be purged when not hot any more. For this, we need PurgeLOB() for deleting certain
designated LOB or the LOBs that have been last accessed long ago.

Finally, the functions are required for retrieving and modifying the LOB cache information. GetLOBCacheInfo() is to retrieve
the general and/or the individual information of the cached LOBs, whereas SetLOBCacheInfo() is to modify those information.
These functions are useful for efficient management of the LOB cache areas.

Performance Assessment of LOB Caching

The proposed extension of the SQL CLI was implemented on a DBMS. It was originally equipped with a CLI library conforming
to the SQL CLI specification by X/Open, and that was extended to incorporate our new SQL CLI functions for LOB caching. The
extended CLI library was implemented in Microsoft Visual C++ 6.0 on Windows NT 4.0, and communicates with the remote
database server through the Ethernet.

We have conducted some experiments with our implementation for performance assessment of LOB caching, comparing the LOB
retrieval time with GetnCacheLOB() to that with the conventional GetCol() specified by X/Open. The retrieval time has been
measured with respect to the various LOB sizes and cache hit ratios. The LOB sizes employed are 1MB, 5MB, 10MB, 20MB,
30MB, 40MB, and 50MB, and the cache hit ratios experimented are 0%, 20%, 50%, 80%, and 100%. The unit of the LOB
retrieval time is the second, and the retrieval time of each LOB was measured 20 times and averaged.

Figure 3 shows the results. With GetnCacheLOB(), the best performance is achieved when the cache hit ratio is 100%, whereas
the worst is observed when the cache hit ratio is 0%, as expected. Note that the cache hit here counts only for those cases where
the requested LOB is in the cache and it turns out to be still valid. In other words, if the requested LOB is found in the cache but
it turns out to be stale, and thus, it is to be retrieved from the remote database server, it is considered as a cache miss.

Kang & Lee/Large Object Caching

2001 � Seventh Americas Conference on Information Systems 367

0

100

200

300

400

500

600

700

800

900

1 5 10 20 30 40 50

LOB size (MB)

GetCol

GetnCacheLOB
(cache hit ratio=0%)

GetnCacheLOB
(cache hit ratio=20%)

GetnCacheLOB
(cache hit ratio=50%)

GetnCacheLOB
(cache hit ratio=80%)

GetnCacheLOB
(cache hit ratio=100%)

!
!

LOB
retrieval

time
(sec)

0

100

200

300

400

500

600

700

800

900

100

200

300

400

500

600

700

800

900

1 5 10 20 30 40 50

LOB size (MB)

GetCol

GetnCacheLOB
(cache hit ratio=0%)

GetnCacheLOB
(cache hit ratio=20%)

GetnCacheLOB
(cache hit ratio=50%)

GetnCacheLOB
(cache hit ratio=80%)

GetnCacheLOB
(cache hit ratio=100%)

!
!

LOB
retrieval

time
(sec)

Figure 3. Performance Comparison between GetnCacheLOB() and GetCol()

When the cache hit ratio was 0%, LOB retrieval with GetCol() slightly outperformed GetnCacheLOB(). This is because
GetnCacheLOB() takes some time for retrieving the identifier and the timestamp of the requested LOB first for the purpose of
searching the cache for the requested LOB just to find out it does not exist there, and eventually some additional I/O time is spent
for storing the requested LOB retrieved from the database server in the cache. However, when the cache hit ratio was 100%,
GetnCacheLOB() considerably outperformed GetCol(). The performance improvement with cache hit ratio of 100% is much larger
than the performance penalty with cache hit ratio of 0%. For example, when a cache miss occurs in retrieving a LOB of 50MB,
GetnCacheLOB() suffered from about 7% performance degradation compared to GetCol(). However, with 100% cache hit,
GetnCacheLOB() gained 88% performance improvement over GetCol().

Now what if the cache hit ratio is not so perfect as 100%? Could the performance gain through caching with cache hit compensate
for the performance loss with cache miss? Fig. 3 shows that the LOB retrieval time increases as the cache hit ratio decreases.
However, GetnCacheLOB() does not take so much time as GetCol(). For example, when the cache hit ratio was just 20%, the time
it took to retrieve a LOB of 50MB with GetnCacheLOB() showed about 21% improvement compared to that with GetCol(). It
implies that if only 20% of the desired LOBs could be retrieved from the local cache instead of the remote database server,
resorting to the LOB caching capabilities in the extended SQL CLI is profitable. The improvement achieved here is still much
bigger than the 7% overhead that would incur if the cache hit ratio were 0%.

Concluding Remarks

LOB caching through the database API proposed in this paper can be an important vehicle in realizing high performance
distributed multimedia information systems for numerous applications such as geographical information systems, cyber education,
internet entertainment, and E-catalogues for cyber shopping malls to name just a few. LOBs such as images and videos in those
applications are mostly read-only and rarely change, and thus, their caching could be quite efficient.

Towards a full-fledged multimedia information system efficiently dealing with LOBs, some further work needs to be done on
extending the conventional database APIs. The technical issues deserving exploration in this regard include the new features for
LOB manipulation and definition, which are more powerful and flexible compared to those provided in the conventional database
APIs.

Data Management and Decision Support

368 2001 � Seventh Americas Conference on Information Systems

References

Abrams, M., Standridge, C., Abdulla, G., Williams, S., and Fox, E., "Caching Proxies: Limitations and Potentials," Proc. of the
Fourth Int'l Conf. on the World Wide Web, December 1995.

Delis, A. and Roussopoulos, N., “Performance Comparison of Three Modern DBMS Architectures,” IEEE Trans. on Software
Engineering 19(2), Feb. 1993, pp. 120-138.

Effelsberg, W. and Haerder, T., “Principles of Database Buffer Management,” ACM Trans. on database Syst. 9(4), Dec. 1984,
pp. 560-595.

Fisher, M., Cattell, R., Hamilton, G., White, S, and Hapner, M., JDBC API Tutorial and Reference, Second Edition, Addison
Wesley, Jun. 1999.

Franklin, M., Client Data Caching: A Foundation for High Performance Object Database Systems, Kluwer Academic Publishers,
1996.

Gray, J. and Reuter, A., “Transaction Processing: Concepts and Techniques,” Morgan Kaufmann, 1993.
Melton, J. (Ed.), “ISO-ANSI (Working Draft) SQL Call-Level-Interface(CLI),” ISO DBL MUN-005/ANSI X3H2-93-360, Aug.,

1993.
Microsoft Corp., ODBC 3.0 Programmer's Reference and SDK Guide , Microsoft Press, 1997.
Park, K. and Kang, H., “A Client group-Server DBMS Architecture and Inter-Client Communication Caching Schemes in the

WAN Environment,” Proc. Int�l Conf. On Cooperative Information Systems ,1998, pp. 198-207.
Venkatrao, M. and Pizzo, M., “SQL/CLI - A New Binding Style for SQL,” ACM SIGMOD Record (24:4), Dec. 1995, pp. 72-77.
X/Open Company Ltd., Data Management: SQL Call Level Interface (CLI), Snapshot , Sep. 1992.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	Large Object Caching for Distributed Multimedia Information Systems
	Hyunchul Kang
	Jong-Min Lee
	Recommended Citation

	tmp.1219181181.pdf.rgopT

