

*TRS
Technology, Networks and Society

e-planning | networks | e-learning | e-government

Internal Report TRS 06/2019

Títle

Adding Energy Star rating Schema to Android

Applications on Google Play Store: An example of

a Preventive Power Saving Model

Author(s)

Abdullah Mahmoud Almasri, Prince Sultan U.

 Luís Borges Gouveia, UFP

Month, year

October, 2019

 Local de presença Web http://tecnologiaredesesociedade.wordpress.com
 Repositório de trabalho científico *trs http://bdigital.ufp.pt/handle/10284/3787

Universidade Fernando Pessoa

Praça 9 de Abril, 349

4249-004 Porto, Portugal

http://tecnologiaredesesociedade.wordpress.com/

2

ADDING ENERGY STAR RATING SCHEMA TO ANDROID APPLICATIONS ON GOOGLE

PLAY STORE: AN EXAMPLE OF A PREVENTIVE POWER SAVING MODEL
Abdullah Mahmoud Almasri1 and Luis Borges Gouveia2

1 Prince Sultan University, Riyadh, Saudi Arabia, 37582@ufp.edu.pt

2 University Fernando Pessoa, Porto, Portugal, lmbg@ufp.edu.pt

Abstract.
A common issue that is shared among android smartphones users was and still related to saving

their batteries power and to avoid the need of using any recharging resources. A big number of

researches were conducted in the general field of "Saving Energy in Android Smartphones".

Another big number of researches were also conducted in the subfield of "Saving Energy in

Android Smartphones at the Application Layer". Both fields did generate a good amount of

proposed methodologies, models, frameworks and algorithms that were provided as market

products or approaches. However, here we propose a solution in the form of an addition to

Google Play Store this addition will guide the end user to find and choose the best application in

terms of power consumption based on his/her smartphone model. A review of the relevant

existing literature is provided herein specifically covering various energy-saving techniques and

tools proposed by various authors for Android smartphones.

Keywords: Android smartphones, Android applications, Power-saving, energy star rating,
preventive power saving model

1. Introduction

Smartphones have grown to become constant companions to humans as they are considered to

offer indispensable help in easing the daily life of individuals. They are largely supported by

numerous and diverse applications which help in for instance, directing us to our destinations,

storing tickets when we travel, facilitate communications with friends and family, and entertain

with videos or music.

3

Due to the underlying importance of these mobile smart devices, there have been increasing

concerns, particularly from users, regarding battery-drain which puts limitations on their usage.

Based on the existing literature, a significant share of power consumption in these smart devices

is largely caused by applications that are installed on the devices (Taleb et al, 2013; Li, Tran &

Halfond, 2014).

Depending on the applications’ functionality, they entail activities such as data downloading,

content display, and use of built-in-sensors such as GPS (Global Positioning System) related

sensors. There are various components of mobile smart devices that facilitate the above activities

including; GPS sensors, device’ display, the CPU, and network interfaces among others.

Consequently, activities/functions of different Android smartphone applications increase the

energy consumption of any of the above-mentioned components. As a result, there has been a lot

of effort in the existing literature geared towards identifying and investigating the underlying

potential for energy savings in relation to these smartphone applications at applications layer and

OS layer levels (Moamen & Jamali, 2015; Zhang, et.al., 2010).

2. State of the Art

2.1 Identify the Average Android-Application Lifecycle

In order to demonstrate the main issues with current power-saving approaches, first we proposed

creating a lifecycle that shows the main average stages of an average android application. The

proposed cycle is shown in Figure.1:

4

Figure 1: Average Android-Application Lifecycle

2.2 List the Concerned Parties and Identify their Involvement

Following the previous step In order to demonstrate the main issues with current power-saving

approaches, we list the parties which are involved in our android application lifecycle as shown in

figure.2:

Figure 2: Parties Involved in an Android Application Lifecycle

5

The next item to demonstrate is the involvement of the parties among the different stages of our

android application lifecycle. The involvement is described in figure.3:

Figure 3: Involvement of Parties among the Different Stages of an Android Application Lifecycle.

2.3 Identify the Status of an Android Application Among Different Stages of an Android

Application Lifecycle

Following the above, we need to List the main statuses of an android application in terms of its

presence in an android smartphone also among the different stages of our android application

lifecycle, the two main statuses were Outside the End-User’s Phone (Under development or

6

Available on Google Play) or Inside the End-User’s Phone (Installed & Running). Figure.4 will map

the above statuses to the different stages of our android application lifecycle:

Figure 4: Status of an Android Application among Different Stages of an Android Application Lifecycle

2.4 Identify the Main Current Power-Saving Approaches

In order To summarize the current power saving approaches that are used in today’s smartphones

the following classification were made: Approach 1, follows the philosophy of “Simulate and

estimate” the power consumption of and android application before making it available for end-

7

user(s) by using techniques that may include but not limited to green coding, energy-aware

designs, smartphone batteries simulators, historical analytical data, etc..

Approach 2, follows the “Monitor, detect and control” philosophy, so it applies this on the

behavior of an android application while it is running on an end-users phone and optimizing the

power consumption. Approach 3, is more about Sacrifice smartphones technology or performance

by switching off a number of features for the sake of saving power philosophy.

2.5 Show the usage of current power-saving approaches among the stages of the android

application lifecycle

The next stage is to show the usage of the above approaches among the stages of the android

application lifecycle and from the above, Approach 1 is used in stage 2 of our android application

lifecycle and involves the app inventor(s), the app developer(s) and the Android Development

Platform(s), while Approaches 2 and 3 are used in stage 5 of our android application lifecycle and

involve Google Play, The End-user(s) and The End-user's phone(s). The usage is shown more clearly

in Figure .5

8

Figure 5: Usage of Current Power-Saving Approaches among the Stages of the android application lifecycle

3. Reviewing the Efficiency of Current Power-Saving Approaches Used Among Different Stages of

an Android-Application Lifecycle

3.1 Estimate and simulate power consumption approach

Westfield & Gopalan (2016) contribute towards finding a solution towards power saving

techniques in smartphones through proposing an approach called Orka. According to Westfield &

Gopalan (2016), the Orka approach works by providing feedback to developers of software used

Approach 1: “Simulate and estimate”

the power consumption of and android

application before making it available

for end-user(s) by using techniques

that may include but not limited to

green coding, energy-aware designs,

smartphone batteries simulators,

historical analytical data..etc.

Approaches 2: Monitor, detect and

control the behavior of an android

application while it is running on an

end-users phone and optimizing the

power consumption.

Approach 3: Sacrifice smartphones

technology or performance by

switching off a number of features for

the sake of saving power

philosophy.data..etc.

9

in smartphones. The proposed approach is designed to provide feedback on the basis of API usage

by an application as well as providing feedback on the usage of energy of the application, down to

the level of the method used (Westfield & Gopalan, 2016).

The authors of the study believe that it is relatively important that energy usage of software is not

disassociated from energy usage of the hardware, hence Orka is designed to generally provide

feedback on the consumption of energy as a result of usage of hardware (Westfield & Gopalan,

2016). Orka carries out tests on the app through using an execution trace that is dynamically

created and generated through a test script that is provided by the developer of the application.

In addition, the authors suggest that the proposed Orka performs the analysis on the hardware

running on emulators instead of running on physical devises (Westfield & Gopalan, 2016).

Orka pulls estimations of internal energy from the emulator, after running the application, in order

to provide feedback on the basis of the different components utilised. Using the energy

consumption data/metrics provided by the Orka approach, the developer of the application can

make adjustments to their code in order improve the energy efficiency of their application.

According to Westfield & Gopalan (2016), Orka was designed specifically for applications installed

on the Android Operating System (OS). Despite the fact that Orka appears to operate in a similar

manner as energy profiling solutions presented in the existing literature, Westfield & Gopalan

(2016) suggest that Orka’s independence from the hardware makes it different from other energy

profiling systems/solutions. However, it is worth noting that, the approach used in the study does

not necessarily make readings on the basis of battery discharge and it does not attempt to

estimate accurately an application’s energy usage.

10

Figure 6: Follow and implement Energy-Efficient Development Best Practices

Wang, et al., (2017) are concerned with the energy testing stage of the app development as they

believe that applications developers ought to understand both, the rate of energy consumption of

their applications and the underlying reason why energy is consumed by the application. In their

paper, Wang, et.al., (2017) propose E-Spector as a potential online based tool/method the

inspects energy usage, visualises the application’s energy consumption online in a manner that is

instant, and it can also inform the developer what happened behind each hotspot of energy on an

energy curve. According to Wang, et al., (2017), E-Spector mainly relies on static analysis and the

instrumentation of the application to collect the underlying activities in real time from the

execution of an application.

11

These activities are then presented on an instant energy curve in such a way that the user is able

to recognise what actually took place behind each spike in energy usage (Wang, et al., 2017). The

authors believe that their proposed solution is particularly more beneficial because it does not

require hardware meters like many other solutions in order to calculate instant the power figures

for each application at runtime since it is an online-based software solution/power model (Wang,

et al., 2017).

Furthermore, Wang, et.al., (2017) suggest that E-Spector provides detailed breakdowns of energy

for each running process on the device, including applications running both background and

foreground services. In their study, Wang, et.al., (2017) evaluated and tested the overhead and

accuracy of E-Spector and the results indicate that using E-Spector has the ability of providing an

estimation of energy within a less than 10% error, as well as providing an estimation of energy

overhead within a less than 4% error. However, tests energy model used by the authors only

considers three hardware consumers of energy including; network (both cellular and WiFi

network), the screen and the CPU, instead of considering all energy consumers thus presenting a

key limitation to the study.

12

Figure 7: Approach B: Thin Client Design (Cloud based)

Moamen & Jamali (2015) are concerned with finding a solution that to sensor dependent

applications that demand a lot of the phone’s energy in order to continuously use sensor feed to

provide services. The authors of the study believe applications that simultaneously monitor

multiple sensors tend to amplify the problem as they consume significant amounts of the phone’s

battery (Moamen & Jamali, 2015). In their paper, Moamen & Jamali (2015) propose ShareSens as

a potential solution to the above problem. ShareSens is an approach to merge applications’

independent sensing requirements.

According to the authors of the report, this is achieved through utilising sensing schedulers for the

sensors that would essentially determine the underlying lowest sensing rate which would mainly

satisfy all the existing requests (Moamen & Jamali, 2015). Custom filters are then used to only

send out the required data to each application on the device. Based on the report, any sensing

requests that are made through the authors’ proposed ShareSens API are generally sent to the

13

respective schedulers that determine the overall optimum rates for sensing in order to satisfy all

the prevailing requests. Based on the experimental tests carried out on the ShareSens’ capabilities,

the authors found that there is significant power savings that can be attained when the ShareSens

solution is used particularly when overlapping sensing requests exist (Moamen & Jamali, 2015).

However, the current form of the ShareSens approach does not allow programmers to

opportunistically choose sampling rates that are higher once they available, at a relatively low

marginal cost.

In their study paper, Min, et.al., (2015) address the various factors that significantly impact phone

batteries to the point of making their existing battery models become outdated and they further

explore the initial approach that was aimed at helping phone users to understand the underlying

cause and effect between the life of a phone’s battery their physical activity. Min, et al., (2015)

proposed Sandra, a battery information adviser for smartphones that is designed to be mobility-

aware. Sandra was designed with various key features including; a forecaster that provides

estimates of battery life under different conditions of the user’s future mobility, and an archive

that is designed to provide past battery drain rates retrospective summary categorised by different

conditions of mobility (Min, et al., 2015).

Based on the tests carried out the proposed approach, Sandra was found particularly helpful to

smartphone users (Min, et al., 2015). However, the tool that Min, et al., (2015) presented is neither

an omniscient battery predictor nor a reconfiguration tool that extends batter’s life like Power

monitor v2. According to Min, et al., (2015), Sandra’s main goal is user enlightenment regarding

new causal factors of their changes in mobility that impact the standby life of the phone batteries.

Besides choosing between network interfaces, the strength of the device signal has an influence

on the consumption of the device’s network. In their study, Schulman, et al., (2010), proposed a

scheduling algorithm that is designed to make use of a network signal with high strength.

Their philosophy is that applications have to preferentially communicate when there is a strong

network signal in order to realise energy savings, either through deferring communications that

are not urgent or through advancing communications that are anticipated in order to coincide

with strong signal periods (Schulman, et al., 2010). To take advantage of a strong signal, Schulman,

14

et al., (2010) developed a scheduling algorithm that focused on two specific kinds of applications,

including streaming applications on one hand and sync applications on the other. For streaming

applications, the algorithm that the authors developed modulates the traffic stream in order to

match with characteristics of radio energy while for sync applications the algorithm utilises flexible

synchronisation intervals (Schulman, et al., 2010).

Their proposed energy-aware scheduling algorithm thereby takes into account tail energy as well

as communication energy. Through their simulations and tests, Schulman, et.al., (2010) show that

energy savings of up to 60% for on-demand streaming and up to 10% for synchronisation of email

were attainable.

In a study conducted by, Zhang, et.al. (2010), the authors proposed the use of an online power

estimation tool and a model generation framework in their contribution towards improving

power-saving capabilities of Android smartphones on both the applications layer and the OS layer.

Zhang, et.al. (2010) proposed a tool called the PowerTutor which was designed as an online power

estimation system for the Android platform smartphones. The tool provides real-time, accurate

power consumption estimates for components of the smartphone that are power intensive such

as display, the CPU, cellular interfaces, GPS, and Wi-Fi interfaces (Zhang, et.al., 2010).

The PowerTutor was designed to be used by both application developers and smartphone users.

Applications developers use to conveniently, accurately and rapidly determine the overall impact

of changes in software design on power consumption while smartphone users can use the tool to

determine the underlying power consumption characteristics the relate to competing mobile

applications thus facilitating informed decision-making for both parties (Zhang, et.al., 2010).

PowerTutor, according to Zhang, et.al. (2010) has a power model that includes six different

components including: GPS, LCD display, CPU, audio interfaces, Wi-Fi and cellular interfaces. Based

on the experiments that authors carried out, it was found that PowerTutor was accurate within an

average of 0.8% with at most 2.5% error for intervals of 10 seconds. In addition to the PowerTutor

tool, Zhang, et.al. (2010) also proposed the PowerBooster tool which was designed an automatic

state of battery discharge on the basis of a technique called the power model generation

15

technique. According to Zhang, et.al. (2010), the experimental tests carried for 10-second intervals

indicated that PowerBoost was accurate within 4.1%.

3.2 Monitor, detect and control app behaviour approach

Dao, et al., (2017) are concerned with the difficulty in identifying applications that are heavy power

consumers on a smartphone as well as understanding why these applications are heavy power

consumers. The authors believe that there is real need for phone users to be aware of applications

on their smartphones that are heavy power consumers so that they are able to take appropriate

action quickly enough be prevent their phone batteries being completely drained (Dao, et al.,

2017).

In their study, Dao, et al., (2017) propose TIDE, a tool that they believe can identify applications

that are heavy energy consumers and provide an understanding of the reasons why an application

is consuming a lot of energy on the phone. TIDE, according to Dao, et al., (2017) operates as user-

centric tool which can be installed on a user’s phone and it continuously the performed lightweight

monitoring tasks on the application usage of the user as well as monitoring the resources that the

application consumes.

Dao, et al., (2017) conduct an evaluation of their proposed tool using emulation of usage pattern

traces from seventeen volunteer users and the results indicate that TIDE correctly estimated the

energy consumption level for 225 applications out of 238. However, the tool does not provide a

breakdown of the screen consumed energy in relation to individual applications yet the screen

consumers the most amount battery power in most cases. Hence the results that the TIDE tool

provide do not show the full picture of energy consumption.

Jabbarvand, et al., (2015) were concerned with the fact that application repositories lack

information regarding the relative energy cost of applications based on app categories which

forces the user to install applications without appropriate understanding of the energy

implications of these applications.

16

Figure 8: Approach B: key issues

Wang, et al., (2016) are concerned about the difficulty in the diagnosing energy inefficiency of

applications that often use sensors to operate. In their study, Wang, et al., (2016) propose the

GreenDroid approach that is designed to systematically diagnose problems associated with energy

inefficiency among applications used in smartphones particularly those running on the Android

platform.

The proposed approach leverages the Application Execution Model (AEM) to realistically simulate

the runtime behaviours of an application and it is also designed to have the ability of automatically

17

analysing the sensory utilisation data of an application reporting the resulting information to the

application’s developers (Wang, et al., 2016). Wang, et al., (2016) evaluated the E-GreenDroid

approach using 13 real applications on Android in two separate experiments and the results from

the tests indicated that the tool was effective in executing its intended mandate. However, E-

GreenDroid does not support concurrency of Android applications as it simply places all the

execution into a single thread.

A solution presented in the existing literature that provides attempts to cover all areas of a

smartphone’s energy consumption is the Power monitor v2 that was proposed by Datta, Bonnet

& Nikaein (2013). In their study, Datta, Bonnet & Nikaein (2013) suggest that the power monitor

v2 is an Android application that works by employing a monitoring module to collect data which

relates to all features of the smart device’s (smartphone or tablet).

There are various modules, each collecting data on a specific feature including; the application

monitor – collects data on running applications and their CPU load; battery monitor – collects data

on battery status; CPU monitor – collects data on CPU operating frequency and load; the context

monitor – collects data on system time, date and coarse location; the network monitor – collects

data on the status of the mobile data, WiFi, network traffic used by applications and GPS status;

and the display monitor – collects data on the screen timeout, level of brightness and devise

interaction time (Datta, Bonnet & Nikaein, 2013). Based on their paper, Datta, Bonnet & Nikaein

(2013) suggest the Power monitor v2 app monitors Android devices it is installed on continuously,

stores the collected data locally for seven days and deploys a learning engine that is designed to

generate various usage patterns that may exist within the smart device.

Thereafter power saving patterns for each pattern are generated dynamically. The collection of

the usage data of the smart device raises various privacy related questions for the tool, however,

Datta, Bonnet & Nikaein (2013) suggest that their approach preserves privacy of data since all the

data collected stored and computations generated done locally. The evaluation tests carried out

on the Power monitor v2 indicate that the application increased battery life of a Samsung GT-

19100 running Android 2.3.4 OS by 8.2 hours while it increased the battery life of the Nexus 7

running Android 4.2.1 OS by 10 hours (Datta, Bonnet & Nikaein, 2013). Overall, the Power monitor

18

v2 was found to increase the battery life of the devices it was installed on by 82% (Datta, Bonnet

& Nikaein, 2013).

In their study, Dong & Zhong (2012) analysed the underlying influence of the content displayed on

the overall energy-usage for displays whose design is based on the OLED technology. Through their

research, the authors found that energy usage largely depends on the content displayed as

different content contains different colours and for the devise to display different colours a certain

amount of energy would be consumed (Dong & Zhong, 2012). Hence, Dong & Zhong (2012)

concluded that designers of graphical user interface generally have a significant impact on the

device’s energy consumption. In this regard, Dong & Zhong (2012) proposed different energy

models which were designed to estimate the display content’s power consumption. Dong & Zhong

(2012) also proposed different transformation methods such as the utilisation of a lighter

foreground colour and a dark background colour. Dong & Zhong (2012) used the transformation

methods to evaluate the overall influence of their methods and found that energy usage can be

reduced by approximately 75% hence saving the smartphone battery from draining.

Li, Tran & Halfond, (2014) used a similar idea to that presented by Dong & Zhong (2012) as they

concentrated on the idea of reducing the consumption of energy by device-displays that use OLED

technology. However, Li, Tran & Halfond, (2014) proposed a different approach in which they

suggested that it is necessary to change the source code of the applications as a way of reducing

the power consumption of the applications. They developed a tool they called Nyx which they

suggested was capable of performing colour schemes transformations for applications (Li, Tran &

Halfond, (2014). According to Li, Tran & Halfond, (2014), the test on their proposed solution found

that battery savings of up to 40% for such modified applications were possible but only if users are

willing to accept colour transformations in the name of saving battery.

Pathak, Hu & Zhang (2012) were concerned with the energy spent by mobile applications with the

aim of finding ways to reducing such energy consumption. In their study, Pathak, Hu & Zhang

(2012) presented an energy profiler tool for Android smartphone applications called the Eprof.

According their study, Eprof is an energy profiler that adopts the last-trigger accounting policy to

capture intuitively the asynchronous modern smartphone components’ power behavior in

19

mapping of energy activities to respective program smartphone entities (Pathak, Hu & Zhang,

2012). The tool was designed to be concerned with energy consumption profiling which is not

linear as time and it has the capability of measuring intra-app consumption of energy including

providing insights into the overall energy breakdown per application routine and per thread

(Pathak, Hu & Zhang, 2012).

Their tool was also designed to be a general-purpose energy profiler that is fine grained works by

assisting an application developer for Android smartphones to optimise the application’s energy

consumption. Pathak, Hu & Zhang (2012) carried out an experimental test which involved the

profiling the energy consumption of six Android popular smartphone applications including;

Facebook, Angry-Birds, and the Android Browser application among others.

Their tests showed that Eprof shed light on the applications’ internal energy dissipation and it

further exposed surprising findings such as 65%-75% free applications’ energy is consumed third-

party advisement modules of the applications (Pathak, Hu & Zhang, 2012). Eprof also revealed

numerous “wakelock bugs” (a family of smartphone applications energy bugs) and it efficiently

pinpoints their location within the application’s source code for to inform decision-making. Based

on the experiments conducted by Pathak, Hu & Zhang (2012), their proposed accounting

presentation of application 1/O energy (bundles) helped to reduce the consumption of energy of

four applications involved in the test by 20% to 65%.

3.3 Switching off features approach

Petander (2009) proposed an energy-aware algorithm that was based on measurements of energy

consumption in relation to 802.11 WLAN and UMTS networks on smartphones running on an

Android operating system. The proposed algorithm generally utilises application traffic size

estimations in order to determine the overall alternative of the minimum energy-cost through

comparing the cost associated with the utilisation of UTMS with the underlying cost associated

with performing a downward vertical opportunistic handoff back to WLAN, while utilising WLAN

for data transfer (Petander, 2009).

20

The authors show in their study that the proposed solution has the ability of predicting how much

data will be transferred as a result of actions taken by the user. Based on experimental tests,

Petander (2009) found that energy consumption of the smartphone increases by 18.3% whenever

WiFi and UTMS are both powered on simultaneously, compared to powering on UTMS alone at

any one time.

In their study, Taleb et al (2013) propose a technique that involves dynamic switching between

WiFi and 3G communication on the smartphones. Taleb et al (2013) aim at achieving the ability to

effectively switch to an alternative Wi-Fi connection from a primary cellular network. Taleb et al,

(2013) conducted a set of experimental measures in relation to various network scenarios with

the aim of identify the key components which affect consumption of energy within smart devices

while they are connected to WiFi and 3G networks. The authors then used the measurement

results to derive at generic analytical model for energy as a function of effective download bit rate

and download data size (Taleb et al, 2013).

They developed an Android-based mobile application whose intended design is to test, in real

scenarios, the overall performance of the algorithm for dynamic switching between WiFi and 3G

connections. The results of the tests showed that it was possible to dynamically switch between

WiFi and 3G communications and, when 3G only and WiFi only connections were compared, it

was found that energy savings of 30% and 18% respectively were possible (Taleb et al, 2013). This

particular study highlights the underlying potential benefits that intelligent switching within

heterogeneous networks can provide.

In a study conducted by Cai et.al., (2015), the authors were focused on power wastage in mobile

devices with 3G/4G networking that resulted from ‘tail time’ where the device’s radio is kept

running despite the fact that no communication is taking place. Cai et.al., (2015) proposed

DelayDroid as a framework which would provide a developer with the capability to add the

required policies for reducing such energy wastage to existing Android application that are

unmodified without any ‘huhman’ effort. The tool that Cai et.al., (2015) proposed uses bytecode

refactoring and static analysis in order to identify method calls which send network related

requests and modify the calls in order to detour them to the run-time of the DelayDroid.

21

The tool’s runtime then batches them by applying a pre-defined policy, hence avoiding energy

waste related to tail time hence improving energy efficiency. The universality and correctness of

the DelayDroid mechanisms were evaluated and tested using 14 popular applications for Android

and results indicated that DelayDroid was capable of reducing energy-waste related to 3G/4G tail

time by 36% (Cai et al., 2015). However, it is worth noting here that while the test results indicate

that DelayDroid was effective in reducing the energy waste, it only reduces waste related 3G/4G

tail time but not from screen and CPU usage which account for a large portion of the phone battery

drain.

4. Key Issues with Current Power-Saving Approaches

This report has provided a review of the existing literature regarding the different solutions,

techniques and tools that have been proposed by different authors in response to battery energy

consumption problems of mobile applications for smart devices running on the Android OS. The

literature review covers studies that provide solutions based on three key approaches, including;

approach 1 estimating and simulating power consumption of android applications, approach 2

monitoring, detecting and controlling the android applications’ behavior, and approach 3

switching off smartphone features when not in use in order to reduce power consumption. Based

on the review of the literature, solutions presented by prior studies in relation to approach 1 reveal

that the average estimations that the proposed tools/techniques provide tend to conflict the

actual usage habits of device and the accuracy of the power consumption measurements and

simulators remains an issue of debate.

The review of the existing literature in relation to the approach 2 reveals most solutions that

monitor and control app behavior also consume power from the devise’ battery for instance E-

GreenDroid, Eprof, and among others. Prior studies that propose solutions in the line of approach

3 reveal that the proposed techniques use predefined saving plans that provide a one-size-fits-all

approach which does not necessarily provide customized/personalized solutions for users.

Therefore, while the techniques presented herein provide some potential solutions for reducing

22

energy consumption by mobile applications on Android-based smart-devices, they are limited in

their usage.

A shared limitation among most current smartphones strategies of power and energy saving is

being “detective” rather than being “preventive”. The current ways of using third-party

applications and/or built in firmware’s that monitors the usage of the smartphone battery for the

sake of saving the power of the same battery, conflicts with the main concept of saving power.

The monitoring and detecting requires processing which basically requires power.

In addition to the above limitations, the average amount of power consumption of an application

can be easily measured using one of the current detective techniques only after having the

application installed and run. For a naive smartphone user it is impossible to predict which of the

applications offered on an app store can be classified as a “Power-Hungry” application so that

he/she could avoid installing while using a smartphone in an area with either no or limited

recharging capabilities.

This keeps the user under the same problem of using detective techniques rather than supporting

the user with a preventive plan that could give him/her an idea about what to run or don’t run.

Another issue of current power saving strategies is the “One Size Fits All” philosophy which does

not take into consideration the factors that could distinguish different smartphone users.

5. Proposed Solution “Rating the level of Power-Hungry Google Play Applications” (Similar to

power rating in Electrical Home Appliances)

5.1 Introduction

The huge success of Android smartphones is mainly due to the variety of applications available,

plus the open-source OS which allow it to grow exponentially. Android users enjoyed the way

applications can be downloaded and installed from an online market, but were also concerned

about giving the green light to a number of flashing permissions.

These permissions need to be given to an application in order to work properly. The idea behind

alerting the user about these permissions is mainly related to the privacy and the security of the

23

user. The idea of the following work is to add another dimension to the application market by

alerting the user about the amount of power consumption of each application he is about to install

on his phone. Relating permissions to power consumption in order to achieve the task is the main

contribution of this report.

5.2 About Google Play Applications Permissions

“A permission is a restriction limiting access to a part of the code or to data on the device. The

limitation is imposed to protect critical data and code that could be misused to distort or damage

the user experience”.

As presented to android application developers and coding standards, an application to be

uploaded to Google Play must have a “manifest file” which shows important information about

the application to Android system. This type of information must be given to the android system

before it can run the application code. The manifest file name is “AndroidManifest.xml”, which

inform the system about many things including our main target which is listing the permissions

used by the application.

The following example shows permissions in source code and their translation that is shown to the

user:

Code: <permission-group ...android.permission.ACCESS_COARSE_LOCATION..../>

Translation (What is shown to user before downloading the application): “Allows an app to access

approximate location derived from network location sources such as cell towers and Wi-Fi.”

Here are examples of some permissions in code view and from readable text view:

24

TABLE 3.1 Examples of Google Play Permissions code String and Description.

Code String Description

ACCESS_CHECKIN_PROPERTIES

Allows read/write access to the

"properties" table in the checkin database,

to change values that get uploaded.

ACCESS_COARSE_LOCATION

Allows an app to search approximate

location derived from network location

sources such as cell towers and Wi-Fi.

ACCESS_FINE_LOCATION

Allows an app to search precise location

from location sources such as GPS, cell

towers, and Wi-Fi.

ACCESS_LOCATION_EXTRA_COMM

ANDS

Allows an application to access extra

location provider commands

ACCESS_MOCK_LOCATION

Allows an application to create mock

location providers for testing

ACCESS_NETWORK_STATE

Allows applications to access information

about networks

ACCESS_SURFACE_FLINGER

Allows an application to use

SurfaceFlinger's low level features.

These permissions flashes out to inform about the different components of the phone that will be

used in order to have the application to work. It mainly helps in taking one and final decision

whether or not to install an application, and since the user does not have the option to select from

an application permissions list, they can be accepted or rejected as one full package.

5.3 Using Permissions to Measure The Amount of Power Consumption of An Android Application

By our own assumption an efficient and/or accurate way to go into reading, analyzing or Static-

testing an application is by having the application in its source code format. Unfortunately as per

to the privacy and security standards of Google Play, the source code of an available application is

not to be shown or reveled to public. At the same time Google Play does give informative

translation and summarization of the code named as “application permissions”. These permissions

came directly from the source code of the application but in a much more understandable format

http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_CHECKIN_PROPERTIES
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_COARSE_LOCATION
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_FINE_LOCATION
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_MOCK_LOCATION
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_SURFACE_FLINGER

25

for an average technology user. Though these permissions do not reflect all the commands under

the source code but they reveal the nature of an application behavior in dealing with the

components of a smart phone. The previous shows exactly what needs to be achieved in terms of

studying, evaluating and rating an application from the power consumption’ perspective.

Since Google Play updates permissions of an application directly at the same time the code of the

application gets updated. An advantage of our proposed measuring technique is that it will read

up-to-date information about the application source code. Then rating the application power

awareness level without the need of having a third party application in order to test the

application. Simply adding a third party application means increasing the current level of power

consumption which is against our main research goal. In the same time the study cannot rely on

a side study that was previously made on a lab phone or on a simulator to give us information

about an application power consumptions behavior, which will cause us to deal with out-dated

information.

As a result, these permissions can be trusted as measurements in addition to some other factors

to compute the level of power consumption of an android application.

26

Figure 9: Power Consumption Level indication by component

5.4 Describing the behavior of Google Play Applications Permissions Groups

Recently Google Play did categorize all the permissions used by applications into 12 different

categories. Since the user does not have enough information on how could these permissions

affect his phone battery life, following will list each category and give a short description of each

category describing the behavior of the permissions that does go under this category so that the

user can have a quick idea on the total behavior of an application about to be install on an android

phone. The following table shows the latest grouping of these permissions as per Google Play:

27

TABLE 3.2 Grouping of Google Play Permissions as Per to Google Play 2014

Permission Group Description

In-app purchases An app can ask you to make purchases inside the app

Device & app history

An app can use one or more of the following:

 Read sensitive log data

 Retrieve system internal state

 Read your web bookmarks and history

 Retrieve name of running apps

Cellular data settings
An app can use settings that control your mobile data connection

and potentially the data you receive.

Identity

An app can use your account and/or profile information on your

device.

Identity access may include the ability to:

 Find accounts on the device

 Read your own contact card (example: name and contact

information)

 Modify your own contact card

 Add or remove accounts

Contacts/Calendar

An app can use your device’s contacts and/or calendar

information.

Contacts and calendar access may include the ability to:

 Read your contacts

 Modify your contacts

 Read calendar events plus confidential information

 Add or modify calendar events and send email to guests without

owners' knowledge

Location

An app can use your device’s location.

Location access may include:

 Approximate location (network-based)

 Precise location (GPS and network-based)

 Access extra location provider commands

 GPS access

SMS

An app can use your device’s text messaging (SMS) and/or

multimedia media messaging service (MMS). This group may

include the ability to use text, picture, or video messages.

Note: Depending on your plan, you may be charged by your carrier

for text or multimedia messages. SMS access may include the

ability to:

 Receive text messages (SMS)

28

 Read your text messages (SMS or MMS)

 Receive text messages (MMS, like a picture or video message)

 Edit your text messages (SMS or MMS)

 Send SMS messages; this may cost you money

 Receive text messages (WAP)

Phone

An app can use your phone and/or its call history.

Note: Depending on your plan, you may be charged by your carrier

for phone calls.

Phone access may include the ability to:

 Directly call phone numbers; this may cost you money

 Write call log (example: call history)

 Read call log

 Reroute outgoing calls

 Modify phone state

 Make calls without your intervention

Photos/Media/Files

An app can use files or data stored on your device.

Photos/Media/Files access may include the ability to:

 Read the contents of your USB storage (example: SD card)

 Modify or delete the contents of your USB storage

 Format external storage

 Mount or unmount external storage

Camera/Microphone

An app can use your device’s camera and/or microphone.

Camera and microphone access may include the ability to:

 Take pictures and videos

 Record audio

 Record video

Wi-Fi connection

information

An app can access your device’s Wi-Fi connection information, like

if Wi-Fi is turned on and the name(s) of connected devices.

Wi-Fi connection information access may include the ability to:

 View Wi-Fi connections

Device ID & call

information

An app can access your device ID(s), phone number, whether

you’re on the phone, and the number connected by a call.

Device ID & call information may include the ability to:

 Read phone status and identity

A Simple conclusion from Table 3.2 shows that Google Play did its categorization strategy based

on three main factors which are:

 Privacy: How far does an application go into dealing with the private stuff of the user which

is shown clear in the listing of the following categories: Device & app history,

29

Contacts/Calendar, SMS, Photos/Media/Files, Camera/Microphone, Device ID & call

information

 Security: How secure it is to leave this application to deal freely with some sensitive

information that belongs to or identifies the user which is shown clear in the listing of the

following categories: Identity, Location, Phone, Wi-Fi connection information

 Additional Charges: Does using this application going to cost the user an additional charge

without his notice or approval which is shown clear in the listing of the following

categories: In-app purchases, Cellular data settings, SMS, Phone

Next is to list all the permissions used by Google Play applications and filter them under a new

category that focuses more into the use of power and power consumption.

A start is by listing components of an average Smartphone that runs Android. Then measuring the

behavior of each component in terms of power consumption in order to find components that can

be classified as most power consuming components. The next step is by going back to the full list

of permissions and then extract the permissions that deal with those power consuming

components and name them as Google Play Power Consuming Applications Permissions.

In short our contribution in this part is adding a new categorization feature to the three already

provided by Google play. In fact, permissions were always investigated relative to privacy, security,

additional-charges but rarely with power-consumption.

5.5 Rating Power Consuming Smartphone Components

The following list contains the most key and common components and/or features that can be

found on any average Android Smartphone as per to popularity of use today:

 Application Processor

 Cellular Radio (GSM, 3G, 4G ...etc)

 Screen (Including Sensors)

 Vibration

30

 Cameras

 Flash Light

 Audio Speaker

 Microphone

 GPS

 Wi-Fi Radio

 Bluetooth Radio

The second step is to start measuring the amount of power consumed by each of the above

components using PowerTutor© assuming that the component is used continuously for a period

of 60 seconds. Since most of the components in any android phone do work as a group in order

to achieve a certain purpose, it was difficult to force a component to work alone without having

other components involved. This caused accuracy issues about having valid power measurement

results of each. This uncertainty was taken care of later by implementing some pre-testing

techniques. What helped more in this regards was the flexibility of Android phones that gave us

the chance to perform a number of steps easily like: Hard restart, Kill all processes and background

applications, Clear RAM, Deactivate all features that are not essential to make the component

work alone.

The following table shows the results of the experimental measurements done by us on a Samsung

I9500 running Android OS, v4.2.2 (Jelly Bean), v4.3, using PowerTutor which is an application

developed by University of Michigan Ph.D. students Mark Gordon, Lide Zhang and Birjodh Tiwana

under the direction of Robert Dick and Zhuoqing Morley Mao at the University of Michigan and

Lei Yang at Google. Results are ordered starting from the most consuming till the least consuming.

31

TABLE 3.3 Smartphone Components Sorted By Average Amount of Energy Consumption

Smartphone

Component

Capacity of the

phone Battery

before fully

activating the

component (mAh)

Capacity of the

phone

Battery after fully

activating the

component alone

for a period of 60

seconds (mAh)

Average Amount of

Energy Consumption

measured (mAh/m)

GPS 2600 ∼ 2575 ∼ 25

Application Processor 2600 ∼ 2580 ∼ 20

Flash Light 2600 ∼ 2581 ∼ 19

Cellular Radio (GSM,

3G, 4G ...etc)

2600 (Fully Charged) ∼ 2583 ∼ 17

Cameras 2600 ∼ 2583 ∼ 17

Screen (Including

Sensors)

2600 ∼ 2584 ∼ 16

Vibration 2600 ∼ 2585 ∼ 15

Wi-Fi Radio 2600 ∼ 2588 ∼ 12

Bluetooth Radio 2600 ∼ 2590 ∼ 10

Audio Speaker 2600 ∼ 2591 ∼ 9

Microphone 2600 ∼ 2595 ∼ 5

The next step in our empirical experimentation is to create a scale in order to rate the above

components in terms of the amount of power consumption of each. While the above results

showed us the highest power consumption measurement ∼ 25 mAh and the lowest ∼ 5 mAh, it is

recommended to scale up the result pool in order to make the rating criteria compatible with

future measurements. So by assuming that the scale of rating a smart phone component is

between ∼ 1 to ∼ 30 mAh, From the previus it is now simple to start fetching our results as follows:

The following table shows the rating of smart phone components in terms of the amount of Energy

32

consumption on a scale of six stars, where one star means light power consuming component and

five starts means heavy power consuming component.

TABLE 3.4 Rating Smartphone Components In Terms of Energy Consumption using Stars

Scale:

Smartphone

Component

Average Amount of Energy

Consumption Per Minute

Star Rating out of Six Stars (∼ 1 to

∼ 30 mAh)

GPS ∼ 25 mAh ★★★★★

Application Processor ∼ 20 mAh ★★★★

Flash Light ∼ 19 mAh ★★★★

Cellular Radio (GSM,

3G...etc)

∼ 17 mAh ★★★

Cameras ∼ 17 mAh ★★★

Screen (Including

Sensors)

∼ 16 mAh ★★★

Vibration ∼ 15 mAh ★★★

Wi-Fi Radio ∼ 12 mAh ★★

Bluetooth Radio ∼ 10 mAh ★★

Audio Speaker ∼ 9 mAh ★★

Microphone ∼ 5 mAh ★

33

Figure 9: The proposed star system rating

5.6 Power Consumption Keywords Extracted From Permissions.

Based on the previous ratings of Smartphone components power consumption level, and in order

to identify permissions classified as power consuming permissions, following is a list of all

permission used by Google Play. The list is generated in order to use it as data to be compared

with Table 3.4 of Smartphone components. The following is the full list of permission used by

Google Play applications:

34

TABLE 3.5 Permissions Used By Google Play Applications (In three column for display purpose):

Permissions Used By Google Play Applications

 access Bluetooth
settings

 access extra location
provider commands

 access mail information

 access USB storage file
system

 add or modify calendar
events and send email
to guests without
owners' knowledge

 add or remove accounts

 adjust your wallpaper
size

 allow Wi-Fi Multicast
reception

 approximate (network-
based) location

 Broadcast data
messages to apps

 change network
connectivity

 change system display
settings

 change your audio
settings

 change/intercept
network settings and
traffic

 choose widgets

 close other apps

 connect and disconnect
from Wi-Fi

 control flashlight

 control Near Field
Communication

 control vibration

 create accounts and set
passwords

 delete all app cache
data

 directly call phone
numbers

 disable your screen lock

 download files without
notification

 draw over other apps

 Google Play license check

 install shortcuts

 make app always run

 measure app storage space

 mock location sources for testing

 modify or delete the contents of
your USB storage

 modify phone state

 modify secure system settings

 modify system settings

 modify your contacts

 modify your own contact card

 modify/delete internal media
storage contents

 pair with Bluetooth devices

 precise (GPS) location

 prevent phone from sleeping

 read calendar events plus
confidential information

 read call log

 read call log, write call log

 Read email attachments

 read Gmail

 read Google service
configuration

 read Home settings and
shortcuts

 read instant messages

 read owner data

 read phone status and identity

 read sensitive log data

 read subscribed feeds

 read sync settings

 read sync statistics

 read terms you added to the
dictionary

 read your contacts

 read your contacts, choose
widgets

 read your contacts, read call log

 read your own contact card

 read your social stream

 read your text messages (SMS or
MMS)

 read your Web bookmarks and
history

 receive data from Internet

 receive text messages (MMS)

 receive text messages (SMS)

 receive text messages (WAP)

 record audio

 reorder running apps

 reroute outgoing calls

 retrieve running apps

 run at startup

 send SMS messages

 send sticky broadcast

 set an alarm

 set preferred apps

 set wallpaper

 take pictures and videos

 take pictures and videos, record
audio

 test access to protected storage

 toggle sync on and off

 uninstall shortcuts

 use accounts on the device

 view configured accounts

 view network connections

 view Wi-Fi connections

 write call log

 write Home settings and
shortcuts

 write subscribed feeds

 write to user-defined dictionary

 write to your social stream

 write web bookmarks and
history

 write web bookmarks and
history, set an alarm

35

 edit your text messages
(SMS or MMS)

 expand/collapse status
bar

 find accounts on the
device

 full network access

 Google Play billing
service

By going through Table 3.5 a number of permissions were identified as permissions that are

related to one or more phone components listed in Table 3.3 and after taking a fundamental step

of extracting the common words that are related to one or more phone components, our results

were presented on Table 3.6 which shows the extracted common words and their relation with

the phone components. In fact, this synonym interpretation of keywords is very much related to

our unified work on the last chapter (8) of this thesis which is entitled "Ontology for Power

Consumption of Smart Mobile Phones". To our knowledge this Ontology has never been presented

in any previous research. The proposed Ontology automates the interpretation of keywords done

in this table.

TABLE 3.6 Keywords Classified as “Power Consumption Related” keyword

Keyword Classified as

Power Consumption keyword

Reason of selecting the word

(Relation with a Power Draining Component)

GPS GPS

system settings Application Processor

Reception Wi-Fi Radio, Cellular Radio

call phone Wi-Fi Radio, Cellular Radio, Audio Speaker

always run Application Processor

Download Wi-Fi Radio, Cellular Radio

network settings Wi-Fi Radio, Cellular Radio

network connectivity Wi-Fi Radio, Cellular Radio

network access Wi-Fi Radio, Cellular Radio

Display Screen

Record Audio Speaker, Screen

Audio Audio Speaker

Vibration Vibration

take pictures Flash light, Screen

take Videos Flash light, Screen

36

Stream Screen, Wi-Fi Radio, Cellular Radio

Flashlight Flash light

Sleeping Application Processor

phone state Application Processor

Bluetooth Bluetooth Radio

Wi-Fi Wi-Fi Radio

Toggle Screen

Broadcast Wi-Fi Radio, Cellular Radio

Startup Application Processor

5.7 Extracting and Rating Google Play Power Consuming Applications Permissions

Proceeding with our empirical experimentation sequence, after matching the common words of

the above table with the full list of permissions that are used by all Google Play applications,

permissions that can be classified as high power consuming permissions were listed in the Table

3.7.

TABLE 3.7 Google Play Power Consuming Applications Permissions

(They are put in two columns for display purpose)

Google Play Power Consuming Applications Permissions
 access Bluetooth settings

 allow Wi-Fi Multicast reception

 Broadcast data messages to apps

 change network connectivity

 change system display settings

 change your audio settings

 change/intercept network settings
and traffic

 connect and disconnect from Wi-Fi

 control flashlight

 control vibration

 directly call phone numbers

 download files without notification

 full network access

 make app always run

 modify phone state

 modify secure system settings

 modify system settings

 pair with Bluetooth devices

 precise (GPS) location

 prevent phone from sleeping

 read your social stream

 record audio

 run at startup

 send sticky broadcast

 take pictures and videos

 toggle sync on and off

 view Wi-Fi connections

 write to your social stream

Since the previous study were able distinguish which applications permissions can be marked as

power consuming permission based on matching with “the common words” that are related to

smart phones components that are marked by our previous study as power consuming

37

permissions. Our next step is to rate each one of these newly extracted permissions that are called

Google Play Power Consuming Applications Permissions.

They will lead us to the last stage of this empirical experimentation which is to rate an application

in terms of power consumption based on the permissions related to this application, in the

following the study will list each power consuming permission side by side with the ratings of the

components it uses in order to find an overall average rating of each power consuming permission.

The following table shows the average power energy consumption amount and ratings for each

power consuming permissions. They are calculated from the average rating of each component in

table 3.6 that is used by the permission:

TABLE 3.8 Average Power Energy Consumption Amount and Ratings of Power Consuming

Permissions

Power Consuming

Applications

Permissions

Amount of Energy Consumption of each

Used Component

Permission Average

Energy

Consumption

Amount per minute

Permission Star

Rating out of Six Stars

(∼ 1 to ∼ 30 mAh)

access Bluetooth

settings
Bluetooth Radio (∼ 10 mAh) ∼ 10 mAh ★★

allow Wi-Fi Multicast

reception
Wi-Fi Radio (∼ 12 mAh) ∼ 12 mAh ★★

Broadcast data

messages to apps

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)
∼ 15 mAh ★★★

change network

connectivity

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)
∼ 15 mAh ★★★

change system display

settings
Screen (∼ 16 mAh) ∼ 16 mAh ★★★

change your audio

settings
Audio Speaker (∼ 9 mAh) ∼ 9 mAh ★★

change/intercept

network settings and

traffic

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

38

connect and disconnect

from Wi-Fi
Wi-Fi Radio (∼ 12 mAh) ∼ 12 mAh ★★

control flashlight Flash Light (∼ 19 mAh) ∼ 19 mAh ★★★★

control vibration Vibration (∼ 15 mAh) ∼ 15 mAh ★★★

directly call phone

numbers

Cellular Radio (∼ 17 mAh)

Microphone (∼ 5 mAh)

Audio Speaker (∼ 9 mAh)

∼ 10 mAh ★★

download files without

notification

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

full network access

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

make an app to always

run
Application Processor (∼ 20 mAh) ∼ 20 mAh ★★★★

modify phone state Application Processor (∼ 20 mAh) ∼ 20 mAh ★★★★

modify secure system

settings
Application Processor (∼ 20 mAh) ∼ 20 mAh ★★★★

modify system settings Application Processor (∼ 20 mAh) ∼ 20 mAh ★★★★

pair with Bluetooth

devices
Bluetooth Radio (∼ 10 mAh) ∼ 10 mAh ★★★★

precise (GPS) location GPS (∼ 25 mAh) ∼ 25 mAh ★★★★★

prevent phone from

sleeping

Application Processor (∼ 20 mAh)

Screen (∼ 16 mAh)
∼ 18 mAh ★★★★

read your social stream

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

record audio Microphone (∼ 5 mAh) ∼ 5 mAh ★

run at startup Application Processor (∼ 20 mAh) ∼ 20 mAh ★★★★

send sticky broadcast

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

39

take pictures and

videos

Cameras (∼ 17 mAh)

Flash Light (∼ 19 mAh)

Microphone (∼ 5 mAh)

∼ 14 mAh ★★★

toggle sync on and off

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

view Wi-Fi connections Wi-Fi Radio (∼ 12 mAh) ∼ 12 mAh ★★

write to your social

stream

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17 mAh)

Application Processor (∼ 20 mAh)

∼ 16 mAh ★★★

5.8 Variable Amounts of Energy Consumption for Network Connectivity Permission

As per the two commonly used types of network connections, Wi-Fi and Cellular connections, the

study had to be more precise in giving the approximate amount of average power consumption

amount of each “power consuming” permission under the two situations of network use. A

mandatory split was done to each permission that does deal with the phone network connections

into two main situations:

1. Using the permission “Indoor” (assuming using Wi-Fi network connection)

2. Using the permission “Outdoor” (assuming using the Cellular network connection)

The above two situation had to be incorporated within the previous calculations of the average

power consumption for each power consuming permission. This will give as a result two new

average amounts of energy consumption for each component that deals with the phone network

connectivity. Calculating the two new amounts will simply take into consideration the use of either

Wi-Fi or Cellular connection. Then recalculate the overall power consumption average of the

permission as per to the situation. For example if a permission uses either Wi-Fi connection or

Cellular connection in order to keep the network connection and the same permission were used

“outdoor” then the average amount of power consumption will be calculated by assuming that

40

the permission is only using the cellular network connection in order to keep the network

connections.

So the Wi-Fi average amount of power consumption will be discarded when calculating the overall

average power consumption of the permission. The same case goes if the same permission was

used Indoor, then the average power consumption will be recalculated by assuming that the

permission is only using the Wi-Fi network connection in order to keep the connection with the

network. So the Cellular average amount of power consumption will be discarded when calculating

the overall average of power consumption of the same permission. As per to the above

assumptions a list was generated showing the new average amounts of power consumption of all

the power consumption permissions that deal with network connections under the two previously

mentioned situations.

These "indoor", "outdoor" attributes are included in the Ontology unifying work presented in our

last chapter of this thesis which is entitled "OWL Ontology for Power Consumption of Smart Mobile

Phones". To our knowledge this Ontology has never been presented in any previous research. The

proposed Ontology automates the incorporation of concepts and attributes like "indoor",

"outdoor", etc., and the results were as follows:

The following table shows the two different average amounts and ratings for only power

consuming permissions highlighted in grey since they deal with network connectivity. They are

calculated from the average rating of each component used by the permission, and on each

different situation either Wi-Fi or Cellular was eliminated from the calculation:

41

TABLE 3.9 Average Power Consumption Amounts and Ratings of Power Consuming

Permissions. (Only the Ones Dealing With Network Connectivity under Indoor/Outdoor

Usage)

Power Consuming

Applications

Permissions

Amount of Energy

Consumption of each

Used Component

Permission Average

Energy Consumption

Amount per minute

Permission Star Rating

out of Six Stars (∼ 1 to ∼

30 mAh)

Indoor

(Using Wi-

Fi)

Outdoor

(Using

Cellular)

Indoor

(Using Wi-

Fi)

Outdoor

(Using

Cellular)

access Bluetooth

settings

Bluetooth Radio (∼ 10

mAh)

∼ 10 mAh ∼ 10 mAh

★★ ★★

allow Wi-Fi Multicast

reception

Wi-Fi Radio (∼ 12 mAh) ∼ 12 mAh ∼ 12 mAh

★★ ★★

Broadcast data

messages to apps

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

∼ 12 mAh ∼ 17 mAh

★★ ★★★

change network

connectivity

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

∼ 12 mAh ∼ 17 mAh

★★ ★★★

change system

display settings

Screen (∼ 16 mAh) ∼ 16 mAh ∼ 16 mAh

★★★ ★★★

change your audio

settings

Audio Speaker (∼ 9

mAh)

∼ 9 mAh ∼ 9 mAh

★★ ★★

change/intercept

network settings and

traffic

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

connect and

disconnect from Wi-

Fi

Wi-Fi Radio (∼ 12 mAh) ∼ 12 mAh ∼ 12 mAh

★★ ★★

control flashlight Flash Light (∼ 19 mAh) ∼ 19 mAh ∼ 19 mAh ★★★★ ★★★★

control vibration Vibration (∼ 15 mAh) ∼ 15 mAh ∼ 15 mAh ★★★ ★★★

42

directly call phone

numbers

Cellular Radio (∼ 17

mAh)

Microphone (∼ 5 mAh)

Audio Speaker (∼ 9

mAh)

∼ 10 mAh ∼ 10 mAh

★★ ★★

download files

without notification

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

full network access Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

make app always run Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20 mAh

★★★★ ★★★★

modify phone state Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20 mAh

★★★★ ★★★★

modify secure

system settings

Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20 mAh

★★★★ ★★★★

modify system

settings

Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20 mAh

★★★★ ★★★★

pair with Bluetooth

devices

Bluetooth Radio (∼ 10

mAh)

∼ 10 mAh ∼ 10 mAh

★★★★ ★★★★

precise (GPS)

location

GPS (∼ 25 mAh) ∼ 25 mAh ∼ 25 mAh ★★★★

★ ★★★★★

prevent phone from

sleeping

Application Processor

(∼ 20 mAh)

Screen (∼ 16 mAh)

∼ 18 mAh ∼ 18 mAh

★★★★ ★★★★

read your social

stream

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

43

record audio Microphone (∼ 5 mAh) ∼ 5 mAh ∼ 5 mAh ★ ★

run at startup Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20 mAh

★★★★ ★★★★

send sticky broadcast Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

take pictures and

videos

Cameras (∼ 17 mAh)

Flash Light (∼ 19 mAh)

Microphone (∼ 5 mAh)

∼ 14 mAh ∼ 14 mAh

★★★ ★★★

toggle sync on and

off

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

view Wi-Fi

connections

Wi-Fi Radio (∼ 12 mAh) ∼ 12 mAh ∼ 12 mAh

★★ ★★

write to your social

stream

Wi-Fi Radio (∼ 12 mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 18 mAh

★★★ ★★★★

Continuing with our empirical measurements experimentation work, from the above results a

simple comparison can be made between the two average amounts of energy consumption and

to come up with an average approximate rate of either increase or decrease in the average

amount of power consumption of permission. In order to use it with the coming stage of finding

the average amount of energy consumption of a Google Play application for a full Applications

Category, the table of comparison is as follows:

44

TABLE 3.10 Difference in the amount of power consumption for Power Consuming

Permissions under “Indoor” and “outdoor” usage

Power

Consuming

Applications

Permissions

Amount of Energy

Consumption of each

Used Component

Permission

Average Energy

Consumption

Amount per

minute, either

Indoor or

Outdoor

Permission Average

Energy

Consumption Amount

per minute for

Indoor/Outdoor

Increase/Decrease

 Percentage

Indoor

(Wi-Fi)

Outdoor

(Cellular)

Indoor

(Wi-Fi)

Outdoor

(Cellular)

access Bluetooth

settings

Bluetooth Radio (∼ 10

mAh)

∼ 10 mAh ∼ 10

mAh

∼ 10 mAh

allow Wi-Fi

Multicast

reception

Wi-Fi Radio (∼ 12

mAh)

∼ 12 mAh ∼ 12

mAh

∼ 12 mAh

Broadcast data

messages to

apps

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

∼ 15 mAh ∼ 12

mAh

∼ 17 mAh

-20% 12%

change network

connectivity

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

∼ 15 mAh ∼ 12

mAh

∼ 17 mAh

-20% 12%

change system

display settings

Screen (∼ 16 mAh) ∼ 16 mAh ∼ 16

mAh

∼ 16 mAh

change your

audio settings

Audio Speaker (∼ 9

mAh)

∼ 9 mAh ∼ 9 mAh ∼ 9 mAh

change/intercept

network settings

and traffic

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

connect and

disconnect from

Wi-Fi

Wi-Fi Radio (∼ 12

mAh)

∼ 12 mAh ∼ 12

mAh

∼ 12 mAh

control flashlight Flash Light (∼ 19 mAh) ∼ 19 mAh ∼ 19

mAh

∼ 19 mAh

control vibration Vibration (∼ 15 mAh) ∼ 15 mAh ∼ 15

mAh

∼ 15 mAh

45

directly call

phone numbers

Cellular Radio (∼ 17

mAh)

Microphone (∼ 5 mAh)

Audio Speaker (∼ 9

mAh)

∼ 10 mAh ∼ 10

mAh

∼ 10 mAh

download files

without

notification

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

full network

access

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

make app always

run

Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20

mAh

∼ 20 mAh

modify phone

state

Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20

mAh

∼ 20 mAh

modify secure

system settings

Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20

mAh

∼ 20 mAh

modify system

settings

Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20

mAh

∼ 20 mAh

pair with

Bluetooth

devices

Bluetooth Radio (∼ 10

mAh)

∼ 10 mAh ∼ 10

mAh

∼ 10 mAh

precise (GPS)

location

GPS (∼ 25 mAh) ∼ 25 mAh ∼ 25

mAh

∼ 25 mAh

prevent phone

from sleeping

Application Processor

(∼ 20 mAh)

Screen (∼ 16 mAh)

∼ 18 mAh ∼ 18

mAh

∼ 18 mAh

read your social

stream

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

46

record audio Microphone (∼ 5 mAh) ∼ 5 mAh ∼ 5 mAh ∼ 5 mAh

run at startup Application Processor

(∼ 20 mAh)

∼ 20 mAh ∼ 20

mAh

∼ 20 mAh

send sticky

broadcast

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

take pictures and

videos

Cameras (∼ 17 mAh)

Flash Light (∼ 19 mAh)

Microphone (∼ 5 mAh)

∼ 14 mAh ∼ 14

mAh

∼ 14 mAh

toggle sync on

and off

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

view Wi-Fi

connections

Wi-Fi Radio (∼ 12

mAh)

∼ 12 mAh ∼ 12

mAh

∼ 12 mAh

write to your

social stream

Wi-Fi Radio (∼ 12

mAh)

Cellular Radio (∼ 17

mAh)

Application Processor

(∼ 20 mAh)

∼ 16 mAh ∼ 16

mAh

∼ 18 mAh

0% 12%

Table 3.10 summarizes the average amount of power consumption for a power consuming

permission which deals with the phone connectivity is decreased approximately by 4% if this

permission was used Indoor. The average amount of power consumption for a power consuming

permission that deals with the phone connectivity is increased approximately by 12% if this

permission was used outdoor. This conclusion can be used in the next stages of the study to come

up with more accurate results.

47

6. Report of current research results and proposal

6.1 Midway Conclusion

By the end of the previous part the study were able to classify the different levels of power-usage

among different smartphone resources. That has helped us later to sort the smartphone

components in terms of their level of power consumption. Also helped us to extract applications

permissions that interact with those phone components and sort these permission as per to their

power-usage based on their interaction with different levels of power-usage components. Then

the study started rating the permissions on a scale of six stars to demonstrate their level of power

consumption, taking into consideration using these permissions under the two most familiar

network connections which are Wi-Fi and Cellular.

The coming step now is to use our results from the provirus part to proceed with our main purpose

of this study which is to provide a clear strategy that gives a trusted result in case a user wanted

to view the amount of power consumption an application needs before downloading this

application. This can be achieved by using our results from previous part to put a strategy to rate

an application, the next step is to give a much wider image by rating each applications category in

terms of power consumption levels.

6.2 About Google Play Applications Categories:

Just like any other market or application store, Google Play categorizes its applications into

different categories. This made our job easier because now it is difficult to find an application that

does not belong to a certain category. The following table shows Google Play application

categories sorted by the most popular, in other words categories that have the highest number of

downloads:

48

TABLE 3.11 Google Play Applications Categories and the Popularity of Each Category

No. Category Apps with >50K downloads

1 Entertainment 8525

2 Tools 7577

3 Personalization 6405

4 Lifestyle 4634

5 Education 3923

6 Music & Audio 3441

7 Books & Reference 3359

8 Communication 2476

9 Photography 2436

10 Productivity 2256

11 Media & Video 2202

12 News & Magazines 1858

13 Travel & Local 1839

14 Social 1834

15 Health & Fitness 1771

16 Shopping 1227

17 Transportation 1117

18 Business 836

19 Weather 653

20 Medical 498

21 Libraries & Demo 207

6.3 Measuring The Use of Power Consumption Permissions Among Each Category From All Google

Play Applications Categories

In order to rate the power consumption level of each application category using our scale of power

consumption measurement, the study must list all the applications of each category and to list all

49

the permissions that are used by each and every application of this category. Then to highlight

permission that are marked as power consuming permissions, then find the average rating of each

category just like what was implemented above on applications permissions.

In order to ease the procedure of the study and to use a sufficient sampling technique rather than

listing all the applications of the category. Our sample was the top ten downloaded applications

of each category. The following table shows an example of one category and the way the category

was analyzed into the permissions level. The example shows five application while the actual test

was done using ten applications:

TABLE 3.12 A Sample of five applications under “Entertainment” Category, listing

all permissions needed for each application

Top 10 Popular Apps Needed Permissions for the App

1. 4shared

test access to protected storage

approximate (network-based) location

full network access

view network connections

receive data from Internet

modify or delete the contents of your USB storage

read phone status and identity

send sticky broadcast

prevent phone from sleeping

run at startup

2. Netflix

view network connections

view Wi-Fi connections

pair with Bluetooth devices

full network access

receive data from Internet

find accounts on the device

read phone status and identity

allow Wi-Fi Multicast reception

retrieve running apps

prevent phone from sleeping

3. Talking Tom Cat 2

Free

test access to protected storage

Google Play billing service

full network access

view network connections

view Wi-Fi connections

receive data from Internet

read phone status and identity

record audio

control vibration

modify system settings

50

prevent phone from sleeping

test access to protected storage

4. Talking Ben

The Dog Free

Google Play billing service

full network access

view network connections

view Wi-Fi connections

receive data from Internet

modify or delete the contents of your USB storage

read phone status and identity

record audio

modify system settings

prevent phone from sleeping

test access to protected storage

5. Audio Ringtones

read your contacts

set an alarm

view network connections

full network access

view Wi-Fi connections

receive data from Internet

Google Play billing service

find accounts on the device

modify or delete the contents of your USB storage

read phone status and identity

control vibration

modify system settings

prevent phone from sleeping

run at startup

6.4 Rating the level of Power consumption for an application and for each Google Play Category

The next step in our experimental work is to recall the list of power consuming permissions and

then start matching each list of permissions that belongs to an application with the table of power

consuming permissions. This is alone by highlighting power consuming permissions found on each

application list of permissions. This step is repeated till the study covers all the ten applications of

the sample. Next is to calculate the average rating of the application by calculating the total

average rating of all power consuming permissions ratings that are used by this application. Then

it will be possible to calculate the total average rating of all the ten applications in order to find

the average rating of each category. The study will also take into consideration the situation of

using a permission either “Indoor” or “Outdoor” while calculating our results to give us more

accurate rating for either an application or a category.

51

Application Power Consumption Average Rate Equation:

Application Power

Consumption Average

Rate
= (∑

Power Permission Average

Energy Consumption

Amount/m

) /
Number of (Power

Consuming

Permissions)

The following table shows an example of power consuming rating for 4shared application, where

power consuming permissions are highlighted in grey:

TABLE 3.13 Rating “4shared” Application Using Power Consumption Stars Scale

Category
Top 10 Popular

Apps
Needed Permissions for the App

Permissions

consumption

rate

Application

Average

Energy

Consumptio

n Amount

per minute

Applicatio

n Star

Rating

out of Six

Stars (∼ 1

to ∼ 30

mAh)

En
te

rt
ai

n
m

en
t

1
.

4
sh

ar
ed

test access to protected storage

∼ 18 mAh
★★★

★

approximate (network-based) location

full network access ∼ 16 mAh

view network connections

receive data from Internet

modify or delete the contents of your USB

storage

read phone status and identity

send sticky broadcast ∼ 16 mAh

prevent phone from sleeping ∼ 18 mAh

run at startup ∼ 20 mAh

52

From the above example, next is to rate the power consumption level of same application under

the two network usage situations, which are “Wi-Fi” and “Cellular”.

The following table shows the same example under the two network usage situations:

TABLE 3.14 Rating “4shared” Application Using Power Consumption Stars Scale Under Two

Different Network Connectivity Modes

Catego

ry

Top 10

Popular

Apps

Needed Permissions for the App

Permission Average

Energy

Consumption

Amount per minute

for Indoor/Outdoor

Application

Average Energy

Consumption

Amount per

minute for

Indoor/Outdoor

Application Star

Rating out of Six

Stars

 (∼ 1 to ∼ 30

mAh)

Indoor

(Wi-Fi)

Outdoor

(Cellular

)

Indo

or

(Wi-

Fi)

Outdo

or

(Cellul

ar)

Indoo

r

(Wi-

Fi)

Outdoo

r

(Cellula

r)

En
te

rt
ai

n
m

en
t

1
.

4
sh

ar
ed

test access to protected storage ∼ 17

mAh

∼ 19

mAh

★★

★

★★★

★
approximate (network-based) location

full network access
∼16

mAh

∼ 18

mAh

view network connections

receive data from Internet

modify or delete the contents of your

USB storage

read phone status and identity

send sticky broadcast
∼ 16

mAh

∼ 18

mAh

prevent phone from sleeping ∼ 18 mAh

run at startup ∼ 20 mAh

The following table shows an example where power consuming rating is made for the

Entertainment category also under the two network usage situations:

53

TABLE 3.15 Rating “Entertainment” Applications Category Using Power Consumption Stars

Scale Under Two Different Network Connectivity Modes

Category Top 10 Popular Apps

Application Average

Energy

Consumption

Amount per minute

for Indoor/Outdoor

Category Average Energy

Consumption Amount per

minute for Indoor/Outdoor

Category Star Rating

out of Six Stars (∼ 1 to

∼ 30 mAh)

Indoor

(Wi-Fi)

Outdoor

(Cellular)

Indoor

(Wi-Fi)

Outdoor

(Cellular)

Indoor

(Wi-Fi)

Outdoor

(Cellular)

En
te

rt
ai

n
m

en
t

1. 4shared ∼ 17

mAh

∼ 19 mAh ∼ 15 mAh ∼ 18 mAh ★★★ ★★★★

2. Netflix ∼ 12

mAh

∼ 20 mAh

3. Talking

Tom Cat 2

Free

∼ 14

mAh

∼ 14 mAh

4. "Talking

Ben The

Dog Free"

∼ 14

mAh

∼ 14 mAh

5. Audiko

Ringtones

∼ 16

mAh

∼ 16 mAh

6. Twitch ∼ 14

mAh

∼ 21 mAh

7. "MP3

Music

Download"

∼ 15

mAh

∼ 20 mAh

8. Talking

Ginger

∼ 15

mAh

∼ 15 mAh

9. "9GAG-

Funny pics

and

videos"

∼ 15

mAh

∼ 22 mAh

10. "Talking

Tom & Ben

News

Free"

∼ 14

mAh

∼ 14 mAh

The following table shows all Google Play applications categories sorted by their power

consumption rating scores:

54

TABLE 3.17 Rating All Google Play Applications Categories Using Power Consumption Stars

Scale under Two Different Network Connectivity Modes

Category

Category Average Energy

 Consumption Amount per minute

Category Star Rating out of Six Stars

(∼ 1 to ∼ 30 mAh)

Indoor

(Wi-Fi)

Outdoor

(Cellular)

Indoor

(Wi-Fi)

Outdoor

(Cellular)

Social ∼ 26 mAh ∼ 30 mAh ★★★★★ ★★★★★★

Tools ∼ 26 mAh ∼ 26 mAh ★★★★★ ★★★★★

Communication ∼ 25 mAh ∼ 28 mAh ★★★★★ ★★★★★

Personalization ∼ 20 mAh ∼ 22 mAh ★★★★ ★★★★

Lifestyle ∼ 21 mAh ∼ 21 mAh ★★★★ ★★★★

Productivity ∼ 21 mAh ∼ 21 mAh ★★★★ ★★★★

Travel & Local ∼ 19 mAh ∼ 21 mAh ★★★★ ★★★★

Health & Fitness ∼ 17 mAh ∼ 17 mAh ★★★ ★★★

Business ∼ 15 mAh ∼ 18 mAh ★★★ ★★★★

Music & Audio ∼ 15 mAh ∼ 18 mAh ★★★ ★★★★

Photography ∼ 16 mAh ∼ 16 mAh ★★★ ★★★

Entertainment ∼ 15 mAh ∼ 18 mAh ★★★ ★★★★

Media & Video ∼ 15 mAh ∼ 19 mAh ★★★ ★★★★

Shopping ∼ 15 mAh ∼ 18 mAh ★★★ ★★★★

Transportation ∼ 14 mAh ∼ 16 mAh ★★★ ★★★★

Medical ∼ 14 mAh ∼ 14 mAh ★★★ ★★★

Books &

Reference
∼ 12 mAh ∼ 12 mAh ★★ ★★

Weather ∼ 11 mAh ∼ 14 mAh ★★ ★★★

News &

Magazines
∼ 9 mAh ∼ 11 mAh ★★ ★★

Education ∼ 10 mAh ∼ 10 mAh ★★ ★★

Libraries &

Demo
∼ 4 mAh ∼ 4 mAh ★ ★

55

6.5 The Solution

The rating was made by finding the power consumption permissions from the list of permissions

used by the application, and then calculated the consumption rate of the application. The values

of results from the above were fetched into the equation, after having the rating of each

application an overall rating of all application categories available on Google Play was calculated.

This was made by using a sample of ten applications from each category, and all of the above were

made under the two different most common network usage situations which were “Wi-Fi” and

“Cellular”.

Figure 10: Overall functional description for the preventive power saving model

Along with the above scheme that summarises the proposal, the chart rate to inform users will

add a similar rate system to the one used with electrical domestic appliances, as presented for a

google play android mobile device screen.

56

Figure 11: The star rating scheme in the Google Play store

References

Cai, H., Zhang, Y., Jin, Z., Liu, X. & Huang, G. 2015, "DelayDroid: Reducing Tail-Time Energy by

Refactoring Android Apps", Association for Computing Machinery - ACM, pp. 1

Dao, T.A., Singh, I., Madhyastha, H.V., Krishnamurthy, S.V., Cao, G. & Mohapatra, P. 2017, "TIDE:

A User-Centric Tool for Identifying Energy Hungry Applications on Smartphones", IEEE/ACM

Transactions on Networking, vol. 25, no. 3, pp. 1459-1474

Datta, S.K., Bonnet, C. & Nikaein, N. 2013, "Power monitor v2: Novel power saving Android

application", The Institute of Electrical and Electronics Engineers - IEEE, pp. 253

Dong, M. & Zhong, L. 2012, "Power Modeling and Optimization for OLED Displays", IEEE

Transactions on Mobile Computing, vol. 11, no. 9, pp. 1587-1599

57

Li, D., Tran, A.H. & Halfond, W.G.J. 2014, "Making web applications more energy efficient for OLED

smartphones", Association for Computing Machinery - ACM, pp. 527

Min, C., Yoo, C., Hwang, I., Kang, S., Lee, Y., Lee, S., Park, P., Lee, C., Choi, S. & Song, J. 2015, "Sandra

helps you learn: the more you walk, the more battery your phone drains", Association for

Computing Machinery - ACM, pp. 421

Moamen, A.A. & Jamali, N. 2015, "Share Sens: An Approach to Optimizing Energy Consumption of

Continuous Mobile Sensing Workloads", The Institute of Electrical and Electronics Engineers - IEEE,

pp. 89

Pathak, A., Hu, Y.C. & Zhang, M. 2012, "Where is the energy spent inside my app? fine grained

energy accounting on smartphones with Eprof", Association for Computing Machinery - ACM, pp.

29

Petander, H. 2009, "Energy-aware network selection using traffic estimation", Association for

Computing Machinery - ACM, pp. 55-60

Schulman, A., Navda, V., Ramjee, R., Spring, N., Deshpande, P., Grunewald, C., Jain, K. &

Padmanabhan, V. 2010, "Bartendr: a practical approach to energy-aware cellular data scheduling",

Association for Computing Machinery (ACM), pp. 85

Taleb, S., Dia, M., Farhat, J., Dawy, Z. & Hajj, H. 2013, "On the Design of Energy-Aware 3G/WiFi

Heterogeneous Networks under Realistic Conditions", The Institute of Electrical and Electronics

Engineers - IEEE, pp. 523

Wang, C., Guo, Y., Shen, P. & Chen, X. 2017, "E-Spector: Online energy inspection for Android

applications", The Institute of Electrical and Electronics Engineers - IEEE, pp. 1

Wang, J., Liu, Y., Xu, C., Ma, X. & Lu, J. 2016, "E-greenDroid: effective energy inefficiency analysis

for android applications", Association for Computing Machinery - ACM, pp. 71

Westfield, B. & Gopalan, A. 2016, "Orka: A new technique to profile the energy usage of Android

applications", SciTePress, pp. 1

58

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R., Mao, Z. & Yang, L. 2010, "Accurate online power

estimation and automatic battery behavior-based power model generation for smartphones",

Association for Computing Machinery - ACM, pp. 105

