
Nelson Bruno Tavares Ferreira

A WebGL application based on BIM IFC

Universidade Fernando Pessoa – Porto 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Fernando Pessoa University

https://core.ac.uk/display/301334737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Nelson Bruno Tavares Ferreira

A WebGL application based on BIM IFC

Universidade Fernando Pessoa – Porto 2012

A WebGL application based on BIM IFC

By:

Nelson Bruno Tavares Ferreira

Supervisor

Prof. Doutor José Torres

Co-Supervisor

Eng. César Toscano

Dissertation presented to Universidade

Fernando Pessoa as a part of the

requirements for obtaining the degree of

Master in Engenharia Informática –

Computação Móvel

Abstract

The possibility of displaying high performance 3D accelerated graphics in the browser

is seen as an obstacle to the conversion of applications to the web. The release of

WebGL made Web3D gain new strength to overcome that obstacle. Architecture,

Engineering and Construction (AEC) tools are a type of applications that could benefit

with this advance. In the AEC industry, there is a standard candidate for Building

Information Modelling (BIM), called Industry Foundation Classes (IFC). This data

model promotes interoperability between AEC tools, giving a common format to the

applications.

This work comes from the need of redesigning a legacy application that allows the user

to design, display and calculate building structures. Focusing on the displaying of

building structures, this work merges IFC and WebGL into an application, to replicate in

a modern way the legacy application capabilities.

This is done by developing a server module that processes the IFC data model and a

client module that displays that model in a WebGL environment.

The result is a prototype web application capable of displaying 3D IFC building models

in the browser without plug-ins.

V

Resumo

A possibilidade de visualização de gráficos acelerados 3D de alto desempenho no

navegador ainda é visto como um obstáculo na migração de aplicações para a web. O

lançamento do WebGL fez o Web3D ganhar uma nova força para superar esse obstáculo.

As ferramentas de Arquitetura, Engenharia e Construção (AEC) são um tipo de

aplicações que podem beneficiar com este avanço. Na indústria AEC, há um candidato a

padrão para Building Information Modelling (BIM), chamado de Industry Foundation

Classes (IFC). Este modelo de dados promove a interoperabilidade entre as ferramentas

de AEC, fornecendo um formato comum às aplicações.

Este trabalho surge da necessidade de redesenhar uma aplicação legada que permite ao

o utilizador projetar, visualizar e calcular estruturas de edifícios. Focando na

visualização de estruturas de edifícios, este trabalho funde o IFC e o WebGL numa

aplicação, para replicar de forma moderna as capacidades da aplicação legada.

Isto é feito através do desenvolvimento de um módulo de servidor que processa o

modelo de dados IFC e um módulo de cliente que mostra esse modelo num ambiente

WebGL.

O resultado é um protótipo duma aplicação web capaz de visualizar modelos 3D de

edifícios em formato IFC no browser sem plug-ins.

VI

In memory of Maria Lídia

VII

Acknowledgements

First of all would to thank my mother (Maria do Carmo), stepfather (Domingos José)

and my grandfather (Carlos Alberto) for giving me the opportunity of going to the

university, for the motivation and financial support. Thanks also to the rest of my family

that cared for my well being and education.

A special thanks to my girlfriend Betty, who always supported me in good and bad

moments.

Thanks to my friends Nuno Marques, Filipe Barbosa, Bruno Cardoso, Bruno Silva, Ana

Nunes and all the CK members who I could always count on.

Thanks to my supervisors Eng. César Toscano for the patience during the project and

Prof. José Torres during the elaboration of this document. Thanks also to Engº José

Carlos Lino and Dr. Manuel Teixeira from Newton Consultores de Engenharia, for their

support.

A thanks also to all the teachers of the Computer Engineering department of

Universidade Fernando Pessoa and all my colleges from INESC Porto.

This work was achieved in the context of the PacPórticos project, promoted by Newton

Consultores de Engenharia and realised at INESC Porto. This project was financed by

the Portuguese programme “Quadro de Referência Estratégio Nacional” (QREN).

VIII

Acronyms

3D – Three Dimensions

AEC - Architecture, Engineering and Construction

AECO – Architecture, Engineering, Construction and Operation

ANGLE – Almost Native Graphics Layer Engine

API – Application Programming Interface

ASCII – American Standard Code for Information Interchange

BIM – Building Information Model

CAD – Computer-Aided Design

COLLADA – COLLAborative Design Activity

CPU – Computer Processing Unit

DIS – Distributed Interactive Simulation

DLL – Dynamic Link Library

DOM – Document Object Model

EMF – Eclipse Modelling Framework

GLSL – OpenGL Shading Language

GPU – Graphical Processing Unit

GWT – Google Web Toolkit

IX

HLSL – High Level Shading Language

HTML – HyperText Markup Language

HTTP – HyperText Transfer Protocol

IDE – Integrated Development Environment

IEC – International Electrotechnical Commission

IFC – Industry Foundation Classes

ISO – International Organization for Standards

J3D – Java 3D

JRE – Java Runtime Environment

JSON – JavaScript Object Notation

OS – Operating System

RIA – Rich Internet Applications

UML – Unified Modelling Language

VBO – Vertex Buffer Objects

VRML – Virtual Reality Modelling Language

X3D – Extensible 3D Graphics

XML – Extensible Markup Language

X

Index

Abstract...V

Resumo..VI

Acknowledgements...VIII

Acronyms..IX

Index..XI

Index of Figures..XIII

Index of Tables...XV

 1.Introduction...16

1.1.PacPórticos Overview...19

1.2.Objectives...20

1.3.Document Structure..22

 2.State of the art..23

 2.1 Web3D...23

 2.1.1 WebGL...24

 2.1.2 X3D..29

 2.1.3 Adobe Flash..32

 2.1.4 J3D...33

 2.1.5 Unity...33

 2.1.6 Microsoft Silverlight..34

 2.2 BIM IFC...34

 2.3 Vaadin Framework...38

 2.4 Related Work..40

 2.5 Summary..41

 3.Method...42

 3.1 Conception...42

 3.1.1 Server-Side Module..44

 3.1.1.1 IFC Processing and Model Creation...45

 3.1.2 Client-Side Module..47

 3.1.2.1 IFC WebGL Widget..47

 3.1.2.2 Scene Graph..47

XI

 3.2 Development..51

 3.2.1 Development Environment and Frameworks...51

 3.2.2 Server-Side Module..53

 3.2.3 Client-Side Module..55

 3.2.3.1 WebGL Context and Shader definition...56

 3.2.3.2 Scene Graph Implementation and Rendering.......................................56

 3.2.3.3 Mouse Handler and Camera...62

 3.3 Summary..65

 4.Analysis and Results..66

 4.1 Results..66

 4.1.1 User Interface...66

 4.1.2 Performed Tests..70

 4.2 Analysis..74

 4.2.1 Limitations...75

 4.3 Summary..76

 5.Conclusion...77

 5.1 General conclusions...77

 5.2 Future work..78

References...79

Annex A

XII

Index of Figures

Figure 1.1: Evolution of the Web as a Web Application Platform (Taivalsaari &

Mikkonen 2011) ..17

Figure 1.2: Information flow between different parties in AEC with a central database.

(Chen et al. 2005)..18

Figure 1.3: PacPórticos server-client architecture..20

Figure 2.1: WebGL rendering pipeline overview(Cantor & Jones 2012)........................25

Figure 2.2: HTML5 Related Technologies(Mavrody 2012)..27

Figure 2.3: X3D File encoding formats and programming language bindings(Behr &

Michael 2009) ...31

Figure 2.4: IFC domain specific data schema map (BuildingSMART International Ltd

2011b) ...35

Figure 2.5: IFC spatial structure of a building project (Liu et al. 2010).........................37

Figure 2.6: Vaadin Architecture (Grönroos 2012)...39

Figure 3.1: PacPorticos Architecture...44

Figure 3.2: Server-Client Workflow..46

Figure 3.3: Cube Mesh(Aaftab et al. 2009)...48

Figure 3.4: Spatial Transformations (Martins & Paciornik 2012)...................................49

Figure 3.5: Scene Graph..50

Figure 3.6: SuperDevMode...53

Figure 3.7: drawArrays primitive drawing call (Aaftab et al. 2009)...............................58

Figure 3.8: drawElements primitive drawing call (Aaftab et al. 2009)...........................58

Figure 3.9: Primitive Triangle Types (Aaftab et al. 2009)...59

Figure 3.10: IfcBoundingBox (BuildingSMART International Ltd 2006a)....................60

Figure 3.11: IfcRectangleProfileDef (BuildingSMART International Ltd 2006g).........61

Figure 3.12: IfcExtrudedAreaSolid (BuildingSMART International Ltd 2006b)...........61

Figure 3.13: Perspective projection viewing volume (Neider et al. 1994).....................63

Figure 4.1: Login Form...66

Figure 4.2: User manager..67

Figure 4.3: Add user..67

Figure 4.4: IFC file manager...68

XIII

Figure 4.5: Add an IFC file..68

Figure 4.6: IFC WebGL viewer...69

Figure 4.7: WallOnly.ifc IFC Engine Viewer..71

Figure 4.8: WallOnly.ifc prototype..71

Figure 4.9: x.ifc IFC Engine Viewer ..72

Figure 4.10: x.ifc prototype...72

Figure 4.11: 4walls.ifc IFC Engine Viewer...72

Figure 4.12: 4wall.ifc prototype..72

Figure 4.13: AC11-FZK-Haus-IFC.ifc IFC Engine Viewer..72

Figure 4.14: AC11-FZK-Haus-IFC.ifc prototype..72

Figure 4.15: WallOnly.ifc BIMSurfer..73

Figure 4.16: x.ifc BIMSurfer...73

Figure 4.17: AC11-FZK-Haus-IFC.ifc BIMSurfer..73

Figure 4.18: 4walls.ifc BIMSurfer..73

Figure 4.19: WallOnly.ifc IfcWebServer..73

Figure 4.20: x.ifc IfcWebServer..73

Figure 4.21: 4walls.ifc IfcWebServer..74

Figure 4.22: AC11-FZK-Haus-IFC.ifc IfcWebServer..74

XIV

Index of Tables

Table 1: WebGL support for Desktop Browsers..26

Table 2: WebGL support for Mobile Browsers..26

XV

 1. Introduction

The web evolved and user interfaces changed at the same rate as new technologies

emerged. It started with text documents with links to other documents, without

animations or any interactive contents. After this initial period, the web finally gained

interaction, animations and started to become popular. New plug-ins for the browsers

appeared and made multimedia content possible within web pages (Taivalsaari &

Mikkonen 2011).

In the earlier 90's, it was already possible to display 3D accelerated graphics in the web,

however its usage was limited due to several reasons. The main reason was the low 3D

processing capabilities for common users (Bochicchio et al. 2011).

In the 2000's, two trends in terms of web applications gained more visibility, the Rich

Internet Applications (RIA's) and the Native Web Client Applications. The RIA's main

idea is to use desktop programming technologies in web applications via plug-ins or

custom runtimes. The Native Web Client Applications are binary installed software that

are available though application distribution applications, made specifically for the

mobile devices operating systems.

In the early 2010, a new HTML version was released, the HTML5. This last version

offers a new array of technologies that enables the possibility of developing applications

capable of matching the functionalities of RIA's and Native Web Client Applications

(Taivalsaari & Mikkonen 2011).

Figure 1.1 shows the evolution of the web as an application platform.

16

Introduction

HTML5 is referenced by some authors has the next step in web applications (Taivalsaari

et al. 2011). Some others go even further and say that binary applications will perish,

being replaced completely by web applications (Anderson & Wolff 2010).

It is not hard to predict that the future of education, visualisation, advertising, shopping,

communication and entertainment will pass though Web3D no matter what technology

will success the most (Vani & Mohan 2010). Web3D has the ability to process 3D

accelerated graphics in the web, which was already mentioned previously, but now is

made possible by the advances in hardware, bandwidth and optimisations in the

browser's context. HTML5 features a technology that allows native 3D accelerated

17

Figure 1.1: Evolution of the Web as a Web Application
Platform (Taivalsaari & Mikkonen 2011)

A WebGL application based on BIM IFC

graphics, through a technology called WebGL, which will be presented with detail

further ahead.

Other technology that has evolved gradually in the last decade was the Computer-Aided

Design (CAD) tools. Applications of the Architecture, Engineering and Construction

(AEC) field have struggled in search of an interoperability format that makes a bridge

between them. The Building Information Modelling (BIM) is the concept that makes

that bridge, allowing to communicate, in digital format, information about geometry,

spatial relations, geography, quantities, components properties and all other information

concerning the modelling of buildings, other products and their life cycles (Suermann et

al. 2009).

There has never been a widely accepted format of BIM by the AEC industry (Campbell

2007), until the release of the Industry Foundation Classes (IFC). IFC is an official

standard candidate (ISO 2008) for BIM that is currently supported by almost all the

main applications and tools on Architecture, Engineering, Construction and Operations

(AECO) field (BuildingSMART 2011).

18

Figure 1.2: Information flow between different parties in
AEC with a central database.(Chen et al. 2005)

Introduction

Figure 1.2 shows the different parties involved in AEC sharing information only using

the IFC model.

Merging two technologies like WebGL and a rising standard like IFC may arguably be

the next big step in the AECO software, as emphasizing interoperability and open

standards may be the combination to success in the software industry nowadays

(Campbell 2007).

1.1. PacPórticos Overview

This project was developed during a 10 month research at INESC Porto in the

Manufacturing Systems Engineering Unit department, under the supervision of the

scientific advisor Eng. César Toscano (INESC Porto 2012).

This research project is actually a sub project of a big AECO application being

developed in parallel in other research projects. No further information can be said

about the contents of the project because of the non-disclosure agreements with the

companies involved.

In this dissertation it will be presented the merging of two technologies to solve a

specific problem. The problem is the need to modernise a legacy application called

PacPórticos made by the company Newton – Consultores de Engenharia Lda a few

decades ago. PacPórticos is a software for structural analysis that provides automatic

calculation of building structures behaviour, structural dimensioning of beams, columns

and footings, static and dynamic analysis of horizontal actions and many others kinds of

structural calculations (Newton Consultores de Engenharia Lda 2012).

This legacy software has been written in BASIC and Fortran77, and is only compatible

with old Microsoft Windows operation systems. With this in mind the company wanted

his software to be more compatible with the recent operating systems, mobile devices

19

A WebGL application based on BIM IFC

and AEC tools. The focus is to reproduce a similar flow but in a more modern way,

providing the user with a graphical interface to design and calculate structures, while

giving emphasis to the portability issue. To achieve these objectives a web application

was developed that uses IFC as an exchange file format and a WebGL engine that

processes the IFC information allowing the visualisation of building structures directly

in the browser. Figure 1.3 shows the server-client architecture of PacPórticos.

1.2. Objectives

The objectives are the conception and development of the two modules present in figure

1.3, the server and the client. The first objective is the development of a server module

that will serve as a repository for IFC files. It will allow the user to upload files and

keep them in a data base. The server will also do the first processing of the IFC files.

The second objective is the client, that will enable the visualisation of IFC models in the

browser. For a more detailed understanding of these objectives the consultation of figure

3.2 is recommended.

At this point, it can be identified the specific objectives in the scope of this project:

20

Figure 1.3: PacPórticos server-client architecture

Introduction

• Implementation of an IFC processing module;

In the IFC processing module the intention is to able to manage IFC files. This

management module implies importing and exporting IFC files, and creating the

data structure of the files in Java objects. The module will manipulate selected

objects of the data structure and build a smaller structure to simplify the

processing.

• Creation of IFC 3D models for WebGL visualisation;

To achieve this objective an in depth knowledge of the IFC structure and an

analysis of the WebGL processing needs are required. The intention is to make

the bridge between IFC and WebGL, providing a theoretical basis for the last

objective.

• Development of a prototype that enables the representation of building

structures in the browser;

In this context, the conception and implementation of a working prototype will

be presented. The prototype will have the ability to show IFC building structures

in a WebGL based viewer.

The intent of this work is to show the process of achieving these objectives and show

this new feature of the new PacPórticos software.

In the research project there was also another main objective, the usage of the old

Fortran calculus routines of the legacy software in the new PacPórticos. This was a

complex process because a Java framework was elected to develop the web application

and we needed to call Fortran routines from Java. However this was accomplished by

using Java Native Interface, allowing the loading of Dynamic Link Libraries (DLL's)

into Java. In this case, DLL's contain C functions that call Fortran routines. By doing

21

A WebGL application based on BIM IFC

this process of Java calling C and C calling Fortran it was possible to call a Fortran

routine from Java. These routines are made available in the web application via Java

Web Services and will, in the future, be made public by the company for educational

use. This part of the work will not be within the scope of this document because of

intellectual property agreements.

1.3. Document Structure

The document is divided into 5 sections. The first chapter is the introduction section that

starts with a motivation and brief presentation of the subjects that will be discussed in

the document. It is also where the scope of the project is explained as well as the

problem description, objectives and the document structure. The second chapter is the

state of the art where it is presented the scientific basis and concepts supporting this

work. The chapter is subdivided into four different subsections Web3D, BIM IFC,

Vaadin framework and related work. In the third chapter the conceptual and

implementation details are described as well as all the choices made during the

development of the application. In the forth chapter an analysis and comparison of

results with other works within the same subject is made. The fifth and last chapter has

a summary of the objectives accomplished and the future work.

22

 2. State of the art

This chapter presents different approaches of Web3D, clarifying their advantages and

disadvantages. It contains an explanation about the structure and usage of BIM IFC, an

overview about the Vaadin framework used in the development of the application and

summary about the related work..

 2.1 Web3D

Web3D is the ability to display 3D interactive content in web pages through a browser.

Combining 3D graphics and web technologies needs more real-time rendering, more

optimisation and more compression than previous 3D technologies, plus the investment

in Web3D is still relatively small (Hongtao 2012).

Web3D is not a new concept however only know its usage is becoming more popular.

This is because of the advances in hardware industry, browsers performance, user

interaction, network, security, compatibility and interoperability that opened the

possibility of a quality experience for the common user (Anttonen & Salminen 2011).

Web3D technologies are evaluated concerning five criteria:

• Simplicity (easy to install, use and deploy)

• Compatibility (platforms that are able to run the technology)

• Quality (performance, frame rate, maximum resolution and others)

• Interactivity (freedom and easiness to create interactive content)

• Standardisation (recognised by a standard organisation)

23

A WebGL application based on BIM IFC

The most relevant technologies which are capable of processing Web3D will be

overview with some depth in the this section, giving special attention to WebGL, the

chosen technology.

 2.1.1 WebGL

WebGL was started by the Mozilla Foundation and the Khronos Group, this technology

is an open, royalty-free, cross-platform standard for 3D accelerated graphics rendering

in the Web without plug-ins (Ortiz Jr 2010), that complements other technologies in the

HTML5 standard.

It is based in OpenGL ES 2.0 (Embedded Systems), the OpenGL version for mobile

devices and operating systems. WebGL can be considered as the web-based version of

OpenGL specification (Cantor & Jones 2012). In a more specific way, WebGL is a

JavaScript binding for the OpenGL ES 2.0 API with full integration with Document

Object Model interfaces, this means it can be combined with other web content. The

API provides a web-based 3D environment for developing applications such as video

games, scientific visualisations, and medical imaging (Khronos Group 2012).

Normally web-based 3D technologies uses software-based rendering. This mean that the

calculations needed to render a 3D scene is done by the CPU, the computer main

processor. On the contrary, in WebGL has a hardware-based rendering. Meaning that the

major part of the computing is made in the GPU(Graphical Processing Unit), the

computers graphics card. Hardware-based rendering is much more efficient than

software-based rendering because it uses dedicated hardware to perform the operations,

however software-based rendering is more pervasive because it doesn't have hardware

dependencies. As WebGL operates in the web there is also another distinction that needs

to be made, that is where the rendering takes place, it can take place in the server or the

client. If the rendering takes place in the server it is necessary to have a server with a lot

of processing resources and a continuous connection of the client to the server. In client-

24

State of the art

side rendering the server sends the 3D scene to the client and the client takes care of the

rendering. WebGL has client-based rendering, which in the majority of the applications

is a lot more advantageous because if some work is being performed, for example

building a 3D model, the work can be saved locally if there is no internet connection. It

also eliminates bottlenecks like the network or server congestion (Cantor & Jones

2012).

To better understand the rendering process it is important to see all the steps that make it

possible, these steps are called the rendering pipeline in figure 2.1. All the steps in the

pipeline are programmable.

The Vertex Buffer Objects(VBO's) are the objects where the geometrical information is

store, such as vertex coordinates, normals and texture coordinates. The Vertex Shader is

the step where the information from the VBO's is computed, this information by

attributes that point to the correspondent VBO. This computing is done for each vertex

independently. The Fragment Shader is where the sets of vertex are fill to form a

surface, this process is called rasterization. Rasterization can be in sets of one (points),

two vertex (lines) or three vertex (triangles). The surfaces are called fragments and the

25

Figure 2.1: WebGL rendering pipeline overview(Cantor & Jones 2012)

A WebGL application based on BIM IFC

main idea behind the fragment shader is to define the color of each pixel that belongs to

the fragment. Vertex and fragment shaders are written in OpenGL Shading Language

(GLSL) that runs natively in hardware. FrameBuffer stores the surfaces or frames

generated by the fragment shader. Once all the frames are processed a 2D image is

generated to produce the final result to display on the screen. There are also varyings

that are to pass data from the vertex to the fragment shader and the uniforms that

normally contain lighting information to the vertex and fragment shaders. These are

variable use in the shaders to optimise the performance or quality of the rendering

(Aaftab et al. 2009).

The recent versions of major web browsers already support WebGL natively, including

Google Chrome, Mozilla Firefox, Safari and Opera (Congote & Sebastian 2011).

Internet Explorer still hasn't announced is plans about WebGL support. Table 1 show the

main browsers WebGL support for desktop and table 2 for mobile devices (Shankland

2011; Khronos Group 2012; Halevy 2011; Opera Mobile Team 2012; Mozilla

Developer Network 2012; Armasu 2012; Google Developers 2012a).

26

Table 1: WebGL support for Desktop Browsers

Desktop
IE Firefox Chrome Safari Opera

Current version 9.0 14.0 21.0 6.0 12.0

Future version 10.0 15.0 22.0 6.1 12.5

Supported Not Supported Support Unknown

Table 2: WebGL support for Mobile Browsers
Mobile

iOS Safari Opera Android Browser BlackBerry Opera Chrome Firefox
Current version 5.0 5.0 – 7.0 4.0 OS 2.0 12.0 18.0 14.0
Future version 6.0

Supported Not Supported Support Unknown

State of the art

Chrome and Firefox Windows versions by default use Google's Almost Native Graphics

Layer Engine (ANGLE) (Chromium Projects 2011) a library to translate WebGL GLSL

shaders to Microsoft's HLSL language, compile and run them thought DirectX

subsystem and other platforms. This operation improves compatibility with older

systems. This change also can be disabled in browser configurations if the graphics card

supports native OpenGL (Congote & Sebastian 2011).

WebGL runs in the HTML5 canvas element and data is generally exchanged via

Document Object Model (DOM) interfaces, this allows the browsers to display 3D

graphics natively without the use of plug-ins.

The HTML5 standard contains a good amount of new features that makes web

applications to look more alike desktop applications. Figure 2.2 shows the technologies

that enables HTML5 to perform more like desktop applications.

27

Figure 2.2: HTML5 Related Technologies(Mavrody 2012)

A WebGL application based on BIM IFC

There are several frameworks and libraries for WebGL (Taivalsaari et al. 2011). These

are the development libraries worth of mentioning:

• C3DL (http://www.c3dl.org/)

• Copperlicht (http://www.ambiera.com/copperlicht/)

• CubicVR (http://www.cubicvr.org/)

• EnergizeGL (http://energize.cc/)

• GLGE (http://www.glge.org/)

• Jax (http://blog.jaxgl.com/)

• O3D (http://code.google.com/p/o3d/)

• Processing.js (http://processingjs.org/)

• SceneJS (http://scenejs.org/)

• SpiderGL (http://spidergl.org/)

• StormEngineC (http://code.google.com/p/stormenginec/)

• Three.js (https://github.com/mrdoob/three.js)

• WebGLU (http://github.com/OneGeek/WebGLU)

There are some wrappers for other languages like Mandreel for C++/Objective-C,

likewise there is GWT-G3D and GWTGL for Java. This amount of libraries and

28

State of the art

wrappers show that the development in WebGL is becoming very popular and new

applications are being released everyday.

Satisfying rendering rates can be achieved in WebGL without any specially customised

hardware, as well as good frame rates for data visualisation. Eliminates the need for

dedicated language, no plug-in required for interpretation, portable across browsers,

devices and operating systems and advanced rendering support. Unlike other Web3D

standards WebGL's imperative graphic programming enables great flexibility and

exploits the advanced features of modern graphics hardware (Congote & Sebastian

2011). All these features and many others that are still under definition, make the

WebGL a very powerful and exciting standard, that eventually will change the way that

browsers interact with end users and consequently change the way that future web

applications will be (Taivalsaari & Mikkonen 2011).

 2.1.2 X3D

X3D or ISO/IEC 19775 is a standard for network-enabled 3D graphics and multimedia.

By defining interactive web and broadcast-based 3D content integrated with multimedia

X3D is intended to be used in a variety of hardware devices and application ranges such

as engineering and scientific visualisation, multimedia presentations, entertainment and

educational titles, web pages, and shared virtual worlds. It is the successor of the

original standard for web based 3D the VRML (ISO/IEC 14772), X3D add new features

to the original standard which only defined 3D interactive vector graphics. The more

noticeable features are (ISO/IEC 2012):

• 3D graphics – Polygonal geometry, parametric geometry, hierarchical

transformations, lighting, materials and multi-pass/multi-stage texture mapping

• 2D graphics – Text, 2D vector and planar shapes displayed within the 3D

transformation hierarchy

29

A WebGL application based on BIM IFC

• Animation – Timers and interpolators to drive continuous animations;

humanoid animation and morphing

• Spatialized audio and video – Audiovisual sources mapped onto

geometry in the scene

• User interaction – Mouse-based picking and dragging; keyboard input

• Navigation – Cameras; user movement within the 3D scene; collision,

proximity and visibility detection

• User-defined objects – Ability to extend built-in browser functionality

by creating user-defined data types

• Scripting – Ability to dynamically change the scene via programming

and scripting languages

• Networking – Ability to compose a single X3D scene out of assets

located on a network; hyperlinking of objects to other scenes or assets located on

the World Wide Web

• Physical simulation – Humanoid animation; geospatial datasets;

integration with Distributed Interactive Simulation (DIS) protocols

• Geospatial positioning – Ability to accurately position X3D scene objects

geospatially.

• CAD geometry – ability to represent CAD models mapped from CAD

systems.

30

State of the art

• Layering – Ability to organise X3D scenes into rendering groups so that

objects in each layer can overlay objects in underlying layers.

• Support for programmable shaders – Ability to replace the X3D lighting

model with custom shader programs.

• Particle systems – Ability to generate systems of particles that can

represent fire, smoke, and other such effects

Connection to external modules and definition of functional requirements via profiles

(set of components) is also one within the X3D specification, among those profiles are

included the X3D Core, X3D Interchange, X3D Interactive, X3D CADInterchange,

X3D Immersive, and X3D Full. It also possesses a various number of formats and

programming language bindings as it can be acknowledged in figure 2.3.

31

Figure 2.3: X3D File encoding formats and programming language
bindings(Behr & Michael 2009)

A WebGL application based on BIM IFC

Anslow points in is masters thesis (Anslow 2008) the major advantages of X3D, that are

rich graphics, extensibility and XML integration. However Anslow also points that

being a plug-in technology it inherits the common drawbacks of OS and browser

incompatibility, security and installation issues, plus it has is own problems of lack of

visualisation softwares, primitive animation model, weak support for filtering and

layout.

For some of the reasons stated above some specialists like 3DVIA's Laubner stated

(Ortiz Jr 2010) that X3D never caught on in the 3D developing community and was

largely ignored.

 2.1.3 Adobe Flash

Adobe Flash is a platform that adds animation, multimedia and interactive contents to

web pages. Although being considered now by Adobe as a platform for RIA's (Adobe

Systems 2012b) it has been since the Macromedia times a 3D technology for web.

Using Flash Player on desktops or Flash Player Lite on mobile devices, that are ActiveX

based plug-ins, it is able since the version 10 (Ortiz Jr 2010) to do 3D accelerated

graphics rendering, manipulating vector and raster graphics to provide animation to text,

drawing and still images in web and standalone applications (Adobe Systems 2012a).

It has his own object oriented programming language called the ActionScript, derived

from the ECMAScript and consequently from JavaScript. ActionScript is based in a set

of commands called by Adobe System “actions” that could contain variables,

expressions, if statements, operators and loops (Gawecki 2011).

Due to Flash's plug-in nature, unsuitable usability for open source operating systems,

security and complex processing requirements it was rejected by some software

companies (Gutwin et al. 2011).

32

State of the art

 2.1.4 J3D

Java3D is a cross-platform 3D API for the Java platform and it is based on a scene

graph structure. To be able to process accelerated 3D graphics J3D runs on top of

renderers like Direct3D or OpenGL. J3D runs on web via applets, which usually call the

Java Virtual Machine to run a JAR file. Included in HTML the same way as an image

but using the <applet> tag (now replaced by <object>), the Java Runtime Environment

it is called by the browser and the compile code is executed (Vani & Mohan 2010).

It was surrounded by a big hype in his earlier days because if it has many advantages

like being cross-platform, mostly client based reducing the overhead, good performance

compared to native software and the browser caching made it easy to load. After

sometime of usage it started to show his flaws namely his plug-in requirement, mobile

browsers do not support applets, bad accessibility and the biggest problem is that an

applet depends on the version of the JRE creating severe backward compatibility issues

(Roberts 2007).

 2.1.5 Unity

Unity is a cross-platform development tool mainly used for 3D games development

(Unity Technologies 2012a) but it can also be used in architecture visualisations

(Buchhofer 2011). Supports JavaScript, C++ and a dialect of Python called Boo, with all

the three it is able to make database connections, networking, media integration (namely

with Flash) and all the other features that mainstream languages can do.

Unity has a huge amount of tools to create models, physics, camera control, particles,

image effects and so on, this eliminates a lot of programming effort and empathises the

game logic (Unity Technologies 2010).

33

A WebGL application based on BIM IFC

For the web, Unity has two major problems: the first one is the need for a custom unity

player plug-in that only runs on some browser builds for Windows and Mac; the second

problem is that additional amount licensing is need to develop for mobile devices. For

instance, if we want to develop to Android platform we have to buy a Unity Pro and an

Android Pro licence (Unity Technologies 2012b).

 2.1.6 Microsoft Silverlight

Microsoft's Silverlight is an API for RIA, and version 5 is capable of processing

accelerated 3D graphics in the web. Using the XNA libraries Silverlight can do data

visualisers, 3D charts, scatter points, geographic overlays, and 3D games and

simulations. It is called by using the HTML <object> tag and the browser Silverlight

plug-in calls the OS rendering engine (Microsoft 2012b).

As it is a Microsoft technology it lacks a lot in compatibility specially for mobile

devices, working only on windows type devices, and for desktop works good in

Windows OS's but, in other OS's it only works in a few builds of some browser

(Microsoft 2012a)

 2.2 BIM IFC

Building Information Model is a comprehensive information management tool on the

simulation of design and construction. In other word, it is a way to digitally store and

organise all the policies, processes, technologies, designs and projects concerning the

life cycle of a building (Succar 2009). Started with the CAD tools when computers start

to be used for graphical representation and automating the process of design, but soon

enough it was needed more than just pure technical drawing information. The AEC

industry uses BIM to assist, integrate, eliminate inefficiency and redundancy, improving

collaboration and consequently overall productivity in all the construction process

(Campbell 2007).

34

State of the art

On the verge of becoming the standard for BIM (ISO 2008), IFC is an open

specification that allows exchange information between all parties in a building

conception. It covers a total of 8 domains of the AECO industry as it shows in the figure

2.4.

The specification of the IFC standard can be represented as two data schemas both are

parts of the STEP or ISO 10303 standard:

35

Figure 2.4: IFC domain specific data schema map (BuildingSMART International Ltd 2011b)

A WebGL application based on BIM IFC

•Based in XPRESS or ISO 10303-11. The implementation method called STEP-

File 10303-21 an easy to read data exchange of product model, due to his ASCII

structure usually with an instance per line (ISO 2002; ISO 2004).

•Based in XML called STEP-XML or ISO 10303-28. An implementation

method that uses XML to represent the XPRESS schema (ISO 2007).

In order to develop an application that supports IFC, it is required to support a well

defined subset of the data schema, these subsets are called model view definitions.

Every model view definition has is defined subset schema to store all the data of one or

many work flows from the building construction and facility management industry

sector (BuildingSMART International Ltd 2011b).

In this work we will focus on the structural elements domain and the shared building

elements. This will allow us to have not only information structural elements but also

information about all the building elements.

IFC has a hierarchical structure and all the entities in the IFC schema have the prefix

“Ifc”. By definition the root entity of a building project is the IfcProject., this Project is

a container for all the other entities and defines information important to all the other

elements, for example the default international system units and prefixes applied to

those units (BuildingSMART International Ltd 2006f). The other levels are IfcSite,

IfcBuilding and IfcBuildingStorey.

In figure 2.5 can be seen that IfcSite is not a mandatory entity, however is used very

often to represent the area where the construction is undertaken. IfcBuilding represents

the buildings and IfcBuildingStorey represents the storeys of each building. There is

also another entity after IfcBuildingStorey that is the IfcSpace but is normally used in

architecture projects. Below the IfcBuildingStorey there are the IfcBuildingElements

36

State of the art

that represent the multiple building elements present in a storey, such as IfcWall,

IfcColumn, IfcBeam and many others.

All these entities inherit the proprieties of IfcProduct, except IfcProject, that helps to

define spatial or geometric context. The properties are IfcObjectPlacement and

IfcProductRepresentation, object placement defines where is the object in the

geometrical space and the representation which shape will the object (BuildingSMART

International Ltd 2006d).

IfcObjectPlacement not only represents positions but also represents orientation. There

are three types of object placement the absolute, relative and grid. The absolute uses

always the World Coordinate System present in IfcProject as reference. The relative

uses the object placement another product as reference normally the previous in

hierarchy, for example a building element will use the building storey reference and the

building storey the building. The grid placement virtual use the intersection and

reference direction given by two axes of a design grid (BuildingSMART International

Ltd 2006c).

37

Figure 2.5: IFC spatial structure of a building project (Liu et al. 2010)

A WebGL application based on BIM IFC

The IfcProductRepresentation (BuildingSMART International Ltd 2006e) is the

topological or geometrical representation of the object. A product or object can have

zero, one or several geometric representations and the same representation can be

shared by many objects. It can be a plane, circle, sphere, cube, solid and many other

representations.

This vast hierarchical structure of IFC makes possible to AEC applications to map their

own models into the IFC correspondent, in order to ensure interoperability between

them. However some interoperability benchmarks (Jeong et al. 2009) still show some

mistakes in terms of 3D information in the development of applications.

 2.3 Vaadin Framework

Vaadin is a Java framework for web based applications development. This framework

comes as a Java library that saves a lot of time to programmers handling software

engineering problems during the development process. The mains advantages of using

this framework are that all the code is written in pure Java and server-client

communications are simplified.

Taking a deeper look into Vaadin architecture in figure 2.6, we can see that it is

composed by two distinct sides, which are the server-side framework and the client-side

engine.

38

State of the art

The server side runs as a Java Servlet session in a Java application server and the client-

side runs as a HTML and JavaScript on the web browser. A Vaadin application runs on

the server has a servlet, serving HTTP requests. This requests are handled by the

terminal adapter. The client events are interpreted by the Java Servlet API for each user

session. After the events being processed in the Server-Side User Interface Component

a response is generated to be sent to the client-side counterpart. Normally it would be

need also to develop the client-side in HTML and JavaScript but Vaadin makes use of

the Google Web Toolkit (GWT) to do that work. GWT applications are also written in

Java and compiled into JavaScript by the GWT compiler, this compiler supports a large

range of web browser, so the developer doesn't need to do different builds for different

browsers. However GWT applications still need to communicate with the server.

Communication is achieved using Asynchronous JavaScript and XML (AJAX), to make

39

Figure 2.6: Vaadin Architecture (Grönroos 2012)

A WebGL application based on BIM IFC

a better client interactive experience, more responsive applications, almost like

communications between client and server in desktop applications. The communication

between browser and server requires the use data object serialisation, in order to

transmit data objects through network connection. The new builds of Vaadin use GWT

JSON interface instead of the traditional XML, this makes the application object

serialisation much faster (Nurseitov et al. 2009). GWT allows the creation of very

advanced user interface components called Widgets (Google Developers 2012b). These

Widgets give freedom to programmers to create interaction and logic in the browser,

even more with the insertion of HTML5 related technologies already presented in figure

2.2.

Vaadin makes a clear distinction between user interface and logic, allowing both to be

developed separately. The themes in Vaadin are what dictate the user interface

appearance, these themes use Cascading Style Sheets(CSS) or optionally HTML page

templates (Grönroos 2012)

There several reasons behind the election of the Vaadin framework for this work, all of

them promoting a faster deployment of applications. The large amount of interface

components, controls and Widgets is very useful when developing a good user interface.

The default themes and style are very clean, good looking and easy to alter. Vaadin's

GWT basis that allow the developer to program only in Java language, not wasting time

programming in HTML and JavaScript.

 2.4 Related Work

The following three projects, that merge IFC models and WebGL, were identified:

BIMSurfer, BIMShare and IFCWebViewer.

BIMSurfer is the viewer of the BIMServer project. The BIMSurfer is an open source

IFC model viewer based on WebGL written in pure JavaScript. Allows an excellent

40

State of the art

experience while navigating the models, very smooth, with a lot of interactive features

like Storey sliding and object picking. It uses the BuildingSMART library to parse the

files and transforms them into a JSON scene graph. A similar approach to the one used

on the prototype produced in this document, with the main difference being the usage of

a scene graph JSON API called SceneJS, that aids in the manipulation of the scene

graph (Lindeque 2011).

BIMShare is JavaScript API owned by Gehry Technologies, that allows the upload and

visualisation in WebGL of IFC models. The viewer is BIMSurfer with some minor

modifications. BIMShare state on their website that they are using third party software

from BIMServer (Gehry Technologies 2012).

IFCWebViewer is the viewer of the IFCWebServer open-source project. The

IFCWebViewer enables the viewing of IFC models in the browser with WebGL support.

It uses the Javascript library SpiderGL to aid in the rendering process. Supports all

version of IFC by default, however with large structures the frame rate drops

significantly (Ismail 2012).

 2.5 Summary

In this chapter, it was reviewed the Web3D technologies available and concluded that

for this work the best option is WebGL. This conclusion is based on WebGL's relation

with HTML5, compatibility with most browsers, the quality displayed in some

applications, like the Rome (Milk 2012), and the base of WebGL, OpenGL already is

the industry standard for high performance graphics that also ensures some liability.

BIM IFC was explained, taking in account the structure and the elements that will be

needed in the next chapter. The Vaadin framework capabilities were presented and the

choice of its usage justified. Finally were shown the projects that have the same purpose

as the prototype presented.

41

A WebGL application based on BIM IFC

 3. Method

In this chapter is presented, step by step, the conception and development of the

PacPórticos application. Both conception and the development sections are subdivided

into the server and the client-side, to make the understanding more clear and to allow

the distinction between the two different sides of the overall application.

 3.1 Conception

The PacPórticos application, as already mentioned, has three main modules but only the

item one and two will be described:

1. The server-side where it will be managed the users and IFC files;

2. The client-side, running inside the browser, where the 3D building models will

be displayed;

3. The WebServices module where the fortran calculus routines will be called;

In order to validate the prototype, the following requirements needed to be met:

Functional requirements:

1. Simple authentication system;

2. User manager to add, edit and delete users;

3. IFC file manager per user, each user can add and delete his own files;

4. Deserialisation of IFC files;

42

Method

5. Viewing IFC models correctly;

6. The viewer must allow basic navigation controls: pan, zoom, rotation;

Non-Functional requirements:

1. Multiple viewers can be opened at the same time;

As this is a prototype version the non-functional requirements are no taken into deep

consideration. Figure 3.1 shows the overall architecture of the application, where can be

seen the modules integration and communication protocols.

43

A WebGL application based on BIM IFC

 3.1.1 Server-Side Module

This section explains the concepts and thought process behind the conception of the

Server-Side Module. Starting with the way that Vaadin application handles the IFC files

and process them, culminating in the creation of a model that will be sent to the client-

side module.

44

Figure 3.1: PacPorticos Architecture

Method

 3.1.1.1 IFC Processing and Model Creation

The server-side module also contains a simple authentication system and database

management system that, although not very pertinent for this work, will be mentioned

briefly in the development section.

The most important part of this module is the IfcFileProcessing system, that reads an

IFC file in both standard formats, STEP or XML, parses and transforms it into Java

objects with Eclipse Modelling Framework (EMF) (The Eclipse Foundation 2012a).

EMF is a modelling framework based on a structured data model, for example an XML

Schema, and can generate an EMF ECore file. Using this file the framework can

generate a set of annotated Java Classes that correspond to the same structured data

model. This framework is useful to generate Java Classes from big structured data

models like IFC. Without this framework it would be a serious time commitment to

implement all the IFC model in Java.

The process of transforming a stream of bytes into an object is called deserialization or

unmarshalling. The inverse process of transforming an object into a stream of byte is

called serialisation or marshalling.

The parsers used in the IfcFileProcessing module are from a project called BIMServer

(BIMServer 2008). BIMServer project is an open source centralised data base for the

IFC standard. Allows user from across all the sector of the AECO industry to work

together by providing an interface to interact with BIM IFC projects, query them on the

fly, merging parts of the project and many other useful operations.

After the unmarshalling the parser returns an interface (IfcModelInterface) to query the

IFC data model. The next step would be send this data model to the client module

however the objects generated by the EMF contain circular references which cannot be

used in Vaadin's framework communication mechanisms, RPC (Vaadin 2012a) or

45

A WebGL application based on BIM IFC

SharedState (Vaadin 2012c). The way overcome this problem is to extract the objects

needed from the IfcModelInterface and create a new model that contains the

information needed without circular references, that was called IfcDataModel. This

measure will also optimise the amount of data that is transmitted to the client.

After creating the new data model it is defined an object that contains all the data from

data model, called simply Project. This object will serve as a carrier for all the data that

the client will use. This data model is needed because Vaadin demands that the source

code of the objects used in the client side must be present in the client-side package.

Figure 3.2 shows the workflow described for the Server-Side and it is usage in the

Client-Side.

46

Figure 3.2: Server-Client Workflow

Method

 3.1.2 Client-Side Module

The client-side is a Vaadin widgetset, a set of Widgets working together. This section

explain the conception of the IFC WebGL 3D engine based on a Scene Graph approach.

 3.1.2.1 IFC WebGL Widget

The client-side module is based in the GWT G3D (Nguyen 2010). This 3D library for

GWT, is a Java implementation of the main WebGL functions. These functions when

compiled, using the GWT compiler, are transformed into WebGL JavaScript functions

and will run inside a HTML5 canvas. GWT G3D provides a Widget called Surface3D,

this Widget is a HTML5 canvas with WebGL context. This will allow the creation of a

3D engine for IFC models.

The name of the Widget that will process the IFC information and transforms it into

WebGL commands is called IfcWebGLWidget. This Widget will extend the Surface3D

Widget so it inherits his properties and enables the usage of WebGL functionalities. The

next is creating an engine capable of transforming the geometric data of the Project

object into WebGL information.

 3.1.2.2 Scene Graph

To create a 3D engine capable of processing the Project data model it was used a Scene

Graph approach. A Scene Graph is a data structure that allows the representation of a

hierarchical 3D scene. It is very useful in computer graphics because it creates an

abstraction of the 3D rendering system. More specifically a Scene Graph is a direct

acyclic graph, i.e., a graph that does not contain cycles (Bouvier 2002).

In this case the Scene Graph will contain Leaf Nodes and Group Nodes. The Group

Node will be divided into two groups, the Transform Groups and Branch Groups. Leaf

Nodes represent the primitive objects like a cube or a sphere. Primitive objects are

47

A WebGL application based on BIM IFC

meshes of triangles, each triangle is a group of three 3D points (vertex). To improve

performance the same vertex in several triangles can be used in order to construct the

mesh. Figure 3.3 shows a cube mesh using the same vertex in different triangles.

Branch Groups represent every abstract object like a column or a building, a Branch

Group can have multiple Leaf Nodes, for example a wall can be represented by multiple

cubes.

Transform Group represent spatial transformations operations that will affect all the

children nodes and consequently all the nodes that are in the same branch. Transform

Groups have a transformation matrix at is used to perform three different types of

spatial transformation operations. Scaling that increases or decreases the size of the

mesh, rotation that makes the mesh rotate around a specific point in space and

translation that positions the mesh in a specific point in space. These transformations

allow branches of the hierarchy to be positioned, rotated and scaled if needed. Figure

3.4 shows a base image transformed using the three spatial transformations mentioned.

48

Figure 3.3: Cube Mesh(Aaftab et al. 2009)

Method

The root node is a Branch Group represents the Project object, that in the server-side

model and in the IFC model are the containers to all the other objects.

The child of the root node is always a Transformation Group that contains the

International System Prefix the will be used to scale all the model into the correct size.

For example if the prefix is “milli” all the coordinates have to be multiplied by 10-3.

This Transformation Group can have now many Branch Groups as his children, it

depends on how many construction Sites the project have, replicating the IFC

hierarchical structure explained previously. The Sites Branch Groups can have several

Branch Groups that represent the Buildings, Buildings Branch Groups can have several

Branch Groups that represent Building Storeys.

If the Project uses absolute placement, as already explained in the BIM IFC section,

each BuildingStorey Branch Group only has one child Transformation Group that

represents the World Coordinate System. If the Project uses relative placement each

BuildingStorey Branch Group as a hierarchy of five Transformation Groups each one

representing the placement of abstract objects of IFC, starting with the World

Coordinate System for the project and the relative placements for the Site, Building,

Building Storey and Building Element.

49

Figure 3.4: Spatial Transformations (Martins &
Paciornik 2012)

A WebGL application based on BIM IFC

After the Transformation Group that represents the Building Element there is the

Branch Group that represents the Building Element. After this Branch Group there are

are many Transformation Groups as there are primitive objects needed to represented

the Building Element of the Branch Group. The Scene Graph ends with the one leaf

node for each of the Transformation Groups representing each primitive object.

For better understanding of Scene Graph, figure 3.5 shows how the different nodes of

the Scene Graph are mapped into model objects and geometric transformations.

50

Figure 3.5: Scene Graph

Method

All these concepts are important to understand the phase of development where it will

be presented the more technical issues of the project.

 3.2 Development

This section describes in detail the implementation of the prototype application. Starts

by identifying the development environment and frameworks used, explains the

implementation of the server-side module and finishes with a very detailed description

of the client-side module development.

 3.2.1 Development Environment and Frameworks

The development environment used was Eclipse Indigo IDE, a known open source

development platform initially developed for Java language programming. Eclipse has a

large amount of useful plug-ins that extends the IDE capabilities like compiler and

editors for different programming languages, server development platforms, modelling

tools and many others.

In terms of Java, it was used the Java Development Kit version 1.6.0. This decision is

based on dependencies of the Vaadin 7 alpha 3 Framework, that only supports Java 6.

Using the Vaadin plug-in for Eclipse it is possible to create and maintain Vaadin projects

and Widgets. Vaadin 7 alpha 3 has Google Web Toolkit 2.5.0 built in and by using the

plug-in for Eclipse it is possible to compile the client-side into JavaScript by pressing

the compile Vaadin Widgets button (Vaadin 2012a).

For the Server-Side development it is needed a Java application server. Apache Tomcat

7 is available in the Eclipse Web Tools Platform 3.2 plug-in (The Eclipse Foundation

2012b). This means that an Apache Tomcat server will run embed in Eclipse platform,

the advantage of this is that the server-side runtime debugging will be done within

Eclipse.

51

A WebGL application based on BIM IFC

The database chosen was the HyperSQL 2.2.9 an open source relational database engine

fully written in Java Language. This database has the option to run embedded in the

application. The advantage of using this embedded mode is that no external installation

of the database management system is needed when deploying.

The code is considerably big so for testing proposes it was used JUnit Framework

version 4.10. This framework allows the creation of test instances to test the output of

each method present in any class. Only the core methods are tested, to make sure that

newer versions of the application do not influence the behaviour of previous versions

code.

As it was already mentioned in the Conception it is used a wrapper of WebGL in GWT

called GWT-G3D in the version 0.07. This might be a very early version but the intent

is just to use the Canvas with WebGL context, so no advanced versions are needed. The

library also contains a lot of utility implementations, like a very useful custom

implementation of matrix stack, to compensate the lack of native matrix stack support in

WebGL.

As the client-side module was written in Java, compiled to JavaScript and ran in a

browser there was no direct way of debugging it. Google Developers launched a special

feature in GWT to run client-side application in debug mode, it is called SuperDevMode

(Google Developers 2012c). The SuperDevMode basically uses a CodeServer, this

server contains the source (Java) and the compiled (JavaScript) code. By using the new

standard called Source Map it is possible to the developers to see Java instead of

JavaScript in the browser inspection window. Figure 3.6 shows the SuperDevMode

working on Google Chrome. To use Vaadin and SuperDevMode (Vaadin 2012d) is very

time saving if combined with the one browser compilation in Vaadin.

52

Method

 3.2.2 Server-Side Module

When the application starts the user is directed to a classic login form. This form is the

class LoginWindow, it connects with the database by a LoginManagerService class to

perform the proper authentication. The LoginManagerService retrieves the password of

username entered by the user. Uses a EncryptionService class to encrypt the password

given by the user and compares it with the retrieved one.

After the authentication is succeeded the user enters a part of the application where

there are 3 possibilities available. The Main window, the About window and the Logout

Window. These classes have the names MainWindow, AboutWindow and

LogoutWindow respectively. The Logout Window just makes the session logout and

returns the user to the LoginWindow. The About Window have some labels with

information about the application. The Main Window has several different tabs inside it.

53

Figure 3.6: SuperDevMode

A WebGL application based on BIM IFC

First tab for Users, if the user has the proper permissions to have this tab enabled.

Second tab is called IFC Files where the user can manage the IFC files that he uploaded,

in this tab it is possible to open IFC files. When the user opens a IFC file the application

open a new tab with the name of the file and display a IfcWebGL Window. This

IfcWebGL Window is what runs the IfcWebGLWidget, that is the client-side

application.

In order to work with the IFC files in the client-side first we need to do a unmarshalling

operation, already explained in the Conception chapter. The class responsible for that is

called IfcUnmarshaller. This is a singleton class that creates a InputStream from the file

retrieved from the data base and processes it. The method of this class that processes the

InputStreams is called unmarshallFromInputStream and returns a IfcModelInterface.

The method checks the extension of the file. If the file has the extension “.ifcxml” it is

used the IfcXmlDeserializer a class present in the BIMServer library, that reads a ifcxml

InputStream and transforms it into Java Classes. If the file has the extension “.ifc” it is

used the IfcStepDeserializer also present in the BIMServer library, that does the same

process that the IfcXmlDeserializer but for step format files.

The next step is to extract the data model from the IfcModelInterface. This process is

done by two classes the DataModel and the DataModelBuilder. The DataModelBuilder

will query the IfcModelInterface retrieving the objects of the IFC hierarchy, the

relationships between them and the definition shapes of the building elements. The

buildProject method is the responsible for this work and will return a DataModel object.

This DataModel object will contain the IFC objects of the BuildingSMART library, but

this object is not usable in the client-side, because of reason already mentioned in the

conception section. However the buildProject has also the function of building a client-

side usable model called simply Project. The source code of the Project object is in the

client-side, however it can be used in the server-side in Vaadin.

54

Method

The mechanism used to allow the server to communicate with the client is the

SharedState. This mechanism just uses two classes to control the state of objects passed

by the server to the client. The classes are IfcWebglConnector and the IfcWebglState.

The IfcWebglState contains the objects needed in the client-side, like the Project object

for example. The IfcWebglConnector controls the IfcWebglState objects state and

triggers events in the client whenever their state changes. The complete class diagram of

the Server-Side Modulo is available on Annex A figure 2.

Now that the Project object is on the client side, the Server-Side Module is over and the

application continues in the Client-Side Module. Like shows in bottom right of figure

3.2 when in the Project pass from Server-Side to the Client-Side.

 3.2.3 Client-Side Module

The Client-Side Module starts in IfcWebglConnector, that has a method to create a

Widget, in this case the IfcWebglWidget. When the IfcWebglWidget is created the

Project object is set into it. The IfcWebglWidget has two different moments: the

initialisation and the rendering.

The initialisation is a pre-processing operation that initialises all the needed objects

needed to process the scene. The initialisation contains the following 5 steps:

1. WebGL context creation;

2. Shader definition;

3. Construction of the Scene Graph;

4. Mouse Handler creation;

5. Camera settings;

55

A WebGL application based on BIM IFC

For better understanding the rendering moment will be explained within the Scene

Graph construction

 3.2.3.1 WebGL Context and Shader definition

The WebGL context and the Shader used are from the GWT-G3D library. The context

defines the background color, the viewport, color depth and other basic definitions

related with the WebGL canvas.

As this is a prototype application, there is no texturing and the Shader used is a Flat

Shader. A Flat Shader reflects the light uniformly in all directions, using only one color

for each mesh. This shader is also part of the implementation of the GWT-G3D library.

 3.2.3.2 Scene Graph Implementation and Rendering

The construction of the Scene Graph is a recursive process that begins in the root of the

graph and goes down to the leafs. This is done by making the Branch Groups create

their Transform Groups and sons, their sons create their Transform Groups and

grandsons until it reaches the leafs. The Project, for example, create a Transform Group

for the SI prefix and a set of Branch Group sons for all the Sites. Each Site creates a

Transform Group for the placement of the Site and a set of Branch Groups for each

Building. This process goes on until it reaches the primitive object like a BoxNode, that

will not possess sons.

The creation of the 3D meshes is done when the Leafs are created. The majority of these

primitives are generic, hard coded and have a unitary size. The BoxNode primitive, for

example, is a cube centred in the point [0.5, 0.5, 0.5], with one color and exactly 1 unit

of length, width and height. To achieve this kind mesh, the vertices must be defined like

it shows in this snippet:

56

Method

 bottomVertices = new float[] { 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,

0 };

 topVertices = new float[] { 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,

0 };

 middleVertices = new float[] { 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0 };

As the names of the arrays indicate they correspond to the vertices each of the faces.

Top face, bottom face and the four middle faces. This vertices will be used to create

vertex buffers and will be bound to a data buffer. The data buffers are what is passed to

the WebGL primitive drawing calls to render the Scene when the Graph is completely

constructed.

Whenever a vertex buffer is bound to data buffer the developer has to specify the

vexterAttribPointer. This method indicates to WebGL the number of components per

attribute, the type of data of the components, if the components need normalisation, the

byte offset between consecutive generic vertex attributes and the pointer to the first

component. This data is important mainly to define the number coordinates per vertex,

in this case three.

Like in OpenGL ES 2.0 API, WebGL has two primitive drawing calls. They are

drawArrays in figure 3.7 and drawElements in figure 3.8. The major difference between

them is that the drawElements call needs an array of index to indicate the sequence to

vertex to be drawn. The drawArrays call simply uses the sequence of the draw mode

chosen. This means that drawElements will not have duplicated vertex, it is more

complex and eficient.(Aaftab et al. 2009)

57

A WebGL application based on BIM IFC

WebGL uses types of primitives that are geometric objects to render. The geometric

objects supported are points, lines and triangles, being the most common in the 3D

applications the triangles. There are three distinct type of primitive triangles. The first

one is draw separated triangles, this means that it is not possible to reuse the same

vertex in different triangles. The second one is to draw triangles in a strip, drawing a

58

Figure 3.7: drawArrays primitive drawing call (Aaftab et al. 2009)

Figure 3.8: drawElements primitive drawing call (Aaftab et al. 2009)

Method

series of connected triangles. The third one is to draw triangles in a fan, using always

the same first vertex is used in all the triangles. Figure 3.9 show the three primitive

types for the triangles.

In some cases IFC demands geometric representations to be more complex than simple

cubes, spheres or cylinders. These complex geometric representations are called shape

representations. Each IfcBuildingElement contains at least one shape representation.

There are ten types of shape representations, some of them are specific to certain

building elements and others are generic. In this prototype it is only implemented two

generic shape representations, the BoundingBox and the SweptSolid.

59

Figure 3.9: Primitive Triangle Types (Aaftab et al. 2009)

A WebGL application based on BIM IFC

The IfcBoundingBox is very trivial to implement, it has four attributes. The x, y and z

dimensions and the corner. The dimensions are the measures of the box in each

direction and the corner is the location of bottom left corner of the box, being always

the point with the smaller x, y and z of the box. Figure 3.10 shows the IfcBoundingBox

geometric definition. This shape is implemented with a BoxNode and a Transformation

group with two spatial operations. First is performed a scaling operation in all the three

axis corresponding to the three dimensions of the BoundingBox. The last operation is

the translation that positions the corner of the box in the specified position.

The other generic shape representation implemented was the IfcSweptSolid. This shape

representation restricts the representation of a solid model to only include swept solids.

This swept solid normally uses an IfcExtrudedAreaSolid an object that contains a

placement, a depth, extruded direction and a primitive profile or a polyline. The

primitive profiles like the rectangle profile, that is a rectangle with x and y dimension,

placed in a point in space. Then extruded direction is a vector that controls the direction

in which the solid depth will go (Liebich 2009). Figure 3.11 shows the

60

Figure 3.10: IfcBoundingBox (BuildingSMART International Ltd
2006a)

Method

IfcRectangleProfileDef and figure 3.12 the IfcExtrudedAreaSolid geometric definition

representation.

61

Figure 3.11: IfcRectangleProfileDef (BuildingSMART International Ltd
2006g)

Figure 3.12: IfcExtrudedAreaSolid (BuildingSMART International Ltd 2006b)

A WebGL application based on BIM IFC

This can be easily done by using a BoxNode and a Transform Group with the proper

spatial operations. First using scaling operation in the three axis, being x the x

dimension and y the y dimension of the rectangle profile and z the depth of the extruded

area solid. Then rotation operation, rotating the solid to match the extruded area

direction vector. Finally the translation operation, positioning the solid in the extruded

area solid position. As this spatial operations are matrix multiplications the sequence of

operations is pivotal, changing this sequence of operations will results in undesired

solids. In this way we can represent solids with common profiles like the circle, ellipse

or the trapezium and more uncommon ones like the U, T, L and the C profiles, that are

used to represent types of beams and columns.

A Polyline is a set of bi-dimensional points that connected together form a polygon. As

there are no primitive leaf node that can predicted the shape of these polygons, the

points are insert in a triangulation class to be transformed into a triangulated solid. The

triangulation algorithm used was an adaptation of an algorithm that triangulates a

polygon via ear clipping and compute area, present on the book Programming

Challenges (Skiena & Revilla 2003). After the algorithm triangulates the polygon, that

corresponds to the bottom face of the solid, this sequence of triangulated points is

replicated to the top face just by changing the z axis value one instead of zero. The

missing triangles are from the middle faces, that can be calculated based on the bottom

and top faces.

When the Scene Graph is completely built the it is need to have a way that give

possibility to navigate and see the drawn elements.

 3.2.3.3 Mouse Handler and Camera

There is no camera implementation available in WebGL, however a camera

implementation is needed to visualise a building structure. To overcome this issue it was

developed a camera based on perspective projection, a technique that allows the

62

Method

definition of the area seen by the camera, this definition is done according to six

parameters:

1. The eye, the point in space where the camera is located;

2. The target, a vector that represents the direction in which the camera is

pointing;

3. The field of view, the angle in radians that the camera covers;

4. The aspect, the ratio between width and height of the image;

5. The near plane, distance between the camera and the front plane of the

perspective;

6. The far plane, distance between the camera and the back plane of the

perspective;

Figure 3.13 shows the perspective projection viewing volume of a camera.

63

Figure 3.13: Perspective projection viewing volume (Neider et al. 1994)

A WebGL application based on BIM IFC

To navigate in a scene with this camera only the mouse is used, this means it was not

taken into account the mobile device in this version of prototype. The mouse handler

contains information about the mouse behaviour within the WebGL canvas. This mouse

handler and the camera are connected, the mouse handler listens to mouse events and

map them into camera movements. There are three types of camera movements, which

are the pan, the rotation and the zoom.

The pan movement is done when the mouse handler detects that the middle mouse

button was pressed and the pointer moved within the canvas area in the screen. This

measures are calculated in the x and y planes and the amount of pan is obtained by the

resulting radian angle of the difference between the new and the last mouse positions.

This event when it is mapped into the camera, will change target parameter so the

camera turns left and right for horizontal, up and down for vertical movements of the

mouse.

The zoom movement is detected in the mouse wheel or mouse scroll. The zoom level

increases each time the mouse is scrolled down and decrease when scrolled up. The

camera moves the eye position closer and farer in the direction of the target. This means

increasing and decreasing the z coordinate of the eye position. If the camera reaches the

target point by zooming in, the camera will start to move away from the target again if

the user keeps zooming in.

The rotation movement is detected by pressing the left mouse button and moving the

pointer within the canvas area. It the calculation is done in the same way as the pan

movement, but instead of changing the camera target it changes the camera eye

position. This means the eye will orbit around the target in all directions. Every time

that these events are triggered the camera is instantly updated in the canvas and the user

moves around the scene freely.

The Client-Side Module complete class diagram is available in Annex A figure 1.

64

Method

 3.3 Summary

This chapter compiled all the aspects concerning the prototype application conception

and development, giving a detailed insight of the operations provided and their

implementations.

65

A WebGL application based on BIM IFC

 4. Analysis and Results

Along this chapter will be presented the obtained results, namely, it will be described

some tests done with the developed application as well as the application itself, with

respect to its graphical interface. A final analysis of the achieved objectives , taking into

account the project requirements, is also presented in conjunction with a discussion and

identification of some limitations.

 4.1 Results

In this section will be show the graphical user interface of the application and explained

the tests performed to the application.

 4.1.1 User Interface

The system start with the login form, displayed in figure 4.1.

66

Figure 4.1: Login Form

Analysis and Results

After the authentication the user is directed to a menu with the label “Main” that has

two sub-menus. The first one with the name contains a table to manage users (figure

4.2). This manager allows insertion (figure4.3), deletion and edition of users.

67

Figure 4.2: User manager

Figure 4.3: Add user

A WebGL application based on BIM IFC

In the second menu there is the IFC file manager. Each user can manage his files

independently (figure 4.4) performing the add (figure 4.5), remove or open operations.

68

Figure 4.4: IFC file manager

Figure 4.5: Add an IFC file

Analysis and Results

After adding an IFC file it is possible to open the file in the WebGL viewer (figure 4.6)

In the viewer the user has buttons that allows the changing of perspective, activate and

deactivate all the building elements, activate and deactivate the Cartesian axis and a grid

in the xy plane.

To navigate inside the canvas is possible to use the mouse to perform the following

operations:

• Zoom – zoom in and out in the model (mouse scroll);

• Pan – move horizontally and vertically in a plane in space (pressing the middle

mouse button and moving the mouse);

69

Figure 4.6: IFC WebGL viewer

A WebGL application based on BIM IFC

• Rotation – rotate in all direction, orbiting around an approximated point in the

middle of the model;

 4.1.2 Performed Tests

Software engineering tests using JUnit

The prototype has been submitted to several test units made with the JUnit 4.10

framework (Kent et al. 2012). These test units are assertion tests, to make sure the

different modules of the application are correctly created and working within normal

parameters. This test units are normally used in the development of application to check

if the changes in certain parts of the code did not influence other modules. The profiling

units were left to future developments of the application. These were the test units done

for that purpose:

1. IfcUnmarshallerTest – Tests the deserialisation of several IFC files into Java

objects, resulting in a Project object;

2. IfcMarshallerTest – Tests the serialisation of several Java objects into IFC files,

this is done performing the IfcUnmarshallerTest and using the objects to do the

inverse operation;

3. IfcDataModelBuilderTest – Tests the correct build of the server-side data model

creation;

4. ProjectSceneGraphTest – Test if the scene graph is correctly built for several

Project objects, previously unmarshalled and built by the test 1 and 3;

5. RelativePlacementTransformBuilderTest – Test if the relative placement

algorithm works for random transformations and depth of the a graph;

70

Analysis and Results

6. TriangulationTest – Test if the triangulation algorithm is working and filling all

the area in the surfaces.

Test using IFC data set

In order to test the prototype the visual comparison of simple IFC models representation

was made. The test models are a subset of the files available in the BIMServer

(BIMServer 2012) test data repository. The file “WallOnly.ifc” is a basic representation

of an IfcWall already containing the a full IfcProject hierarchy. The x.ifc file represents

an interception between two IfcWalls. The “4walls.ifc” file is uses the same polylines to

represent similar IfcWalls with diferent reference directions and local placements. The

“AC11-FZK-Haus-IFC.ifc” file represents a more complete test file with diferent

building elements such as IfcWalls, IfcSlabs, IfcBeams, IfcColumns. To establish a

basis of comparison with the prototype viewer, we used an open source desktop viewer,

the IFC Engine Viewer version 1.11 beta (TNO Building and Construction Research

2010), which is an IFC certified application (BuildingSMART International Ltd 2011a),

the BIMSurfer version 1.0.0, the viewer of the BIMServer project and the

IFCWebServer viewer. The figures 4.7, 4.9, 4.11 and 4.13 are screen shots taken from

the IFC Engine Viewer, the figures 4.9, 4.10, 4.12 and 4.14 are taken from the

developed prototype, figures 4.15, 4.16, 4.17 and 4.18 taken from the BIMSurfer and

figures 4.19, 4.20, 4.21 and 4.22 from the IfcWebServer viewer.

71

Figure 4.8: WallOnly.ifc prototypeFigure 4.7: WallOnly.ifc IFC Engine Viewer

A WebGL application based on BIM IFC

72

Figure 4.10: x.ifc prototypeFigure 4.9: x.ifc IFC Engine Viewer

Figure 4.12: 4wall.ifc prototypeFigure 4.11: 4walls.ifc IFC Engine Viewer

Figure 4.13: AC11-FZK-Haus-IFC.ifc IFC
Engine Viewer

Figure 4.14: AC11-FZK-Haus-IFC.ifc prototype

Analysis and Results

73

Figure 4.15: WallOnly.ifc
BIMSurfer

Figure 4.18: 4walls.ifc BIMSurfer

Figure 4.16: x.ifc BIMSurfer

Figure 4.17: AC11-FZK-Haus-IFC.ifc
BIMSurfer

Figure 4.19: WallOnly.ifc IfcWebServer Figure 4.20: x.ifc IfcWebServer

A WebGL application based on BIM IFC

One important difference that can be observed are the shading effects, specially in the

BIMSurfer. The lighting effect give a more real look to the surfaces of the buildings. In

the first version of the prototype developed in this thesis, it was not given too much

importance to this kind of effects, however this feature could be accomplished with the

development of new shaders, instead of the flat shader used, and definition of normals

in each primitive object.

Another major difference is the fact that the prototype does not process voids, this

means the space where the door and the windows will be place are not represented in

the models.

The last difference is that some of the objects in the AC11-FZK-Haus-IFC.ifc model are

missing in the prototype, this is because those objects are in a Boundary representation

(Brep) a type of shape representation not supported in the prototype.

 4.2 Analysis

Taking into account this is just the first prototype version of the viewer the results

displayed were satisfactory and the basis for a web based IFC viewer is created. All the

objectives proposed in the beginning were accomplished.

74

Figure 4.21: 4walls.ifc IfcWebServer
Figure 4.22: AC11-FZK-Haus-IFC.ifc

IfcWebServer

Analysis and Results

The following list shows the functional and non-functional requirements that were

achieved:

Functional requirements:

 ☑ Authentication system;

 ☑ User manager to add, edit and delete users;

 ☑ IFC file manager per user, each user can add and delete his own files;

 ☑ Deserialisation of IFC files;

 ☑ Viewing IFC models correctly; (with several limitations)

 ☑ The viewer must allow basic navigation controls: pan, zoom, rotation;

Non-Functional requirements:

 ☑ Multiple viewers can be opened at the same time;

All the requirements were achieved, except functional requirement five (Viewing IFC

models correctly) that presented several limitations.

 4.2.1 Limitations

The major limitation is that it only implements two shape representations of the ten

existent, the BoundingBox and the SweptSolid. The generic shape representations

missing are SurfaceModel, Brep, AdvancedSweptSolid, and MappedRepresentation.

75

A WebGL application based on BIM IFC

The specific shape representations missing are Curve2D for Walls,

GeometricSet/GeometricCurveSet for Coverings, CSG for Piles and SectionedSpine for

heating, ventilation and air conditioning objects. Some of the shape representation

complete specification are not available in the IFC implementation guide yet (Liebich

2009).

The prototype does not support grid placement, because it is almost never used in

normal IFC building projects and there could not be found any test data with that kind

of placement.

The opening elements are not support, this means voids in building elements are also

not supported, as well as the void fills like door and windows.

The last limitation is that it does not implement all the primitive profiles of the building

elements. Only supports rectangle, ellipse and circle profiles. The profiles left behind

were the IShape, LShape, UShape, CShape, ZShape, CShape and Trapezium profiles.

 4.3 Summary

This chapter documented the results obtained from the prototype application. The

graphical user interface was presented in detail. There were two types of tests described

in this chapter. The software engineering test that assures the keys modules of the

prototype are work correctly and the test using an IFC data set, to analyse the visual

results of the viewer and comparing them with other applications. The chapter finishes

with an analysis of the results, concluding that all the requirements were achieved and

pointing the limitations.

76

Conclusion

 5. Conclusion

The work presented sought a way to develop a prototype web application capable of

displaying IFC structures in 3D environments. The solution developed was based on the

Vaadin framework to produce a server application and a WebGL widget capable of

processing IFC files, construct object models and render them in the browser. It is

expected that this prototype will be polished and improved in an early future. It will be

used as part of a bigger application of the AECO industry.

 5.1 General conclusions

The main contribution of this work is the merging of two recent technologies, the IFC

and WebGL into a single application. The merge of these open technologies is of

fundamental importance for the future of building information modelling tools and this

work is among the few works to do this fusion.

The technological solution implemented was also an important contribution because it

was developed in pure Java language being an alternative approach to direct WebGL

developing. A developer does not need to learn JavaScript to do a WebGL application.

In terms of technical contributions, there are some interesting references to recent

development techniques that allow fast deployment of web applications such as the

usage of the Vaadin framework, GWT and the SuperDevMode.

This project was a very enriching experience from the scientific and also from the

professional point view. The working environment within a research team was excellent

and provided the motivation needed to all the participants.

77

A WebGL application based on BIM IFC

 5.2 Future work

As this work is just a prototype, there several steps to overcome until it reaches the final

version. The first logical step will be to fix all the limitations and improve the user

interface controls. The implementation of better shaders and texturing support is also

needed in a commercial application. Optimisation of the rendering calls is needed to

ensure a better performance, as well as profiling to define the minimal system

requirements.

78

A WebGL application based on BIM IFC

References

Aaftab, M., Ginsburg, D. & Shreiner, D., 2009. OpenGL ES Programming Guide,

Adobe Systems, 2012a. Adobe Flash Features. Available at:

http://www.adobe.com/products/flashplayer/features._sl_id-

contentfilter_sl_featuredisplaytypes_sl_all.html [Accessed August 22, 2012].

Adobe Systems, 2012b. Rich Internet Applications. Available at:

http://www.adobe.com/resources/business/rich_internet_apps/ [Accessed August

22, 2012].

Anderson, C. & Wolff, M., 2010. The Web Is Dead. Long Live the Internet. Wired,

pp.118–127 and 164–166. Available at: No

Titlehttp://www.wired.com/magazine/2010/08/ff_webrip/.

Anslow, C., 2008. Evaluating extensible 3D. Victoria University of Wellington.

Available at:

http://researcharchive.vuw.ac.nz/bitstream/handle/10063/328/thesis.pdf.

Anttonen, M. & Salminen, A., 2011. Transforming the Web into a Real Application

Platform : New Technologies , Emerging Trends and Missing Pieces. In

Proceedings of the 2011 ACM Symposium on Applied Computing. pp. 800–807.

Available at: http://dl.acm.org/citation.cfm?

id=1982185.1982357&coll=DL&dl=ACM&CFID=89839675&CFTOKEN=65925

285.

Armasu, L., 2012. Sony Ericsson Releases WebGL Implementation for Android 4.0 as

Open Source. Available at: http://www.androidauthority.com/sony-ericsson-

releases-webgl-implementation-for-android-4-0-as-open-source-48038/ [Accessed

August 20, 2012].

Behr, J. & Michael, Z., 2009. X3DOM – A DOM-based HTML5 / X3D Integration

Model. In Web3D ’09 Proceedings of the 14th International Conference on 3D

Web Technology. pp. 127–136. Available at: http://dl.acm.org/citation.cfm?

79

A WebGL application based on BIM IFC

id=1559764.1559784&coll=DL&dl=ACM&CFID=106729821&CFTOKEN=5696

0127.

BIMServer, 2008. BIMServer - Open Source Building Information Model Server.

Available at: http://bimserver.org/.

BIMServer, 2012. BIMServer Test Data. Available at:

http://code.google.com/p/bimserver/source/browse/trunk/#trunk/TestData/data.

Bochicchio, M. a., Longo, A. & Vaira, L., 2011. Extending Web applications with 3D

features. In 2011 13th IEEE International Symposium on Web Systems Evolution

(WSE). Lecce, Italy: Ieee, pp. 93–96. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6081825.

Bouvier, D.J., 2002. Assignment : Scene Graphs in Computer Graphics Courses. ,

pp.42–45. Available at: http://delivery.acm.org/10.1145/1250000/1242087/p42-

bouvier.pdf?ip=192.35.246.5&acc=ACTIVE

SERVICE&CFID=136248429&CFTOKEN=48477313&__acm__=1351877488_0

ef337408f56edacd1bf425e7bc6225f.

Buchhofer, D., 2011. Realtime HD Architecture, Captured in Unity3D, Available at:

http://vimeo.com/31940365.

BuildingSMART, 2011. All Software Supporting IFC. Available at:

http://www.buildingsmart-tech.org/implementation/implementations.

BuildingSMART International Ltd, 2011a. IFC Implementations Applications. Available

at: http://www.buildingsmart-

tech.org/implementation/implementations/plominoview.allapplications/f936a68c10

b0b80cb5d24657939a9759 [Accessed December 7, 2012].

BuildingSMART International Ltd, 2006a. IfcBoundingBox. Available at:

http://www.buildingsmart-

tech.org/ifc/ifc2x3/tc1/html/ifcgeometricmodelresource/lexical/ifcboundingbox.ht

m [Accessed November 22, 2012].

80

References

BuildingSMART International Ltd, 2006b. IfcExtrudedAreaSolid. Available at:

http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcgeometricmodelresource/lexical/ifcextrudedareas

olid.htm [Accessed November 23, 2012].

BuildingSMART International Ltd, 2006c. IfcObjectPlacement. Available at:

http://iaiweb.lbl.gov/Resources/IFC_Releases/R2x3_final/ifcgeometricconstraintre

source/lexical/ifcobjectplacement.htm [Accessed October 24, 2012].

BuildingSMART International Ltd, 2006d. IfcProduct. Available at:

http://iaiweb.lbl.gov/Resources/IFC_Releases/R2x3_final/ifckernel/lexical/ifcprod

uct.htm [Accessed October 24, 2012].

BuildingSMART International Ltd, 2006e. IfcProductRepresentation. Available at:

http://iaiweb.lbl.gov/Resources/IFC_Releases/R2x3_final/ifcrepresentationresourc

e/lexical/ifcproductrepresentation.htm [Accessed November 24, 2012].

BuildingSMART International Ltd, 2006f. IfcProject. Available at:

http://iaiweb.lbl.gov/Resources/IFC_Releases/R2x3_final/ifckernel/lexical/ifcproje

ct.htm [Accessed October 24, 2012].

BuildingSMART International Ltd, 2006g. IfcRectangleProfileDef. Available at:

http://www.buildingsmart-tech.org/ifc/ifc2x3/tc1/html/index.htm [Accessed

November 23, 2012].

BuildingSMART International Ltd, 2011b. Industry Foundation Classes Release 2x4

(IFC4) Release Candidate 3. Available at: http://www.buildingsmart-

tech.org/ifc/IFC2x4/rc3/html/index.htm [Accessed August 24, 2012].

Campbell, D.A., 2007. Building Information Modeling : The Web3D Application for

AEC. In Web3D ’07 Proceedings of the twelfth international conference on 3D

web technology. pp. 173–177. Available at: http://dl.acm.org/citation.cfm?

id=1229390.1229422&coll=DL&dl=ACM&CFID=145359801&CFTOKEN=7298

6927.

Cantor, D. & Jones, B., 2012. WebGL Beginner ’ s Guide,

81

A WebGL application based on BIM IFC

Chen, P.-H. et al., 2005. Implementation of IFC-based web server for collaborative

building design between architects and structural engineers. Automation in

Construction, 14(1), pp.115–128. Available at:

http://linkinghub.elsevier.com/retrieve/pii/S0926580504001177 [Accessed April

27, 2012].

Congote, J. & Sebastian, D.S., 2011. Interactive visualization of volumetric data with

WebGL in real-time. In Proceedings of the 16th International Conference on 3D

Web Technology. ACM, pp. 137–146. Available at: http://dl.acm.org/citation.cfm?

id=2010425.2010449&coll=DL&dl=ACM&CFID=89839675&CFTOKEN=65925

285.

Gawecki, A., 2011. Enterprise JavaScript with Jangaroo Using ActionScript 3 for

JavaScript ” Programming in the Large ”. , pp.33–38. Available at:

http://dl.acm.org/citation.cfm?

id=2093328.2093335&coll=DL&dl=ACM&CFID=106729821&CFTOKEN=5696

0127.

Google Developers, 2012a. Chrome for Android. Available at:

https://developers.google.com/chrome/mobile/docs/faq [Accessed August 20,

2012].

Google Developers, 2012b. GWT Widgets. Available at:

https://developers.google.com/web-toolkit/doc/latest/DevGuideUiWidgets

[Accessed October 27, 2012].

Google Developers, 2012c. SuperDevMode. Available at:

https://developers.google.com/web-toolkit/articles/superdevmode.

Grönroos, M., 2012. Book of Vaadin 4th Edition, Available at: https://vaadin.com/book.

Gutwin, C., Lippold, M. & Graham, T.C.N., 2011. Real-Time Groupware in the

Browser : Testing the Performance of Web-Based Networking. , pp.167–176.

82

References

Halevy, R., 2011. PlayBook OS 2.0 Developer Beta Includes WebGL, Flash 11, & AIR

3.0. Available at: http://www.berryreview.com/2011/10/18/playbook-os-2-0-

developer-beta-includes-webgl-flash-11-air-3-0/ [Accessed August 20, 2012].

Hongtao, X., 2012. Applications and researches on Web3D virtual reality-based

technology in architectural design expressions. 9th International Conference on

Fuzzy Systems and Knowledge Discovery, 2, pp.2607–2610. Available at:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=5681875&contentType=Conference+Publications&searchField

%3DSearch_All%26queryText%3DWeb3D+Technologies.

INESC Porto, 2012. BI/120007/UESP. Available at:

http://www.eracareers.pt/opportunities/index.aspx?

task=showAnuncioOportunities&jobId=28000&idc=1 [Accessed October 24,

2012].

ISO, 2004. ISO 10303-11:2004 Industrial automation systems and integration -- Product

data representation and exchange -- Part 11: Description methods: The EXPRESS

language reference manual. Available at:

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?

csnumber=38047 [Accessed August 24, 2012].

ISO, 2002. ISO 10303-21:2002 Industrial automation systems and integration -- Product

data representation and exchange -- Part 21: Implementation methods: Clear text

encoding of the exchange structure. Available at:

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?

csnumber=33713 [Accessed August 24, 2012].

ISO, 2007. ISO 10303-28:2007 Industrial automation systems and integration -- Product

data representation and exchange -- Part 28: Implementation methods: XML

representations of EXPRESS schemas and data, using XML schemas. Available at:

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?

csnumber=40646.

83

A WebGL application based on BIM IFC

ISO, 2008. ISO/PAS 16739:2005 Industry Foundation Classes, Release 2x, Platform

Specification (IFC2x Platform). Available at:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38056 [Accessed August

24, 2012].

ISO/IEC, 2012. Extensible 3D (X3D) Part 1: Architecture and base components.

Available at: http://www.web3d.org/files/specifications/19775-1/V3.3/index.html

[Accessed August 21, 2012].

Jeong, Y.-S. et al., 2009. Benchmark tests for BIM data exchanges of precast concrete.

Automation in Construction, 18(4), pp.469–484. Available at:

http://linkinghub.elsevier.com/retrieve/pii/S0926580508001672 [Accessed August

6, 2012].

Kent, B. et al., 2012. JUnit. Available at: http://www.junit.org/.

Khronos Group, 2012. WebGL Public Wiki. Available at:

http://www.khronos.org/webgl/wiki/Main_Page [Accessed August 20, 2012].

Liebich, T., 2009. IFC 2x Edition 3 Model Implementation Guide, Available at:

http://www.buildingsmart-tech.org/downloads/accompanying-

documents/guidelines/IFC2x Model Implementation Guide V2-0b.pdf.

Liu, Z. et al., 2010. A software platform for information conversion from IFC-based

architectural model to PKPM structural model. Available at:

http://www.engineering.nottingham.ac.uk/icccbe/proceedings/pdf/pf166.pdf.

Martins, F. & Paciornik, S., 2012. Multimodal Microscopy for Ore Characterization.

Scanning Electron Microscopy, 1(12), pp.313 –335. Available at:

http://www.intechopen.com/books/scanning-electron-microscopy/multimodal-

microscopy-for-ore-characterization.

Mavrody, S., 2012. Sergey’s HTML5 & CSS3, Available at: http://html5.belisso.com/.

Microsoft, 2012a. Microsoft Silverlight. Available at:

http://www.microsoft.com/getsilverlight/Get-Started/Install/Default.aspx

[Accessed August 23, 2012].

84

References

Microsoft, 2012b. Silverlight 5. Available at: http://msdn.microsoft.com/en-

us/library/gg197424(XNAGameStudio.35).aspx [Accessed August 23, 2012].

Milk, C., 2012. Rome - 3 Dreams of Black, Available at: http://www.ro.me/tech/.

Mozilla Developer Network, 2012. Mozilla Developer Network - WebGL. Available at:

https://developer.mozilla.org/en-US/docs/WebGL [Accessed August 20, 2012].

Neider, J., Davis, T. & Woo, M., 1994. OpenGL Programming Guide, Addison-Wesley.

Available at: http://www.glprogramming.com/red/.

Newton Consultores de Engenharia Lda, 2012. PacPórticos - Projecto Assistido por

Computador. Available at: http://www.newton.pt/pt/software-empresas/calculo-

estruturas.aspx [Accessed October 24, 2012].

Nguyen, H., 2010. GWT G3D - 3D Library of GWT. Available at:

http://code.google.com/p/gwt-g3d/ [Accessed October 27, 2012].

Nurseitov, N. et al., 2009. Comparison of JSON and XML Data Interchange Formats : A

Case Study. In CAINE 2009. pp. 157–162. Available at:

http://www.cs.montana.edu/izurieta/pubs/caine2009.pdf.

Opera Mobile Team, 2012. Opera Mobile 12. Available at:

http://my.opera.com/mobile/blog/2012/02/27/opera-mobile-12 [Accessed August

20, 2012].

Ortiz Jr, S., 2010. Is 3D Finally Ready for the Web? Computer, 43(1), pp.14–16.

Available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

tp=&arnumber=5398776&contentType=Journals+%26+Magazines&searchField

%3DSearch_All%26queryText%3DIs+3D+Finally+Ready.

Roberts, E., 2007. Resurrecting the applet paradigm. In Proceedinds of the 38th

SIGCSE technical symposium on Computer science education - SIGCSE ’07. New

York, New York, USA: ACM Press, pp. 521 – 525. Available at:

http://portal.acm.org/citation.cfm?doid=1227310.1227488.

85

A WebGL application based on BIM IFC

Shankland, S., 2011. Apple signs up for WebGL graphics in iAds. Cnet News. Available

at: http://news.cnet.com/8301-30685_3-20071902-264/apple-signs-up-for-webgl-

graphics-in-iads/ [Accessed August 20, 2012].

Skiena, S. & Revilla, M., 2003. Programming Challenges: The Programming Contest

Training Manual 1st Editio., New York, USA: Springer-Verlag. Available at:

http://www.programming-challenges.com/pg.php?page=index.

Succar, B., 2009. Building information modelling framework: A research and delivery

foundation for industry stakeholders. Automation in Construction, 18(3), pp.357–

375. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0926580508001568

[Accessed July 27, 2012].

Suermann, P.C., Issa, R. & Olbina, S., 2009. Use of Building Information Models in

simulations. In Proceedings of the IEEE 2009 Winter Simulation Conference. pp.

0–7. Available at: http://www.informs-sim.org/wsc09papers/257.pdf.

Taivalsaari, A. et al., 2011. The Death of Binary Software: End User Software Moves to

the Web. In 2011 Ninth International Conference on Creating, Connecting and

Collaborating through Computing. IEEE, pp. 17–23. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5936687

[Accessed July 27, 2012].

Taivalsaari, A. & Mikkonen, T., 2011. The Web as an Application Platform: The Saga

Continues. In 2011 37th EUROMICRO Conference on Software Engineering and

Advanced Applications. Ieee, pp. 170–174. Available at:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6068340 [Accessed May

2, 2012].

The Eclipse Foundation, 2012a. Eclipse Modelling Framework. Available at:

http://www.eclipse.org/modeling/emf/ [Accessed October 30, 2012].

The Eclipse Foundation, 2012b. Eclipse Web Tools Platform 3.2. Available at:

http://www.eclipse.org/webtools/releases/3.2.0/NewAndNoteworthy/server.php.

86

References

TNO Building and Construction Research, 2010. IFC Engine Viewer. Available at:

http://www.ifcbrowser.com/ifcengineviewer.html.

Unity Technologies, 2012a. Unity 3. Available at: http://unity3d.com/unity/ [Accessed

August 22, 2012].

Unity Technologies, 2010. Unity Documentation. Available at:

http://docs.unity3d.com/Documentation/Manual/UnityBasics.html [Accessed

August 22, 2012].

Unity Technologies, 2012b. Unity Products. Available at: https://store.unity3d.com/

[Accessed August 22, 2012].

Vaadin, 2012a. Release Notes for Vaadin Framework 7.0.0.alpha3. Available at:

http://vaadin.com/download/prerelease/7.0/7.0.0/7.0.0.alpha3/release-notes.html.

Vaadin, 2012b. RPC in Vaadin 7. Available at: http://dev.vaadin.com/wiki/Vaadin7/RPC

[Accessed October 30, 2012].

Vaadin, 2012c. Shared State in Vaadin 7. Available at:

http://dev.vaadin.com/wiki/Vaadin7/SharedState [Accessed October 30, 2012].

Vaadin, 2012d. Using SuperDevMode. Available at:

https://vaadin.com/wiki/-/wiki/Main/Using SuperDevMode.

Vani, V. & Mohan, S., 2010. Interactive 3D Class Room – A Framework for Web3D

using J3D and JMF. In ACM, ed. A2CWiC ’10 Proceedings of the 1st Amrita

ACM-W Celebration on Women in Computing in India. Available at:

http://dl.acm.org/citation.cfm?id=1858402&bnc=1.

87

Annex A

Figure 1 : Server-Side Class Diagram

Figure 2 : Client-Side Class Diagram

	Abstract
	Resumo
	Acknowledgements
	Acronyms
	Index
	2.1.1 WebGL 24
	2.1.2 X3D 29
	2.1.3 Adobe Flash 32
	2.1.4 J3D 33
	2.1.5 Unity 33
	2.1.6 Microsoft Silverlight 34
	3.1.1 Server-Side Module 44
	3.1.2 Client-Side Module 47
	3.2.1 Development Environment and Frameworks 51
	3.2.2 Server-Side Module 53
	3.2.3 Client-Side Module 55
	4.1.1 User Interface 66
	4.1.2 Performed Tests 70
	4.2.1 Limitations 75

	Index of Figures
	Index of Tables
	1. Introduction
	1.1. PacPórticos Overview
	1.2. Objectives
	1.3. Document Structure

	2. State of the art
	2.1 Web3D
	2.1.1 WebGL
	2.1.2 X3D
	2.1.3 Adobe Flash
	2.1.4 J3D
	2.1.5 Unity
	2.1.6 Microsoft Silverlight

	2.2 BIM IFC
	2.3 Vaadin Framework
	2.4 Related Work
	2.5 Summary

	3. Method
	3.1 Conception
	3.1.1 Server-Side Module
	3.1.1.1 IFC Processing and Model Creation

	3.1.2 Client-Side Module
	3.1.2.1 IFC WebGL Widget
	3.1.2.2 Scene Graph

	3.2 Development
	3.2.1 Development Environment and Frameworks
	3.2.2 Server-Side Module
	3.2.3 Client-Side Module
	3.2.3.1 WebGL Context and Shader definition
	3.2.3.2 Scene Graph Implementation and Rendering
	3.2.3.3 Mouse Handler and Camera

	3.3 Summary

	4. Analysis and Results
	4.1 Results
	4.1.1 User Interface
	4.1.2 Performed Tests

	4.2 Analysis
	4.2.1 Limitations

	4.3 Summary

	5. Conclusion
	5.1 General conclusions
	5.2 Future work

	References
	Annex A

