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Abstract
Floods and droughts are natural phenomena of difficult prevision. Awareness, mitigation 
and water resource management, depend upon timely information on the beginning of a 
dry or wet period and on their extension in time and space. This study predicts SPI steady 
state class probabilities in the Douro region, Portugal, through an empirical and Markov 
chain approach, expected residence time in each class of severity; expected first passage 
time, recurrence time and class prediction in a short-term basis. It was verified that all these 
variables are useful for water resources management.
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Resumo
Cheias e secas são fenómenos naturais de difícil previsão. O conhecimento, mitigação e 
gestão dos recursos hídricos depende de informação sobre o início dos períodos secos ou 
húmidos e a sua extensão no tempo e no espaço. Este estudo prevê as probabilidades das 
classes do índice SPI, na região do Douro, Portugal, através das séries de Markov e de um 
método empírico, tempo de residência esperada em cada classe, tempo médio de transição 
entre classes pela primeira vez, tempo de recorrência e previsão de classes a curto prazo. 
Verificou-se que todas as variáveis são convenientes para a gestão dos recursos hídricos. 
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42 431. Introduction and Objectives

Floods and droughts are climatic events that occur at variable time frequencies in many 
areas of the world (Seiler et al., 2002). Several regions in Portugal are flood-prone areas, 
while other regions of the country are frequently threatened by dry periods. Drought, as 
well as floods, may be produced by natural causes or may be induced by human activities 
(Paulo et al., 2005). Drought is often defined as a temporary water scarcity situation due to 
a precipitation deficit. On the other hand, a flood can be produced by rainfall excess over 
a period of time. These conjugated phenomena are part of the normal behaviour of any 
climate, but they can have severe impacts on regional and national economics, having also 
social and environmental consequences.

Because of its slow development and its difficulty to be detected, drought is possibly one 
of the more complex natural occurrences (Morid et al., 2007). Floods are also difficult to 
predict, because they depend not only on precipitation volume and intensity, but also on 
the characteristics of the soil that affect drainage capacity. This capacity can be overloaded 
under abnormal abundant rainfall conditions. 

Drought and flood awareness and mitigation, as well as water resource management plans 
depend upon timely information on the beginning of a dry or wet period and on their 
extension in time and space. The kind of information needed to deal with drought events may 
be obtained through continuous monitoring, which is normally performed using drought 
indices (Paulo et al., 2005). One of such indices is the Standardized Precipitation Index (SPI) 
(McKee et al., 1993) and some authors suggest that it can also be used as an indicator of the 
progress of soil saturation conditions conducting to floods (Seiler et al., 2002).

The SPI was defined as the number of standard deviations that the experimental cumulative 
precipitation (monthly amount) at given time scales (normally one, three or six months, or 
one or two years) would deviate from the long-term mean. The cumulative precipitation 
reports to a particular month, that is, a SPI-3 in April represents the SPI value for the cumulative 
precipitation of the actual and previous 2 months to April (February, March, and April), a SPI-6, 
the SPI value for the cumulative precipitation of the actual and previous 5 monhts, and so on. 

Shorter or longer time scales may reproduce response delays to precipitation anomalies 
(Paulo et al., 2005). Since the cumulative rainfall may not be normally distributed, the data 
is approximately transformed to a normal standardize distribution (Ntale and Gan, 2003), so 
that a SPI equal to zero implies that the corresponding monthly amount represents 50% of 
the cumulative fitted distribution (McKee et al., 1993). SPIs ranging from −1 to +1 express a 
mild pluviometric regime and values out of this range represent relevant deviations from 
the average rainfall amount (Lana et al., 2001). 

An important characteristic of the SPI is that it can monitor dry and wet periods over an 
extensive variety of time scales, assessing the precipitation effects on different water resource 
components, like groundwater, reservoir storage, soil moisture and stream flow (Morid et al., 
2006). In practice, a monthly precipitation time series is ‘flattened’ using a moving window 
of width equal to the number of months desired, e.g. a 6-months SPI in July would be 
computed using the cumulative rainfall over February to July. Ntale and Gan (2003) point 
that Edwards and McKee (1997) selected a 3 month SPI for a short-term drought index, a 
12 month SPI for an intermediate-term drought index, and a 48 month SPI for a long-term 

drought index. Labedzki (2007) stated that the 1-3 month SPI reflects better the agricultural 
drought than the 6 month SPI. 

The SPI demonstrated to be a tool that should be used operationally as part of a state, 
regional, or national drought watch system in the United States. During the 1996 drought 
in the USA, the SPI detected the onset of the drought at least 1 month in advance of the 
Palmer Drought Severity Index (Hayes et al., 1999), in addition, it satisfactorily explains the 
development of conditions leading up to the three main flood events to occur in the 
southern Cordoba Province in Argentina during a period of 25 years (Seiler et al., 2002).

The hazard and catastrophic nature of droughts and the existence of a simple index to 
compute their severity and time extension are important conditions to develop prediction 
tools, as probabilistic ones, which may support opportune implementation of vigilance and 
mitigation measures (Paulo et al., 2005). 

Studies developed by Fernandez and Salas (1999) have provided analytical formulations 
for estimating return periods (defined as the average number of trials required to the first 
occurrence of a critical event) of drought events with duration greater than or equal to a critical 
value for both time independent and Markov time dependent series (Bonaccorso et al., 2003).

Markov chains are used in climatology to model rainy and drought behaviour or evolution 
from wet to dry episodes (Lana and Burgueño, 1998). A Markov chain approach, using both 
the homogeneous and non-homogeneous formulations, was used for several locations in 
Alentejo, southern Portugal, to characterize the stochastic nature of droughts and to predict 
the evolution from a class of severity to another (Paulo et al., 2005; Paulo et al., 2007). 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic which evaluates the goodness of 
fit of a model, computing the relative magnitude of the residual variance to the measured 
data variance. The optimum value is 1.0, meaning that modelled data fits a 1:1 line when 
compared to measured data. A value between 0.0 and 1.0 indicates that the model is within 
acceptable level of performance whereas, values smaller than 0.0, indicate that the mean 
observed value is a better estimate than the model (Nash-Sutcliffe, 1970). 

This paper aims to characterize dry and wet periods in the region of Douro, northern Portugal, 
and to predict SPI severity class transitions. The parameters analysed in this study include: a) state 
probabilities, which represent the probabilities of occurrence of the various SPI classes using both 
empirical analysis and Markov chains; b) expected residence time in each class of severity, which is 
the average time the system stays under the same class; c) expected first passage time, which is the 
time it takes for the system to shift from a particular class to another; d) recurrence time, which is 
the time it takes for the system to come back to the same class; e) state prediction in a short-term 
basis, which is the most plausible class 1–3 months in advance. This is especially important for water 
resources management under extreme conditions (extreme dry or extreme wet conditions). 

2. Methods of Analysis

This study was conducted using monthly precipitation data series available in the meteorological 
network of Douro river basin (Figure 1). The raingauges are distributed within the Portuguese 
limits of this network.
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Figure 1 – Location of raingauges in the Douro basin, Portugal

This network has free public access through the INAG web site (www.inag.pt). The stations 
were chosen based not only on the length of record, but also on guaranteeing an overlapping 
period in all of them. All stations have monthly precipitation data from at least 1958 to 1992, 
which was the time range used for the anlaysis. Recent records are not available for all of the 
stations, and therefore were not included in this study (Table 1).

Code Name LATITUDE (ºN) LONGITUDE (ºW) ALTITUDE (m)
BEGINNING YEAR 
OF OPERATION

08P/02G ESCALHÃO 40º 56’ 52 -7º 4’ 33 615 1936

03K/04UG FIRVIDAS 41º 47’ 20 -8º 16’ 37 935 1955

06Q/01UG FORNOS DE LAGOAÇA 41º 10’ 58 -7º 14’ 34 697 1932

07J/05UG GRALHEIRA 41º 0’ 10 -8º 1’ 49 1104 1946

05K/02UG LAMAS DE ALVADIA 41º 27’ 7 -8º 14’ 34 964 1933

05K/03UG LAMAS OLO 41º 22’ 5 -8º 12’ 14 984 1945

04K/03UG LIXA DO ALVÃO 41º 30’ 0 -8º 18’ 34 939 1946

06I/02UG MARCO DE CANAVEZES 41º 10’ 55 -9º 50’ 54 215 1931

08J/02G MEZIO (PAIVA) 40º 59’ 2 -8º 6’ 36 611 1943

05L/02C MINAS DE JALES 41º 27’ 49 -8º 24’ 36 853 1956

05Q/03UG MOGADOURO 41º 28’ 55 -7º 16’ 48 537 1912

02P/01C MOIMENTA DA RAIA 41º 56’ 50 -7º 1’ 22 837 1932

08I/01UG MOSTEIRO DE CABRIL 40º 56’ 49 -9º 54’ 0 389 1943

Table 1 – Characteristics of raingauges

The standardized precipitation index (SPI) for each month was calculated using the previous 
3-months (SPI-3) and 6-months (SPI-6) precipitation data, for a short-term and intermediate-
term analysis for management purposes, respectively. Report to Guerreiro et al. (2007) for the 
detailed methodology of computation of SPI values.

A SPI value equal to zero means that there are no deviations between the precipitation 
amount computed to that month and the mean precipitation computed to that month 
in the analysed time period. Positive values of the SPI indicate an excess rainfall relative to 
the mean and negative values of SPI indicate a lack of precipitation relative to the mean 
value. Therefore, dry periods are characterized by negative SPI values whilst wet periods 
are expressed by positive ones. The SPI values are grouped in eight classes, as suggested by 
Lloyd-Hughes and Saunders (2002), from extreme drought (SPI ≤   −2.0) to extremely wet 
(SPI ≥ 2.0) as shown in Table 2.

Class SPI value Category Probability %

1 2.00 or more Extremely wet 2.3

2 1.5 to 1.99 Severely wet 4.4

3 1.00 to 1.49 Moderately wet 9.2

4 0 to 0.99 Mildly wet 34.1

5 0 to -0.99 Mild drought 34.1

6 -1.00 to -1.49 Moderate drought 9.2

7 -1.50 to -1.99 Severe drought 4.4

8 -2.00 or less Extreme drought 2.3

Table 2 - Drought classification by SPI value and corresponding event probabilities (Lloyd-Hughes and Saunders, 2002).

The long-term probabilities (steady-state) of each class were computed both using the 
available data for each raingauge station, and using a Markov chain approach. Given an 
initial state and class transition probabilities, the long term (steady-state) probabilities using 
Markov-chain approach were calculated.

The Markovian process is characterized by a set of states, which were the eight SPI classes 
(Table 2) in this case, and by the transition probability, Pij, between those eight states. This 
probability means that the process will be in state j at the next time point, t+1, knowing that 
at the present time point, t, it is in state i. Class transition probabilities were calculated based 
on the available data for each raingauge.

With a finite space of states, the transition probability matrix, P=[Pij]=P {X 
t+1

 = j\X 
t
 = i}, is 

estimated from the sample by computing the relative frequency that a SPI value shifts from 
each state i to each state j. Hence, the number of i x j elements of the probability transition 
matrix depends on the number of states (Paulo et al., 2005, 2007). 

The homogeneous formulation has some limitations namely, it assumes the transition 
probabilities to be independent from the starting month, unlike the non-homogenous 
formulation, where the transition probabilities are dependent on the initial month, however, 
requiring a large bulk of data. Having this in mind, the homogenous formulation was 
therefore adopted.
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Markov chain is time-homogeneous, and so the n-step transition probability was computed 
by Pn, where P is the transition matrix.

The Nash-Sutcliffe efficiency test was performed on the empirical and Markovian class 
steady state probabilities in order to verify the goodness of fit. 

Expected Residence Time (ERT) was calculated based on the average time the system stays 
in a particular class. The Expected First Passage Time (EFPT) was calculated based on the 
average time it takes for the system to change to a particular class, including the actual class. 
In this last case, it is called Recurrence Time (RT). 

Given a class, the probability of transition to a particular class in 1-month, 2-months and 
3-months period, was calculated. In order to estimate the most probable class 1–3 months 
ahead of the present state, the higher probability value of all class transitions was identified. 

3. Results and Discussion

Results from 13 raingauges distributed over the Portuguese side of the Douro basin, reveal that 
73% of precipitation occurs during the humid semester (October to March), and 12% occurs 
between June and September, meaning that April and May are the wettest months of the dry 
semester (Figure 2). The same pattern is observed in other regions of Portugal, e.g. Paulo et al. 
(2005). However, in the wet semester, the Douro basin precipitation values are about twice as 
high as the precipitation values in the Alentejo region, but in the dry semester, they are about 
four times as high, suggesting that the dry semester is drier in the Alentejo than in the Douro. 
A similar drought SPI value in the Douro basin and in the Alentejo region will mean different 
precipitation values, even though both (and all) regions will need to face restrictions on water 
resources allocations and adequate implementation of measures to cope with a drought. 

Figure 2 – Mean monthly precipitation in Douro region, Portugal

The results observed from the steady state class probability analysis indicate that the Markov-
chain analysis is an adequate model for its calculation (Figure 3a and Figure 3b). The Nash-
Sutcliffe efficiency test between the empirical and Markovian steady state class probabilities 
had an outcome of 0.9998, being close to the optimum value (1.0), confirming its adequacy. 

Figure 3 – Steady state class probabilities between empirical and Markovian approach: (a) 1:1 relationship and (b) bar-graph

The empirical and Markovian average steady state class probabilities for the studied region, 
are similar both using SPI-3 and SPI-6 values (Figure 3b), which are also in accordance with the 
values presented by Lloyd-Hughes and Saunders (2002), as revealed in Table 1. However, there 
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48 49is a slightly better adjustment between these values and those calculated using SPI-3, implying 
that a 3 month SPI may be more adequate to forecast SPI class transitions (Figure 3b).

All raingauge stations show a similar pattern for expected residence time, being mild 
conditions (Classes 4 and 5) more persistent than any other at both time scales, 3-months and 
6-months (Figures 4a and 4b). However, the expected residence times are different at the two 
time scales, being higher for the 6-months than for the 3-months evaluation. A higher scatter is 
also observed at the 6-months than at the 3–months for the various raingauge stations. 

For water management purposes, in case of a drought event, the 6-months expected residence 
time value might be preferred over the 3-months, since it indicates a higher persistence for the 
same class. This means that if, in case of a mild to severe drought, the water resources’ manager 
should take into account the 6-months expected residence time, for it will be on the safe side. 

Figure 4 – Expected residence time for all the raingauge stations and for: (a) SPI - 3 and (b) SPI – 6.

B

A

The calculated expected residence time is approximately 2.0 and 2.7 months for mild conditions, 
whereas the other classes have lower values of approximately 1.3 and 1.7 months, for SPI-3 and 
SPI-6 calculations, respectively. As expected, these results imply that extreme conditions do not 
last as long as do mild conditions, it is predicted that the residence time in an extreme condition 
does not overcome 2 months. The water resources’ manager may take this information into 
account when planning for protection measures to deal with the extreme conditions. 

The expected first passage time (in months) is lower for the mild conditions (Classes 4 and 
5), not only from one to itself, but also from all other classes to classes 4. This is evident in 
Figures 5a and 5b, where the larger values are at extreme classes 1 and 8. This is valuable 
information for a water resources manager, meaning that, in average, it takes a much longer 
time for an extreme episode (dry or wet) to occur. 

Figure 5 – Expected first passage time for all the raingauge stations and for: (a) SPI - 3 and (b) SPI - 6

B

A



50 51Recurrence time for both SPI-3 and SPI-6 show the same behaviour (Figure 6). Extreme 
drought, for example, has an average recurrence time of approximately four to seven years, 
whereas extremely wet has an average recurrence time of approximately six to ten years, for 
SPI-3 and SPI-6, respectively. 

Figure 6 – Average recurrence time for SPI - 3 and SPI – 6.

Finally, the most probable state one, two and three months from the actual state, using SPI-
3, are class 4 and class 5, representing the mild conditions (wet and dry). It is evident from 
the example presented in Table 3a that dry conditions tend to follow dry conditions, and 
wet conditions tend to follow wet conditions one month from the actual state. As Markov 
transition probability matrices show a strong diagonal trend, recent SPI conditions have a 
tendency to be reproduced in the short-term. There is a tendency to go to mild conditions 
two and three months from the actual state, which is more evident when leaving a dry 
condition. Wet conditions are more persistent over time. 

On the other hand, SPI-6 results highlight the persistence in maintaining the same class 
from the actual state, especially for the wet states, as shown in Table 3b. These results are 
consistent with the analysis of the expected residence time, which indicates a value of 
approximately 3 months for the mild conditions and approximately 2 months for the other 
classes (Figure 4b). The same analogy applies to SPI-3. 

A Moimenta Raia

Class 1 2 3 4 5 6 7 8

MOST PROBABLE CLASS WITHIN ONE MONTH

1 0.000 0.604 0.101 0.201 0.101 0.000 0.000 0.000

2 0.040 0.121 0.523 0.201 0.040 0.081 0.000 0.000

3 0.094 0.140 0.140 0.328 0.281 0.023 0.000 0.000

4 0.024 0.049 0.109 0.576 0.200 0.042 0.000 0.000

5 0.007 0.013 0.020 0.278 0.510 0.113 0.060 0.000

6 0.000 0.000 0.022 0.088 0.438 0.153 0.263 0.044

7 0.000 0.000 0.040 0.081 0.282 0.443 0.040 0.121

8 0.000 0.000 0.000 0.000 0.201 0.201 0.604 0.000

MOST PROBABLE CLASS WITHIN TWO MONTHS

1 0.000 0.201 0.302 0.101 0.201 0.201 0.000 0.000

2 0.040 0.040 0.242 0.322 0.201 0.161 0.000 0.000

3 0.000 0.140 0.140 0.328 0.304 0.070 0.023 0.000

4 0.042 0.061 0.109 0.388 0.309 0.073 0.018 0.000

5 0.007 0.033 0.046 0.404 0.331 0.093 0.073 0.013

6 0.022 0.000 0.044 0.197 0.438 0.175 0.088 0.044

7 0.000 0.040 0.040 0.282 0.403 0.040 0.201 0.000

8 0.000 0.000 0.000 0.000 0.201 0.403 0.201 0.201

MOST PROBABLE CLASS WITHIN THRES MONTHS

1 0.000 0.000 0.101 0.302 0.302 0.201 0.101 0.000

2 0.000 0.040 0.040 0.282 0.403 0.081 0.161 0.000

3 0.000 0.023 0.187 0.281 0.328 0.140 0.047 0.000

4 0.030 0.067 0.073 0.340 0.364 0.073 0.042 0.012

5 0.026 0.066 0.113 0.371 0.285 0.093 0.040 0.007

6 0.000 0.044 0.022 0.350 0.328 0.175 0.088 0.000

7 0.040 0.000 0.081 0.403 0.282 0.081 0.040 0.081

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B Moimenta Raia

Class 1 2 3 4 5 6 7 8

MOST PROBABLE CLASS WITHIN ONE MONTH

1 0.126 0.377 0.252 0.126 0.126 0.000 0.000 0.000

2 0.108 0.467 0.144 0.252 0.036 0.000 0.000 0.000

3 0.030 0.244 0.244 0.396 0.061 0.030 0.000 0.000

4 0.017 0.022 0.078 0.667 0.211 0.006 0.006 0.000

5 0.000 0.000 0.036 0.261 0.529 0.138 0.022 0.014

6 0.000 0.000 0.000 0.044 0.416 0.350 0.153 0.022

7 0.000 0.000 0.000 0.044 0.131 0.263 0.350 0.219

8 0.000 0.000 0.000 0.000 0.091 0.274 0.366 0.274
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Class 1 2 3 4 5 6 7 8

MOST PROBABLE CLASS WITHIN TWO MONTHS

1 0.000 0.252 0.126 0.503 0.126 0.000 0.000 0.000

2 0.108 0.323 0.180 0.323 0.072 0.000 0.000 0.000

3 0.030 0.244 0.030 0.549 0.122 0.030 0.000 0.000

4 0.022 0.028 0.100 0.539 0.261 0.044 0.006 0.006

5 0.000 0.029 0.058 0.282 0.413 0.138 0.058 0.022

6 0.000 0.000 0.000 0.175 0.459 0.197 0.131 0.022

7 0.000 0.000 0.000 0.175 0.131 0.263 0.306 0.131

8 0.000 0.000 0.000 0.000 0.366 0.274 0.091 0.274

MOST PROBABLE CLASS WITHIN THRES MONTHS

1 0.000 0.000 0.126 0.629 0.126 0.126 0.000 0.000

2 0.036 0.288 0.108 0.359 0.180 0.036 0.000 0.000

3 0.061 0.122 0.061 0.610 0.122 0.030 0.000 0.000

4 0.017 0.044 0.100 0.506 0.250 0.061 0.017 0.011

5 0.014 0.058 0.036 0.304 0.384 0.138 0.051 0.014

6 0.000 0.000 0.066 0.153 0.438 0.109 0.175 0.044

7 0.000 0.000 0.044 0.088 0.263 0.263 0.219 0.131

8 0.000 0.000 0.000 0.183 0.457 0.183 0.000 0.183

Table 3 – Most probable class within one, two and three months for: (a) SPI - 3 and (b) SPI - 6

4. Conclusions

Steady state probabilities for each drought class may be adequately modelled through 
Markov chain analysis, even though the results are conditioned by the probabilistic nature 
of the SPI calculation.

There is a good fit between the empirical data and Markovian solutions, both for SPI-3 and 
SPI-6, as it was confirmed by Nash-Sutcliffe efficiency test. In general, the expected residence 
time in each class is about 1 to 2 months for the states of more concern and 2 to 3 months 
for mild conditions.

In most cases, the expected time to reach mild conditions from any initial drought/wet state 
is about 2 months considering SPI-3 and is at least 3 months when using SPI-6. In addition, 
in the studied region, dry spells tend to restore faster than wet ones.

For water management purposes, in case of a drought event, SPI-6 might be preferred over 
the SPI-3, since the first indicates a higher persistence for the same class, being a better 
guarantee of less water scarcity, when adequately managed.
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