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ABSTRACT 

 

Presence of noise in the speech can sometimes become annoying as it can lead to loss of 

important data or create misunderstandings between the communications area which can 

lead to major problems associated to loss of time and money. This thesis focuses to filter out 

noise form a speech signal which is simulated in Matlab/Octave software while making a 

comparison between temporal resolution of signal with respect to the spectral resolution of 

the signal in which the parameters such as the size of window length are varied in order to 

obtain the best speech separation performance. To get the best spectral and temporal 

resolution with respect to the window length in order to find out the presence of speech sound 

in the mixture or how strongly the mixture is dominated by the noisy signal. The 

reconstructed signal is the original speech sound which was applied at the input. To study 

the relationship between window-disjoint orthogonality and window length and to get the 

best separation performance. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem statement 

“This thesis aims to study the effect of varying window length on the separation 

performance of the signal in order to get the best resolution.” 

 

1.2 Signals of interest 

 

In this experiment the test signals of sampling rate at 16 KHz were used, the reason why 

we do this is because, maximum frequency of the signal is 8 KHz and we always sample 

at a rate of twice the maximum frequency in order to avoid aliasing, also the nyquist 

criterion states that if you have a signal with maximum frequency component at “f” hertz, 

you need to sample it with at least “2f” hertz, which then becomes easy to reconstruct 

the signal [29]. Also we cannot sample at a higher rate or lower rate because, at higher 

rates it requires a large memory to store the discrete values of the signal and at a lower 

rate it is not possible to reconstruct the signal [30].  A table below shows us the various 

ranges of sampling rate for various purposes in the sound industry [31] [32]. 

Table 1 : Sampling Rates. 

Sample Rate (kHz) Areas of application 

44.1 CD 

48 DVD 

32 Cassettes 

22.05 AM Radio 

8 Telephone 

Custom rate(16kHz) Experimental purposes 

 

We have produced two signals of 16 kHz in a .wav format from a special software known 

as Audacity @ http://www.audacityteam.org/ 

The first signal is the speech signal ‘a’, which is plotted at in octave software by use of 

following command: 
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 [a,fs] = audioread ('C:\Users\Ankur\Desktop\MastersThesis\speechsound.wav'); 

This code gives back the sampling rate and generates a sampled vector value in matrix 

a. Plot is shown below for the signal in time domain. 

 

Figure 1: Sampled Speech signal a. 

 

 

Similarly, the second signal is the speech signal ‘a’, which is plotted at in octave 

software by use of following command: 

 

[b,fs] = audioread ('C:\Users\Ankur\Desktop\MastersThesis\clicksound.wav'); 
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Figure 2: Sampled Click signal b 

 

 

 

Finally we have plotted the mixture of the signal as signal x by zero padding and 

adding the signal b to the signal a.  
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Figure 3: Sampled mixture signal x. 

 

 

1.3List of contributions  

This thesis contributes in working towards, eliminating the noise present in an audio 

signal as a mixture with the help of simulation software known as Matlab. It gives the 
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best representation of the signal by carrying a trade-off between a time and frequency 

resolution and reconstructing the input signal via Binary Masking, Inverse Short Time 

Fourier Transform (IFFT) with a special focus on the evaluation of maximum separation 

performance with respect to the varying window lengths [33]. It also focuses on effect 

of Window Disjoint Orthogonality (WDO) in order to facilitate the separation and 

regeneration of original signal in mixture signals, in other words we determine the degree 

of overlapping in the mixing parameters with respect to the multi-dimensional time and 

frequency representation [34]. 

 

1.4Literature review at high level Ieee explore 

 

Many speech enhancement techniques have been used to reduce the noise from the noisy 

speech such as spectral subtraction method [3] which is the oldest one for reducing the 

additive background noise then other method is noise cancellation using adaptive filters. 

Numerical experiments show the Short Time Fourier Transform (STFT) improves 

instantaneous subsample relative parameter estimation in low noise conditions and 

achieves good synthesis [27-30]  But in practice these methods are improving day by day 

in terms of estimation parameter such as synchronization (scaling, sampling rate, number 

of signals, etc...)  , time-frequency masking parameters (window length, number of FFT 

points, degree of overlapping, etc...) these parameters are very beneficial for 

improvement in separation performance. However, we have often to trade-off between 

the areas such as the resolution, bandwidth, SNR performance and a few more. As such 

no method can be absolutely perfect [1-33]. 
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CHAPTER 2 THEORY 

 

2.1 Statement of hypothesis 

In this experiment we propose to create an algorithm for noise removal using the time-

frequency analysis using the Short Time Fourier Transform (STFT) followed by 

application of binary masking for differentiating the input signal (Speech Sound) from 

noise signal (Click Sound), which will be beneficial for reconstruction of the input signal 

(Speech sound) by applying the Inverse Fast Fourier Transform (IFFT) to obtain the 

original signal (Speech Sound) , also improving separation performance by changing the 

analysis window [29]. 

2.2 Literature review  

A signal represented in time domain gives us the information about the magnitudes of 

the signal with respect to the time which is known as temporal resolution of that signal. 

However, if we need to find out the frequency content of the signal it becomes important 

to study the signal into a domain which gives the value of the repeating frequencies with 

corresponding magnitudes. Hence we require to take Fourier Transform of the signal. 

The values generated by the Fourier Transform are the magnitudes and phase 

corresponding to the repeating frequency in that signal. We have to note that Fourier 

transform is lossless and invertible, means, that original signal can be perfectly 

reconstructed by taking the Inverse Fast Fourier Transform (IFFT) [6] [7] . Now as we 

know that Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT) are 

applied to entire signal[9] .Thus, we are unable to resolve the spectral changes with time, 

so we can divide the signal into “chunks”, and apply the DFT/FFT to each one of them. 

This strategy is known as the Short-Time Fourier Transform (STFT), and the resulting 

time-frequency representation is known as a spectrogram [1] [2]. When we plot 

spectrogram, we can see the frequency spectrum of the signal x with respect to time as 

shown in Fig 4. 
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Figure 4: Spectrogram of signal a. 
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Where the yellow colour shows the maximum energy of the signal x captured with 

respect to frequency bins. Thus , time–frequency analysis comprises of those 

techniques that study a signal in both the time and frequency domains simultaneously, 

the motivation for this technique is comes from an understanding between functions 

and their transform representation being tightly connected often[11][12] , and they can 

be  best understood  together  as a two-dimensional object, rather than separately[15] . 

The practical motivation for time–frequency analysis is that classical Fourier 

analysis assumes that signals are infinite in time or periodic, in reality many signals in 

practice are of short duration, and change substantially over their duration [16]. For 

example, traditional musical instruments do not produce infinite duration sinusoids, but 

instead begin with an attack, then gradually decay. This is poorly represented by 

traditional methods, which motivates using the time–frequency analysis [17]. 

 

 

2.3 Time-Frequency analysis  

A signal represented in time domain gives us the information about the magnitudes of 

the signal with respect to the time, which is known as temporal resolution of that signal 

[11] .However, if we need to find out the frequency content of the signal, it becomes 

important to study the signal into a domain, which gives the value of the repeating 

frequencies with corresponding magnitudes [14]. If we want to study the spectral and 

temporal resolution together then we need to do a time - frequency analysis through one 

of the methods below [16]. 

 Short-time Fourier transform. 

 Wavelet transform. 

 Wigner distribution function. 

 Modified Wigner distribution function, and so on. 

We know that Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT) are 

applied to entire signal. Thus, we are unable to resolve the spectral changes with time, 

so we can divide the signal into “chunks”, and apply the DFT/FFT to each one of them 

[18]. This strategy is known as the Short-Time Fourier Transform (STFT), and the 

resulting time-frequency representation is known as a Spectrogram [14]. In this 

experiment we are taking the Short-Time Fourier Transform (STFT) of the signal and 

https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Wigner_distribution_function
https://en.wikipedia.org/wiki/Modified_Wigner_distribution_function
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
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apply a binary mask to estimate the time and frequency resolution in order to represent 

the signal in its best form [19]. 

2.3.1 Short-Time Fourier Transform (STFT): 

The Short-Time Fourier Transform (STFT) is performed as follows,  

 Define an analysis window size for example. 

 Define the amount of overlap between windows. 

 Define a windowing function. 

 Generate windowed segments by multiplying signal with the windowing 

function.  

 Apply the FFT to each windowed segment [14]. 

 

Figure 5: Steps to calculate Short time Fourier Transform (STFT) [14]. 

 

 

 

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
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2.3.2 Overview of Window function: 

 

As mentioned above the division of signal into chunks is possible by a window function, 

which is a mathematical function that gives a zero-value outside of some chosen interval. 

For example, a function that is constant inside the interval and zero elsewhere making it 

easy to spectrally differentiate the signal in shorter amount of time [14]. 

The window function serves several purposes  

 It localizes the Fourier Transform in time, by considering only a short time 

interval in the signal  

 By having a smooth shape, it minimizes the after effects (e.g., high side 

lobes/ridges) of chopping the signal into chunks. 

 By overlapping windows, it provides spectral continuity across time [14]. 

 

There are different types of windows - Rectangular, Triangular, Hanning, Hamming, 

Blackman, etc. The rectangular window expressed as (n) = 1, is the simplest form of 

window, it is equivalent to replacing all data sequence by zeros except N values of data 

sequence, making it appear as though the waveform suddenly turns on and off. 

Rectangular window can be used for analysis of transients, when analysing a transient 

signal in modal analysis, such as an impulse, a shock response, a sine burst, a chirp burst, 

or noise burst, where the energy versus time distribution is extremely uneven [21] [22]. 

For example, when most of the energy is located at the beginning of the recording, a non-

rectangular window attenuates most of the energy, degrading the signal-to-noise ratio 

[5]. Mathematical representation of rectangular window is, 

 

 

 

Where, 

 M is the window length in samples. 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Modal_analysis
https://en.wikipedia.org/wiki/Window_function#cite_note-hpmemoryproject.org-9
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Figure 6 : Rectangular window function [5]. 

 

The Fourier Transform of the rectangular window is shown in the Fig 7. 

 

 

Figure 7: Fourier Transform of Rectangular window function [5]. 
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The reason why we are not using the rectangular window because it will produce large 

ripples in frequency spectrum on account of the sharp transitions taking place across the 

signal. Moreover, the sliding window would produce more number of transitions along 

the bins. So, it could result into uneven dispersion of the spectral energies of both the 

signals and the signal data might be lost. In this experiment we use a “Hamming window” 

which is mathematically expressed as,  

 

Where  = 0.54, and  = 0.46 are the constants to cancel the first side lobe of the Window. 

Thus the constants help to reduce the ripples in the side lobes, reducing the lowering the 

levels as we can observe in Fig 8.  

 

 

Figure 8: Hamming Window and its Fourier Transform [1]. 

Due to its nature of the side-lobe level below 40 dB it is a good choice for ``1% accurate 

systems,'' such as 8-bit audio signal processing systems, because there is rarely any 

reason to require the window side lobes to lie far below the signal 

quantization noise floor. The Hamming window has been extensively used in telephone 

http://www.dsprelated.com/dspbooks/filters/Definition_Signal.html
http://www.dsprelated.com/dspbooks/sasp/What_Noise.html
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communications signal processing [1]. However, for a higher quality audio signal 

processing, higher quality windows may be required, particularly when those windows 

act as low pass filters for eliminating high frequency components, the reason why this 

happens is because the window function removes the sharp transitions at the start and 

end of the data to be analysed, this set of data is tapered up gently from 0 to full scale 

and the data is tapered down gently to 0 at the trailing end of the data which reduces high 

frequency content associated with the transition at the start and end of the data. The size 

of the windowing function results in the good signal representation, whether it is good 

frequency resolution or good time resolution. Hence, a wider window gives better 

frequency resolution but poor time resolution and a narrower window gives good time 

resolution but poor frequency resolution which are known as narrowband and wideband 

transforms, respectively as shown in the Fig 9. 

 

Figure 9: Narrowband and Wideband Transforms in time-frequency domain. 

Taking the windowed function along with the Fast Fourier Transform (FFT) of the signal 

in time domain gives us a Short Time Fourier Transform (STFT) of that particular signal, 

which gives us magnitude of frequency components of the signal with respect to the 

number of bins defined. The STFT of the signal as shown in the Figure below. 

 

http://www.dsprelated.com/dspbooks/filters/What_Filter.html
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Figure 10: Short Time Fourier Transform of signal a. 

Time–frequency analysis comprises those techniques that study a signal in both the time 

and frequency domains simultaneously, the motivation for this technique is comes from 

an understanding between functions and their transform representation being tightly 

connected often , and they can be  best understood  together  as a two-dimensional object, 

rather than separately [16]. The practical motivation for time–frequency analysis is that 

classical Fourier analysis assumes that signals are infinite in time or periodic, in reality 

many signals in practice are of short duration, and change substantially over their 

duration [15]. For example, traditional musical instruments do not produce infinite 

duration sinusoids, but instead begin with an attack, then gradually decay. This is poorly 

represented by traditional methods, which motivates using the time–frequency analysis          

[17]. 

 

 

2.4 Binary masking 

Binary mask is calculated by comparing the energy of the target sound with the energy 

of the interferer sound within each time-frequency bins which is shown below whenever 

the energy of the mixture is greater than the interfering sound the mask value will be set 

as 1, giving us the idea of the dominated signal present in the mixture [6]. 

 

https://en.wikipedia.org/wiki/Fourier_analysis
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Figure 11: Short Time Fourier Transform of signal a. 

We take the above signal as interferer sound b and compare it with the mixture sound x: 

 

Figure 12: Short Time Fourier Transform of mixture signal x. 

Thus, result is we get a binary mask M. 
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Figure 13: Binary mask from comparison of the mixture signal x and the interfering signal b 

 

When this mask is placed in the time-frequency representation of the mixture we get 

the following plot as: 

 

Figure 14: Approximation of the signal a obtained after the binary masking of the mixture 
signal. 
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We can see from the above figure the dark spots indicate the bin frequency where the 

energy of the mixture signal x was dominated by energy of the interferer signal b and 

was removed with the help of mask. Hence, approximation of signal a. If we take the 

Inverse Short Time Fourier Transform of the above signal we can get back the 

reconstructed signal a below. Where the yellow region depicts the exact signal energy 

of the source signal a represented in time and frequency domain. 

 

Figure 15 Reconstructed signal similar to the speech signal a. 

 

In this experiment we have used the Short-Time Fourier Transform as an application of 

Binary Masking. The result of the Short-Time Fourier Transform (STFT)  is frequency 

channels with equal bandwidths and linearly spaced centre-frequencies in Hz .When the 

Short-Time Fourier Transform ( STFT) is used for binary masking, the binary mask can 

be applied by multiplying the binary mask with the magnitudes of the Short-Time Fourier 

Transform (STFT)  .The binary mask is multiplied with the FFT magnitudes, and the 

Inverse Short-Time Fourier Transform ( ISTFT)  is applied to the modified magnitudes 

using the phases from the unmodified input signal [10]. Finally, the resulting short time 

segments from the inverse FFT are combined.  Experimenting methods such as source 

separation, speech enhancement, or noise reduction, using binary masking, it becomes 
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important to realize that there are two different and sometimes conflicting goals to 

increase speech quality or to increase speech intelligibility [11] [12].Speech quality is a 

measure of how clear, natural and free of distortion the speech is, whereas speech 

intelligibility is a measure of how much of the speech that has been perceived correctly 

and recognized. In other words how clear the target speech was sounding despite the 

context and for intelligibility is related to the right context. However, we have to trade 

off both the features against each other, when working with the experiment [13]. 

Table below, shows which is the best window length to represent the signal in time-

frequency domain. From the table it is clear that at lower window lengths we get a good 

representation in time domain whereas at higher window lengths we get a good 

representation in frequency domain. However, at a window length of 1024, we get a 

better representation of both domains. So it is clear that the signal is best represented in 

time and Frequency domain for window length of 1024. 

 

2.5 Areas covered by algorithm  

 

Figure 16: Chunk of the Sampled mixture signal x. 
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As we can see that we have taken a small chunk of mixture signal in the time domain 

and we try to analyse the frequency content of the mixture signal which is kind of 

impossible to do so in the time domain we then try to convert it into frequency domain 

by applying Fast Fourier Transform (FFT) of that signal [23]. 

 

 

Figure 17: Fast Fourier Transform of the chunk of the Sampled mixture signal x. 

Now, we have the frequency content of the signal but still it is a bit difficult to 

differentiate the frequency component of the mixture signals [24][25]. Hence, we take 

Short-Time Fourier Transform (STFT) of the signal and we get the result as shown in 

the figure.  
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Figure 18: Short Time Fourier Transform of desired signal a. 

 

By applying the Binary masking technique as discussed in the section of binary mask we 

manage to recover the signal a using Inverse Short Time Fourier Transform, which helps 

in determining the frequency content of the signal associated to frequency bins[20]. 

 

 

Figure 19: Inverse Short Time Fourier Transform of above figure to recover the signal using 
the binary masking. 
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Where the yellow area indicates high spectral energy recorded by the bin of the 

reconstructed signal. On the left and right side are the zero padded regions in which there 

is no signal presence shown by purple colour. Blue colour shows the removed noise 

interference. Sometimes we cannot get exactly the original signal because, if the signals 

are non – orthogonal in the Time-Frequency domain then the frequency content may be 

occupied by the dominating signal in that particular [21] frequency bin which will 

eliminate/hide the frequency content of the dominated signal. Thus, it is very necessary 

that the signals should be disjoint-orthogonal while performing windowing operation. 

Only then can we get a perfect representation of the expected signal [23], this experiment 

focuses in the multi domain area of the signal processing which enhances the separation 

performance. The highly changing spectral contents of the signal in the continuous and 

discrete time domain and frequency domain proves to be challenging when we are 

working towards the signal quality and separation performance, thus, this experiment  is 

a step towards solving the real world problems faced in communication’s sector. For 

instance if a meeting was conducted via internet calling like Skype, if the users were 

speaking and typing at the same time, it would be very difficult for the users to pay 

attention to the speech sound of one another.  Hence, it would result in confusion at some 

stage or later. This problem can be solved by using this technique. 

  Few other examples include,    

 Speech recognition.  

 Speaker identification. 

 Gender classification system. 

 Speech pre-processing for aids to hearing impaired persons [26]. 
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CHAPTER 3 TESTING AND RESULTS 

4.1 Experimental Procedure. 

Step1: Writing the code in the editor window. 

 

Figure 20: Writing the code in editor window. 

Step 2: Debugging the code and saving it as .m version of file in the selected destination 

folder. 

 

Figure 21: debugging the code and saving it in the file. 
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Figure 22: file created of .m extension. 

Step 3: Calling that particular code from the command window. 

 

Figure 23: Running the file in the command window to achieve the desired results/plots. 

Step 4: Generated vectors shown in the bottom left in the figure below, 

 

 

Figure 24: Generated values of the vectors defined in the code. 
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These vectors shown above contain the information about the frequency components of 

the signals which we further plot with the help of the special function known as imagesc 

() which results in the plots below, 

 

Figure 25: final result in the plot. 

Following are the plots illustrating the varying parameters of the window function with 

respect to time-frequency analysis. There are total 6 plots for parameters namely 

window length and hop size, where window length is the length of the window and hop 

size is the size of the overlapping parameter of the window function. One should 

observe at which parameter range the reconstructed signal is represented clearly in time 

as well as frequency domain. 

PLOT1 (Window Length = 256; Hop Size = 256) 

 

In the first plot we have generated the Short Time Fourier Transform (STFT) of the 

speech sound as signal ‘a’ from following command. 

 

 function [stft] = stft_analysisa(a,wlen,hop,nfft) 

      alen = length(a); 

      % defining the length of the signal a which is our speech sound 

      win = hamming(wlen,'periodic'); d 

  % defining the window length  
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       rown = ceil((1+nfft)/2);  

  coln = 1+fix((alen-wlen)/hop);  

  stft = zeros(rown, coln);  

      % creating a STFT matrix to store the values after computation  

  indx = 0; %Assigning index value to 0 

      for col = 1:coln % loop for calculating values till length of the signal 

  xw = a(indx+1:indx+wlen).*win; % window frame  

  A = fft(xw, nfft);% fft of windowed samples. 

  stft(:, col) = A(1:rown); 

 %each row of stft gets updated by windowed fft values 

  indx = indx + hop; 

  end 

Similarly, we have generated the Short Time Fourier Transform (STFT) of click sound 

as signal ‘b’. 

 

 

Figure 26: Short Time Fourier Transform of signals a  and b. 



26 

 

 

Next plot is the Short Time Fourier Transform (STFT) of the mixture signal x consisting 

of the mixture of signal ‘a’ and ‘b’ using the code below. 

 

  function [stft] = stft_analysisx(a,b,wlen,hop,nfft) 

  x=a+ alpha*b; %%shifting and adding the two signals a and b. 

  x = x(:);%creating a column vector for x 

  xlen = length(x);%%length of the mixture 

  win = hamming(wlen,'periodic');% defining the window 

 rown = ceil((1+nfft)/2);% calculating the number of rows for stft  

  coln = 1+fix((xlen-wlen)/hop);% calculating the no.of columns for stft     

  stft = zeros(rown, coln);%new stft matrix of null values of size rown and coln 

  indx = 0;%assigning index value to 0 

           for col = 1:coln % calculating till length of the signal 

  xw = x(indx+1:indx+wlen).*win;%window frame  

  X = fft(xw, nfft);% fft of windowed samples. 

  stft(:, col) = X(1:rown);--- each row of stft gets updated by windowed fft 

  indx = indx + hop; 

  end 

Creating the binary mask for mixture x and multiplying the mask with mixture signal 

to get approximation of signal a. 

function [M,Xhat] = binarymask(stfta,stftb) 

M= stft>=stftb;%comparing the values of x with a 

Xhat=stft.*M;%approximation of signal a  

end 



27 

 

 

Figure 27: Short Time Fourier Transform of mixture signal x and binary mask of the signal x. 

 

    Finally we have generated the plot of reconstructed signal using function below. 

 

function [x_origional] = binarymask(Xhat) 

x_origional = real(ifft(Xhat));%%%the inverse short time fourier transform to the 

approximated signal. 

end 
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Figure 28: Reconstruction of the signal a using the generated binary mask. 

 

We can observe from above plot giving better time resolution but poor frequency 

resolution. Where the yellow region is the maximum energy captured by the time-

frequency bin. 

 

 

 

PLOT2 (Window Length = 256; Hop Size = 512) 
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Figure 29: Reconstructed signal a for window length -256 over hop size-256 

 

We can observe from above plot still giving better time resolution but poor frequency 

resolution. Where the yellow region is the maximum energy of the desired signal 

captured by the time-frequency bin. 

 

PLOT3 (Window Length = 512; Hop Size = 512) 

 

Figure 30: Reconstructed signal a for window length -512 over hop size-512 
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We can observe from above plot giving better time resolution but much better 

frequency resolution than the previous plot. Where the yellow region is the maximum 

energy of the desired signal captured by the time-frequency bin. 

 

 

PLOT4 (Window Length = 1024; Hop Size = 256) 

 

 

Figure 31: Reconstructed signal a for window length -1024 over hop size-256 

 

 

 

We can observe from above plot giving better time resolution but much better 

frequency resolution than the previous plot. Where the yellow region is the maximum 

energy of the desired signal captured by the time-frequency bin. 
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PLOT5 (Window Length = 1024; Hop Size = 512) 

 

Figure 32: Reconstructed signal a for window length – 1024 over hop size-512 

 

We can observe from above plot giving the best time-frequency resolution than the 

previous plot. Where the yellow region is the maximum energy of the desired signal 

captured by the time-frequency bin. 
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PLOT6 (Window Length = 2048; Hop Size = 256) 

 

Figure 33: Reconstructed signal a for window length -2048 over hop size-256 

 

We can observe from above plot still giving better frequency resolution but poor time 

resolution. Where the yellow region is the maximum energy of the desired signal 

captured by the time-frequency bin. 
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PLOT7 (Window Length = 2048; Hop Size = 512) 

 

Figure 34: Reconstructed signal a for window length -2048 over hop size-512 

 

We can observe from above plot still giving better frequency resolution but much poor 

time resolution. Where the yellow region is the maximum energy of the desired signal 

captured by the time-frequency bin. 

 

PLOT8 (Window Length = 4096; Hop Size = 512) 

 

Figure 35 : Reconstructed signal a for window length -4096 over hop size-512  
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We can observe from above plot still giving better frequency resolution but much poor 

time resolution than previous plots. Where the yellow region is the maximum energy 

of the desired signal captured by the time-frequency bin. 

 

PLOT9 (Window Length = 2048; Hop Size = 1024) 

 

Figure 36:  Reconstructed signal a for window length -2048 over hop size-1024 

 

We can observe from above plot still giving better frequency resolution but much poor 

time resolution than previous plots. Where the yellow region is the maximum energy 

of the desired signal captured by the time-frequency bin. From the above plots we have 

generated a table showing the window lengths variation with respect to the overlapping 

parameter and the resolution of the signal in time-frequency domain. 
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Table 2: Varying Window length for better Resolution. 

Serial 

no. 

Window 

length (wlen) 

Hop 

size 

(hop) 

Good representation in 

Time/Frequency 

1 256 256 Time 

2 256 512 Time 

3 512 512 Time  

4 1024 256 Frequency 

5 1024 512 Time, Frequency 

6 2048 256 Frequency 

7 2048 512 Frequency 

8 4096 1024 Frequency 

9 2048 1024 Frequency 

 

 

Observing the above plots and the table we can say that the best representation of the 

signal is shown in the window length of 1025 with half the size of the overlapping 

parameter. 

 

4.2 Measure of Window disjoint Orthogonality with respect to time-

frequency parameters. 

We call two functions Sj(t) and Sk(t) to be W-disjoint orthogonal ,when the Windowed 

Fourier Transforms of Sj(t) and Sk(t) are disjoint. In other words if their inner product 

is zero. It is very useful in terms of separation of the mixture into its component sources 

using a binary mask [26-28]. Window-disjoint Orthogonality can be calculated under 

the following condition: Given a mask M, such that 0 ≤ M(γ) ≤ 1 for all elements γ in 

the transform space Γ, the preserved-signal ratio (PSRM) and the signal-to-interference 

ratio (SIRM) performance criteria are defined as: 
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The approximate W-disjoint Orthogonality is then defined as: 

 

 

 

The maximum possible value, WDOMk = 1, implies that the mask Mk can perfectly 

separate and recover the k-th source [28]. 

 

Table 3: Effect of Window lengths on the W-disjoint Orthogonality and Signal-to-Interference 
Ratio for Speech sound. 

Window length PSR SIR WDO 

256 0.94201 0.53445 -0.82056 

356 0.93242 0.52541 -0.84223 

456 0.93805 0.51727 -0.87543 

512 0.94866 0.52018 -0.87506 

612 0.95263 0.51865 -0.88410 

712 0.95445 0.49979 -0.95525 

812 0.96599 0.50747 -0.93754 

912 0.96987 0.48931 -1.0123 

1024 0.97418 0.49238 -1.0043 

1124 0.97696 0.48895 -1.0211 

1224 0.97760 0.49579 -0.99420 

1324 0.97390 0.49869 -0.97901 

1424 0.97407 0.49658 -0.98749 

2048 0.96494 0.50947 -0.92908 

4096 0.96357 0.51054 -0.92380 
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The above table shows that for the given window lengths the window disjoint 

Orthogonality for speech sound  is maximum observed at window lengths of values 

912, 1024 and 1124 means that over here we are able to observe that the binary mask 

applied can  separate the signal to a much greater extent . Hence, higher separation 

performance [28]. 

 

 

 

Figure 37: Window length v/s [Signal-interference Ratio, W-disjoint Orthogonality] for 
speech sound. 
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Table 4: Effect of Window lengths on the W-disjoint Orthogonality and Signal-to-Interference 
Ratio for Click sound. 

Window length PSR SIR WDO 

256 0.70073 1.8711 0.32623 

356 0.69570 1.9033 0.33017 

456 0.69397 1.9332 0.33501 

512 0.69175 1.9224 0.33191 

612 0.69105 1.9281 0.33264 

712 0.71430 2.0008 0.35730 

812 0.70926 1.9705 0.34933 

912 0.73830 2.0437 0.37704 

1024 0.73937 2.0309 0.37532 

1224 0.74260 2.0170 0.37443 

1424 0.74155 2.0138 0.37331 

1724 0.72171 1.9704 0.35544 

2048 0.71585 1.9628 0.35115 

4096 0.71008 1.9587 0.34756 

8192 0.78648 2.1876 0.42696 

 

The above table shows that for the given window lengths the window disjoint 

Orthogonality for click sound is constant and less than 1 at window lengths of values  

912, 1024 and 1124 means that over here we are able to observe that the binary mask 

applied cannot separate the signal to much higher extent. Hence, lower separation 

performance [28]. 
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Figure 38: Window length v/s [Signal-interference Ratio, W-disjoint Orthogonality] for click 
sound. 
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CHAPTER 4 CONCLUSIONS 

 

In this project a noise cancellation for the speech signal at 16 KHz was simulated in 

Matlab software. The separation performance of the signal was tested for different 

window lengths in which the best window length for best separation of the signal was 

determined. Time-frequency analysis was explored at a great detail in terms of 

understanding the resolution. Fourier Transform for extracting the spectral components 

of a signal was understood and worked upon. The binary mask was generated and tested 

for separation of signal and reconstruction of the original signal was implemented using 

the mask value. Window disjoint Orthogonality of the mixtures were taken into account 

for the mixture signals and its relationship between the varying window parameters 

was determined. The window lengths of values greater than 1224 and lesser than 2014 

values exhibited a poor separation performance. However, some window lengths 

showed a greater possibility of much better separation of the signal giving the window 

disjoint Orthogonality value between 0-1.Higher Signal-to-Interference ratio (SIR) was 

exhibited in values near to the window lengths near to the value of 1024.  

4.1 Future scope 

The project motivates to make the use of Wavelet Transform instead of Short Time 

Fourier Transform for future purposes. Use different types of windows of much higher 

quality and its test its robustness in the different environments. Multi cannel separation 

for more than one mixtures can also be considered for implementation and testing using 

above methods for future purposes. 
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